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FOREWORD 
 
 
Classical Mathematics from al-Khwārizmī to Descartes includes two 

new chapters – one on the transmission of Greek heritage into Arabic and 
the other on Descartes’s mathematics – that did not appear in the original 
French of D’al-Khwārizmī à Descartes. Conversely, I have omitted here 
the chapter on burning mirrors (‘Les miroirs ardents, anaclastique et 
dioptrique’), a subject to which I devoted an entire book, which is now 
available in English.1 

The English translation of the present work by Professor Michael 
Shank has benefited greatly from both his competence in the history and 
philosophy of science and his refined bilingualism. I mention this to 
express my profound gratitude for his hard work and for apposite 
comments that improved the text.  

I warmly thank Aline Auger (Centre National de la Recherche 
Scientifique), who focused her competence and flawless attention to detail 
on assembling the index and preparing the book for the press. 

I am also grateful to Kathryn Rylance and Joe Whiting at Routledge for 
the care that they gave to this project at every stage of its development. 

Last but not least, Dr Khair   El - Din   Haseeb  has spared no effort in 
bringing this historical research to audiences beyond the original 
francophone one.     I hereby offer him my friendly gratitude.             

 
Roshdi RASHED 

 
1 Geometry and Dioptrics in Classical Islam, London, al-Furqān, 2005. 



 
 
 

TRANSLATOR’S NOTE 
 
 
In agreeing to undertake this translation, I hoped to learn much. The 

project has exceeded my expectations in many ways. Most directly, it has 
given me a new appreciation for the exceptional range and importance of 
Professor Rashed’s contributions to the histories of mathematics and of the 
mathematical sciences, from manuscript discoveries to pointed analyses. 
Most strikingly, his scholarship offers a panoramic and up-to-date view of 
Arabic mathematics, of its historical and conceptual connections with 
Greek, medieval Latin, and early-modern mathematics. If this book has 
taught me the most about new research in the remarkable range of Arabic 
mathematics, its expositions have also given me a new appreciation for the 
significance of both Apollonius and Fermat. Not least, looking to the 
future, the book also makes clear that much remains to be done in the 
history of Arabic mathematics and mathematical sciences. May it serve to 
inspire young scholars when it hints that exciting discoveries are likely to 
reward the patient reader of Arabic manuscript holdings.  

In translating, I have striven for clarity above all. When this could be 
achieved by retaining the gallic flavour of the original, I have done so, 
sometimes in the case of mathematical terminology. 

Whenever they were readily available, I have used standard English 
translations of primary sources. Since every translation is also an 
interpretation, I have in some instances (usually noted) modified an 
existing translation to make it consistent with Professor Rashed’s 
interpretation of the source.  

Many thanks to Professor Rashed for his confidence, and to Carol 
Troyer-Shank for her able assistance contributions. Without her managerial 
acumen, and editorial and clerical skills, I doubt that I could have 
completed the translation.  

 
Michael H. SHANK 



 
 
 

PREFACE 
 
 
When historians become concerned with organizing and illuminating 

the various stages of mathematical thought, it is not unusual for them to 
isolate mathematics at the dawn of the modern age by distinguishing it from 
ancient and medieval mathematics. The expressions ‘early modern mathe-
matics’ or ‘mathematics in the classical age’ are the ones customarily used 
to designate the mathematics that developed during the 16th and 17th centu-
ries in Western Europe – to the exclusion of every other territory. For many 
historians, and even more so for philosophers such as Edmund Husserl, it is 
in this era that mathematicians carried out a radical revolution by breaking 
with ancient and medieval ways of thinking in order to forge new ones that 
heralded modern times. According to these historians and philosophers, it is 
precisely in this era that one encounters the beginning of algebra, the erup-
tion of geometrical algebra, and the emergence of the mathematics of the 
continuous. It is thus easy for them to take the next step: these new 
contributions, which were born in the 16th and 17th centuries, allegedly mark 
this radical revolution and seal the unity of classical mathematics. On this 
account, classical mathematics would therefore be characterized by the 
simultaneous presence of the aforementioned chapters, among others.  

If one examines the components of this ‘early modern mathematics’, 
however, one soon notices that these chapters are far from being contem-
poraneous: each has its own history, and the inventions or discoveries are 
by no means simultaneous. More generally, the global landscape of mathe-
matics in the 16th and 17th centuries appears as a composite, an edifice 
constituted by different elements with origins traceable to many different 
dates. Indeed, some chapters, such as plane geometry, the geometry of the 
conic sections, and the geometry of the sphere, go back a millennium. They 
take us back to Euclid, Apollonius, and Menelaus. Without Apollonius, for 
example, how can one understand anything about Mydorge, Descartes, 
Fermat, Desargues, and Wallis, to mention only a few? These ancient 
geometers are effectively fixtures in the landscape of ‘early modern math-
ematics’, a point that obviously undermines the thesis of a ‘revolution’. If 
one now wishes to consider algebra, the books of al-Khwārizmī, Abū 
Kāmil, and Fibonacci are prerequisites for anyone who wishes to deal with 
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the authors of the 16th and 17th centuries. In algebraic geometry, finally, the 
surest way of seeing novelty where it does not exist and overlooking it 
where it does is to forget all about the works of al-Khayyām and Sharaf al-
Dīn al-Ṭūsī.  

One can easily multiply similar examples from the study of projections, 
the theory of parallels, spherical geometry, trigonometry, Diophantine 
analysis, number theory, combinatorial analysis, infinitesimal geometry, 
etc. And the same analysis holds also for such mathematical sciences as 
astronomy, optics, and statics. In each of these cases, one can see that a 
global look is necessarily deceptive, unsuited to depicting the landscape of 
early modern mathematics, and especially to tracing the history of its vari-
ous components. Now that new results have accumulated in the history of 
Arabic and Latin science, one can be even less satisfied than before with the 
sketchy and simplistic frame that hems in early modern mathematics. It is 
therefore necessary to return this mathematics to a horizon that is truly its 
own by shattering the old tripartite periodization inherited from political 
history – ancient, medieval, modern – in order to conceive of a new one that 
will be faithful to the facts. Indeed, the very expression ‘early modern 
mathematics’ does not even have the same conceptual or temporal exten-
sion depending on the chapter of mathematics under consideration. As far 
as plane geometry is concerned, for example, the differences between the 
practice of a 3rd-century BC mathematician and that of a 17th-century math-
ematician are reduced to a few nuances of style that are insufficient to dis-
tinguish them from each other. And in order to understand the algebraic 
geometry of the early modern period, it will be necessary to integrate into it 
some of the work carried out in the 11th to the 12th centuries. The same goes 
for other chapters of mathematics and for the mathematical sciences.  

To sketch a picture that conforms better to the reality of these mathe-
matics, I have thought it indispensable to go back to the beginnings of these 
various chapters in order to identify the concepts and the practices that these 
mathematicians put to work, and to understand some of their main develop-
ments and corrections. For several decades, this effort has been the goal of 
my research in the history of ancient, medieval, and classical (early 
modern) mathematics. The studies collected here represent only a few of 
these results. Although carried out in a variety of circumstances, they all 
nevertheless grow out of the same intention and follow the same method.  

With competence and rigour, Aline Auger (CNRS), has prepared the 
manuscript for print and compiled the index.  

Roshdi RASHED, Bourg-la-Reine – 30 March 2011 
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THE HISTORY OF SCIENCE:  
BETWEEN EPISTEMOLOGY AND HISTORY 

 
 
 

Never before has the history of science, in all of its forms and speciali-
ties, prospered as much as it has in the twentieth century, and especially its 
last half. This unprecedented prosperity is evident everywhere: in the new 
domains conquered, in the number of valuable works published, in the 
number of teaching and research positions created, in that of institutions 
founded, of specialised journals launched, and of collections published… 
In other words, we can say without exaggeration that the accomplishments 
of the last five decades outweigh everything we owe to the last two centu-
ries, which invites us, quite naturally, to ask ourselves without compla-
cency what our discipline has achieved and what remains to be accomplis-
hed. Such an examination is all the more necessary because the prevailing 
impression is one of incessant and increasing dispersion, and because the 
profession of ‘historian of science’ is progressing more rapidly than the 
discipline itself: a singular situation, the consequences of which are uncer-
tain and unpredictable at the very least. Before we begin this questioning, 
however, it is appropriate to recall the principal achievements of this past 
century; those that, since the middle of the last century, have sketched the 
landscape of the history of science. These contributions are distributed 
among several themes: methods, new fields investigated, and new relations 
established. 

At the end of the 19th century, and especially in the first decades of the 
20th, historians of science discovered the full importance of textual 
research, and the necessity of tracing the textual tradition of every scientific 
writing they examined. To a large extent, this new duty was a product of 
the development of the historical and philological disciplines, which were 
themselves influenced by the German school of philology. This research on 
textual traditions brought into the history of science a host of auxiliary dis-
ciplines and historical techniques – paleography, codicology, philology, 
etc. – and in the end became part of the permanent patrimony of the disci-
pline, represented in the past by Hultsch, Tannery, Heiberg…, and attested 
today by the work on the translation of Archimedes by William of 
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Moerbeke and those on the work of Newton, Leibniz, Euler and, more 
recently, by the studies devoted to the writings of Einstein, among others. 

And yet – symmetrically, as it were – these achievements, to which 
one must add much other accumulated wealth to be discussed below, did 
not take long to raise the problem of the gap between the history and the 
prehistory of the sciences, which in turn gave rise to many other issues 
concerning scientific change. Such are the questions raised by the famous 
methodological debate that began in the sixties. In this debate, which was 
salutary, the goals went far beyond the questions raised. The historians who 
participated in it wished, in fact, to break with purely descriptive history, 
spontaneous history, the ‘history-novel’ of scientists and their facts, and 
with history as the eclectic sum of people and facts. These were the first 
attempts to reflect on the discipline as such. In the life sciences, it was 
Georges Canguilhem who led the reflection; in astronomy, mechanics, and 
physics, it was, among many others, Gaston Bachelard, Alexandre Koyré, 
and above all Thomas Kuhn. 

This debate interested those sociologists who, whether Weberians or 
Marxists, wished to give the history of science the social dimension it was 
lacking, by returning to institutions or social behaviors. In any case, this 
undertaking of methodological reflection, which in essence could not help 
but remain unfinished, made it possible to begin the first genuine effort to 
elucidate the discipline. 

In addition to these methodological achievements, we must mention 
all the new fields to which we have laid claim. In the first place, the goal 
was to extend the history of sciences further back in time, thanks to the 
integration of Egypt and of Babylon. It was the work of Thureau-Dangin 
and Neugebauer, in particular, that allowed this extension, at the same time 
as it incited historians to rethink the notion of ‘origin’, and to situate Greek 
science differently. The other field was the rectification of the representa-
tion of medieval science: research on medieval Latin science was renewed, 
and scientific contributions which had until then been held to be peripheral 
were somewhat better integrated. Such was the case, in diverse degrees and 
in different modalities, with science in Arabic, Chinese, and Sanskrit. Yet 
the view of these sciences as peripheral was to be long-lived, since it has 
not yet been abandoned. This task was accomplished by entire schools, 
some of which are associated with the names of Joseph Needham, Adolf 
Youschkevitch, Pierre Duhem, Anneliese Maier, and Marshall Clagett.  

Other fields were soon added to these newly-claimed domains, which 
opened the field of investigation of the discipline still further. The history 
of social sciences, the history of the diffusion of science from the centers of 
production towards the periphery, the history of institutions and of the great 
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scientific laboratories, the history of applications, etc., today belong to the 
history of science, as is shown by the work presented at the various 
colloquia. 

In these conditions, we will no doubt see the modification of the rela-
tions between the history of science and much other historical research, 
such as the history of philosophy and of technology. 

In view of such diversity, not to say dispersion, we cannot avoid rai-
sing the question of the discipline itself, which was brought up in the 
course of the great methodological debate, only in order to be subsequently 
forgotten. Today, thanks to the work accomplished during the preceding 
decades – Charles Gillespie’s Dictionary of Scientific Biography (D.S.B.), 
and Robert Cohen’s immense collection of Boston Studies in the Philoso-
phy of Science, and the ‘Storia della scienza’ of the Enciclopedia italiana, 
among others – the question may be formulated as follows: what is this 
discipline that, throughout its existence, and particularly since the 18th 
century when it was born as an independent discipline – deals both with 
epistemology and with history? Whether we think of Condorcet, in his 
Sketch or in his Academic Eulogies; or of August Comte and the role of the 
history of science in his Course of Positive Philosophy; or whether, closer 
to our time, we bring up Joseph Needham, for instance: is the history of 
science really a discipline? and what is its true place between epistemology 
and social history? 

 
With the first part of the question – is it really a discipline? – we dis-

pense quickly. As it presents itself today in the works of those who claim 
allegiance to it, the history of science is a domain of activity, and not by 
any means a discipline. Indeed, it lacks the unifying principle that could 
provide it with the means and the power to exclude; for a domain of acti-
vity does not exclude, but is indefinitely distended by successive additions. 
It is a heading designated by a label, not a discipline characterised by a 
genuine definition. Thus, in the history of science, the various doctrines are 
juxtaposed and opposed on the basis of dogmatic and exclusive options, 
and even by petitio principii. According to some, the history of science 
presents itself as a history of ideas, or a history of mentalities. For others, 
by contrast, it is a history of scientific concepts – their formation, their 
development, and their rectification. For still others who were originally 
historians, concepts and their nature have little importance, and the history 
of science is the history of a cultural production, in the same sense as the 
histories of painting or religion. Let us also mention those for whom it is a 
kind of social psychology of scientific actors, and those who turn the his-
tory of science into an empirical sociology, such as has been developed 
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particularly in the United States after the Second World War: a sociology 
of groups, laboratories, and institutions. This list is by no means closed, 
and this diversity continues to increase, not because of some internal neces-
sity of research in the history of science, but rather as an effect of the suc-
cessive importation of the views and methods from the social disciplines, 
and the trends that succeed one another therein. 

This growing multiplicity has all the appearance of blind progress, 
which might spare us the examination of the second part of the question: 
what is the place of the history of science between epistemology and social 
history? But if we thus leave this question in the shadows, it will force us, 
whether we like it or not, to make up our minds about the object of the 
history of science. The difficulty – and it is considerable – is to be able to 
say in what sense the historian of science practices history, without formu-
lating an arbitrary choice, and without imposing a methodology, be it 
empirical or transcendental. It was in order to avoid these shoals, upon 
which the methodological debate had run aground, that it seemed to me 
appropriate to start, in accordance with a well-known phrase, ‘from the 
things themselves’; that is, from works of science and the traditions within 
which they are integrated. 

It will easily be granted that every work of science belongs to at least 
one tradition, and often to many (whether or not they are known to us) 
relatively to which it takes on its meaning. This means that we cannot 
understand anything about individual creations, however revolutionary they 
may be, unless we insert them within the traditions that witnessed their 
birth. If, by ‘work of science’, we understand a result established in accor-
dance with the precise norms of proof and consigned within a text, or rea-
lised within an object or an instrument, we shall for the moment give the 
word ‘tradition’ the vague meaning attributed to this term, which has the 
advantage of not isolating the work of science from the community to 
which the scientist who conceives it belongs. Let us begin by considering 
this notion of tradition.  

Whatever their allegiance, historians of science are quite willing to 
admit that one of their essential tasks is the reconstitution of scientific tra-
ditions. Yet the paths they follow in order to reach this goal are divergent 
and branching. In fact, part of the methodological debate in the history of 
science refers to this diversity of conceptions of tradition and its nature. At 
first glance, the undertaking may seem easy and almost immediate: do not 
traditions most frequently present themselves under names, titles, institu-
tions, and networks that ensure the exchange of information and human 
beings between poles, centers, places, and forms of learning? In this case, 
traditions would be immediately recognizable: we would speak of the tra-
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dition of the Euclidean theory of numbers, of the Japanese Wasan, of the 
tradition of the Italian algebraic school of the 16th century, of the British 
quantum physics of the 1920s, or of Bourbakian mathematics. To be sure, 
there are some exceptions, but they confirm the rule: I am thinking, for 
instance, of the Alexandrian tradition – or traditions – which finds its 
summit in the work of Diophantus, and of which, nevertheless, we are 
completely ignorant. How could we fail to be tempted to describe such 
easily identifiable facts as men, titles, and institutions? In fact, it is this ten-
dency that dominates a large part of historical writings, which present 
themselves under different names: history of ideas, social history of 
science, etc. 

Nevertheless, if we are not satisfied with a simple empirical descrip-
tion, the status of a tradition is not easy either to delimit or to establish. 
How are we to isolate a tradition, to assign to it a beginning and an end, 
and to trace its borders, without making an arbitrary cut in the indefinitely 
mobile totality of living history? Who can establish the unity of a tradition 
that is constantly evolving through time? Why is it constituted, and why 
does it cease? What system of rules might its existence obey? 

There is, it seems, no a priori answer to these questions. 
With simple description, the historian is only at the beginning of his 

labour. No sooner has he hitched himself to the task of reconstitution than 
the illusion is dissipated. The apparent simplicity evaporates, and all the 
empirical data – names, titles, etc. – proves impotent to delimit a tradition 
while dominating all its ramifications. Let us try to be more precise, by 
describing the principal stages in a work of the history of science. At the 
first stage, the historian must restore a work of science – a mathematical 
theorem, a physical result, an astronomical observation, a biochemical 
experiment, etc. – in all its materiality. He must examine inscriptions, 
tablets, papyri, manuscript texts, and printed texts; he must redo experi-
ments, and re-fabricate objects, if necessary… All these procedures contri-
bute, in the first instance, to the reconstitution of the textual tradition, as 
well as of the technological tradition… ; in a word, of the ‘objectal’ tradi-
tion (relative to the notion of object in general). Although in many cases, 
this research is not independent of the very contents of the work of science, 
it requires competencies other than scientific knowledge: those that deal 
with the various historical disciplines, such as archaeology, codicology, 
paleography, philology, the history of technology, etc. 

This level of analysis is indispensable, but it is not sufficient: in such a 
reconstitution, we are still far from having exhausted the work of science. 
All that is known to us at this stage is its textual and technical authenticity, 
the networks along which it circulates, and the social context in which it 
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was conceived and composed. All these elements are no doubt important, 
but they do not enlighten us about its place within the science to which it 
belongs. Even more seriously, at this stage we would not be in a position to 
perceive the cleavages that may mark the work of one and the same scien-
tist. In order to consolidate these remarks, let us consider the example of 
the arithmetical work of Fermat. 

Paul Tannery and Charles Henry have reconstituted the textual tradi-
tion of this work, as well as the networks of exchange that developed 
around them, and investigations of the work’s social context could be still 
further refined and multiplied. Yet Fermat’s place within arithmetic still 
remains to be determined. Is his work that of an algebraist, for instance in 
the tradition of Viète, or a specialist in the theory of numbers? Or else, does 
such work later belong to algebraic geometry, as André Weil maintains? 
Finally, was it simply the first arithmetical theory? I have shown elsewhere 
that Fermat’s work does not have only one aspect, and that around the 
1640s a line of cleavage splits it in two. One part of his arithmetical work 
does indeed belong to the tradition of the algebraists, whereas another part 
has to do with integral Diophantine analysis. Not a single mathesis but two 
matheseis – two conceptual traditions – are thus necessary to shed light on 
Fermat’s arithmetical work. The one goes back via Bachet de Méziriac to 
the algebraists, whereas the other, in the wake of the work of mathemati-
cians like al-Khāzin, taken up in Fibonacci’s Liber quadratorum, renews 
the theory of numbers, thanks to the invention, for the first time, of an 
arithmetical method of demonstration: the ‘infinite descent’. If therefore we 
wish to situate Fermat’s arithmetical work historically, we must shift to 
another level of analysis, and direct our attention this time to the reconsti-
tution of the conceptual tradition. The case of Fermat is far from being 
rare; in fact, it even seems to be the most common scenario, especially for 
scientists who change the trajectory of their science. To take only a few old 
examples from French science, this is what Descartes did in algebraic geo-
metry, with his seminal distinction between ‘geometrical curves’ and 
‘mechanical curves’. It is also what Ampère did in physics, when he gave 
up explaining electromagnetism by magnetism, in order to choose the 
opposite path; and what Fresnel did when, against the dominant concep-
tion, he defended the necessity of transverse vibrations; that is, vibrations 
that are perpendicular to the ray. As a historian, the historian of science 
thus cannot allow himself the luxury of failing to reconstitute this concep-
tual tradition – or traditions – in other words, of carrying out this episte-
mological work. 

Along this path, other obstacles inevitably arise, which have their 
essential origin in the dialectic between increasing multiplicity and funda-
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mental stability. After studying numerous traditions, one general result 
imposes itself on us: a work of science of a certain stature cannot be 
explained in terms of one single conceptual tradition, not even of the one to 
which this work has contributed the most. Moreover, a conceptual tradition 
of some importance is distinguished by a certain stability, in spite of the 
diversity of authors and of contributions. Two somewhat paradoxical 
necessities seem to dominate the progress of a conceptual tradition: to 
exhaust all the logical possibilities inscribed within a given type of rationa-
lity, on the one hand; and, on the other, to reform this rationality and its 
means, in order to account for the new facts inexplicable within its frame-
work. By way of example, suffice it to reflect upon the Archimedean tradi-
tion in infinitesimal mathematics; the Euclidean tradition in the theory of 
parallels, etc. To such obstacles, however, we must also add the question of 
the scientific ‘style’ which, behind such multiplicity and beyond the variety 
of forms and the transformations that mould a tradition, distinguish it and 
place a seal upon its identity. This ‘style’ reflects not only the dominant 
rationality, but also rhetorical procedures of exposition, such as the type of 
language used, symbolism, graphical representations, etc. The difficulty 
consists in isolating this ‘style’, which task is indispensable for placing an 
individual or collective work of science in perspective, and thereby expres-
sing its meaning. This phenomenological procedure seems inevitable if we 
wish to invest the tradition with its role as an ordering principle, bringing 
out the interconnection of the works out of which it is woven. 

These two terms – ‘objectal’ tradition (to which textual tradition 
belongs) and conceptual tradition – seem to translate concretely the ques-
tion of the place of the history of science between social history and epis-
temology. As an element of ‘objectal’ tradition, the work of science is a 
material and cultural product, a product of men in a specific place and time. 
As Karl Marx would have advised, it is incumbent upon the historian to 
seek out the social and material conditions of this production. As a part of 
the conceptual tradition, however, this work also calls for an analysis of its 
conceptual structure, able to bring out its meaning, which will allow us to 
delimit the very notion of tradition. It might, of course, turn out that such a 
translation of our initial question may impoverish it. It does, however, seem 
susceptible of protecting us against two hazards: the reduction of history to 
pure epistemological analysis, such as it is for many of our eminent con-
temporaries; or else, even more, to a philosophy of history like that of 
Auguste Comte. The second risk is its assimilation to the history of any 
cultural domain, a practice that is current among historians. Yet the diffi-
culty remains intact if we do not further specify what we mean by a con-
ceptual tradition, to which a work of science belongs. Does this last ques-
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tion have the same meaning for all the scientific disciplines? Does the work 
of science belong to one conceptual tradition, or to several? These ques-
tions, among many others, emerge immediately, and they lead us neces-
sarily to question ourselves about this notion of a work of science, and to 
ask ourselves what distinguishes it from all other social production of cul-
tural works. 

In order to answer this question, it is not uncommon for the philoso-
pher to invoke a conception of certainty and of proof. Although this is per-
fectly legitimate, we will here abandon this path, which – however wrongly 
– might appear dogmatic. It is also common for the historian to ask the 
opinion of the scientist who is the object of his study, about the distinctive 
features of a work of science. There can then seem to be a historical answer 
to this epistemic question, whereas in fact it receives only an ideological 
one. Finally, it may happen that when he is confronted with this question, 
the reflective historian of science may propose two types of distinction, 
historical and epistemic in nature. The first separates two modes of 
knowledge: in order to define a work of science, he distinguishes it from a 
work of proto-science. The second distinction, which is much less power-
ful, isolates several forms of a work of science, and helps us to understand 
this cumulative march, necessary and universal, as much as those of its 
characteristics that are proper to science. The example most frequently 
invoked is that of Galileo in mechanics. With regard to the second, suffice 
it to recall the numerous examples that illustrate it: that of Lebesgue in the 
theory of integration, of Kolmogorov in the theory of probabilities, etc. It is 
clear that in both cases, such distinctions are intended to account for the 
emergence of new forms in the work of science; but whereas the former is 
‘creationist’, and concentrates absolutely on initial forms, the second is 
‘transformationist’ or evolutionary, and deals with new forms on the basis 
of the old ones. Let us therefore pause on this first distinction, the impor-
tance of which is fundamental for our purposes. 

 
The distinction between proto-scientific and scientific presents itself 

as an exclusive one that dominates the entire history of science. This oppo-
sition is always understood as simultaneously historical and logical. The 
proto-scientific always precedes the scientific, both logically and histori-
cally; and the radical break between the two is presumed to have been 
essentially accomplished in the seventeenth century. As a result, this oppo-
sition supposedly allows us to distinguish a work of science from all others 
that claim to deal with the same object; this is the most commonly accepted 
doctrine. When we look more closely, we shall not hesitate to grant a grain 
of truth to this distinction, even if the relations between proto-scientific and 
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scientific are much more varied and complex, both logically and histori-
cally, and even if the seventeenth century did not have the exact role attri-
buted to it. Let us begin by subtracting, as it were, mathematics from this 
exclusive opposition, for a contingent reason: nothing proto-mathematical 
has come down to us, and the only evidence we have of proto-mathematics 
already belongs to mathematics: indivisibles; considerations about the 
notion of limits in the eighteenth century; objective and subjective doc-
trines of probability prior to axiomatic theory, etc. In the other scientific 
disciplines, the term ‘proto-scientific’ seems to cover at least four different 
types of knowledge. Aristotle’s physics is proto-scientific, as is the social 
contractualism of the eighteenth century; the social Darwinism of the fol-
lowing century, and the social physics of Quetelet; the optics of Euclid; the 
marginalism of a Jevons, a Walras or a Pareto; as well as the ballistic 
model of a Tartaglia, Condorcet’s homo suffragans, the economists’ homo 
bernoulliensis, etc. 

These examples flagrantly reveal the variety of statuses of the ‘proto-
scientific’, since the realities that this term designates cannot be jumbled 
together under the same denomination, either de iure or de facto. Thus, 
Aristotelian physics, like social contractualism, is proto-scientific in the 
sense of a systematic doctrine of lived experience that one intends to be 
coherent: that of displacement or that of voting in an assembly. Social 
Darwinism and social physics are proto-scientific if we understand by this 
a science which is annexed to a domain other than that of its origin. 
Euclid’s optics, and the marginalist contributions, are proto-scientific in the 
sense of a ‘pure’ knowledge, produced by the application – direct, as it 
were – of mathematics to doctrines of lived experience, whether direct 
vision or the distribution of goods. Finally, the models of Tartaglia in bal-
listics, Condorcet in social science, or Von Neumann in economics, are 
proto-scientific in the sense of an indirect application of mathematics, with 
the help of analogies to a third discipline that is mathematized or consi-
dered to be such, to a doctrine of lived experience. 

We can easily see that proto-scientific knowledge is not only multiple, 
but also, for the most part, linked to other sciences that deal with objects 
other than its own. Two consequences therefore impose themselves: the 
criteria of a work of science necessarily differ from all the criteria of such 
proto-scientific knowledge; moreover, the notion of tradition splits apart, 
both from the point of view of diachrony and from the point of view of 
synchrony. Let us begin by examining the question of criteria, since they 
forbid us from treating the object of science not only like that of a proto-
science, or a pre-science, but also like the object of every other cultural 
production. We have seen that proto-scientific knowledge is always linked 
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to an experience that is lived, and therefore particular. Yet we must not be 
deceived: the doctrine or philosophy thus elaborated is not restricted to 
expressing the contents of this experience directly, and it does not proceed 
by placing in brute correspondence a concept and an event, or a proposition 
and a datum, but a proposition and another proposition. That is to say, it 
proceeds by placing in correspondence two relations between concepts. It 
is in this sense that we may say that the data of immediate experience are 
mediated. The linguistic task of systematisation and the denominations that 
we always encounter in the authors of such doctrines are the instruments of 
this mediation. 

In other words, the data of lived experience constitute only a starting 
point, and mediation is required in order to achieve the constitution of a 
doctrine. In this regard, recall that the Aristotelian doctrine of motion is by 
no means made up of propositions directly linked to the sensible expe-
rience of the movement of displacement, but only to those which concern 
the correspondence of ‘the act of what is potentially such’ with proposi-
tions relative to ‘determined natures’ and to the cosmological order. 
Likewise, the social doctrine of Jean-Jacques Rousseau does not concern 
the lived practice of suffrage, but links a conception of the social contract 
to that of suffrage as the declaration of the general will. In the last analysis, 
it is thanks to this mediation, and to the transcendence it insures with 
regard to the data, that we introduce the other criterion: coherence, which 
philosophers hold must be severe. This coherence refers, moreover, simul-
taneously to logical consistency and to architectonic action. 

To this mediation and search for logical consistency and architectonic 
perfection, we should add another criterion, with regard to which this doc-
trine of lived experience may progress: the successive amendments, 
intended to exhaust the data of a particular experience in an ever-more-
coherent exposition. One thinks of the amendments carried out by the parti-
sans of impetus for the Aristotelian doctrine of motion. To sum up: 
mediation, transcendence, logical consistency and architectonic action, 
progress by successive amendment: such are the criteria of knowledge 
produced by phenomenology in order to provide a framework for events –
the doctrine of Aristotle or of Rousseau, for example – or by confiscation, 
that is, the restriction of a phenomenology initially intended for another 
universe than that for which the explanation is undertaken – as in social 
physics or social Darwinism. 

 
The first type of application of mathematics to this doctrine of expe-

rience consists in the will directly and completely to replace its notions by 
mathematical structures; this is the example of Euclid’s optics, and of 
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Walrasian marginalism. In this case, mathematics is only a language. The 
second type of application, by contrast, subordinates the substitution of 
mathematical structures to the intercession of a third discipline, which is 
dominated by mathematical knowledge, or else considered to be so. Analo-
gical correspondences between the two disciplines are the means to 
mathematize the doctrine of experience itself: this is the method of models. 

Proto-scientific knowledge is thus multiple; moreover, not all its ins-
tances are of equal value. Their goals, their explanatory powers, their syn-
tactic and technical controls differ, even if all of them have as their point of 
departure one of the doctrines of lived experience, subject to the criteria we 
set forth previously. Such instances of knowledge thus cannot have the 
same relations with future science. It is true, as has often been affirmed, 
that science is made in opposition to these instances of knowledge, by 
breaking with them; but this break does not have the same significance in 
every case. Even if, at the deepest level, it always takes place against the 
above-mentioned doctrine of lived experience and the criteria of its opera-
tion, its paths subsequently never cease diverging. Thus, Ibn al-Haytham’s 
geometrical optics broke with all the doctrines of his predecessors, it is in 
so far as he separated the conditions of the propagation of light from those 
of vision, in order to consider, in the first instance, only material entities – 
‘the smallest parts of light’ – which retain only those properties which may 
be geometrically and experimentally controlled, thus abandoning all sen-
sible qualities other than the energetic ones. Yet this profound break, which 
allowed the introduction of a new category of proof in optics, and more 
generally in physics – experimental proof – did not take place in the same 
way with Euclid’s optics and with Aristotle’s doctrine of vision. Likewise 
in mechanics: Galileo was the first scientist able to separate, within the 
doctrines of motion, what falls under the domain of kinematics from what 
falls under dynamics, in order to consider only the relations between the 
positions of material entities within time. These entities now took on only 
those properties susceptible of being controlled geometrically and experi-
mentally, thus excluding all sensible qualities other than those of resistance 
to movement. This profound break was carried out not so much with regard 
to Aristotelian doctrine as to the doctrine of impetus, the doctrines of the 
Calculators of Oxford and Paris, or the models of al-Qūhī and Tartaglia. 

This diversity of relations between proto-science and future science 
obliges the epistemologist not only to differentiate among the conceptual 
traditions of the various proto-scientific instances of knowledge, but also, 
and more importantly, it gives him the means to order and to hierarchize 
them. It is this possibility that is the privilege of works of proto-science, 
compared to the other cultural works that present themselves to the 
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historian. In other words, future science dictates a principle of order, and – 
to use a metaphor – a notion of distance that helps to situate proto-scientific 
knowledge. Yet this privilege of works of proto-science is not affirmed at 
the historian’s expense: quite the contrary, it operates in his favor, for the 
distinction between these conceptual traditions allows him better to spot, 
within an often formless mass, the textual and technical traditions which 
underlie them. Thus, he is in a position to ask all the social-historical ques-
tions necessary to understand their formation, their development, and the 
interaction of the various social and ideological factors that have insured 
the constancy of their formulation. 

The break with the doctrines of lived experience and, at the same time, 
with the criteria of their elaboration takes place thanks to a conception of 
an object that contains an operative and judicatory norm. Not only is the 
knowledge produced invested with an accumulative power, but it can 
effectively realize this accumulation only by means of a constant rectifica-
tion of its comprehension. It is in these acts of rectification that new forms 
appear. This is why in scientific knowledge, if we think only by ready-
made concepts, we may say that continuities and discontinuities are ins-
cribed one within the other. Such discontinuities are sometimes called 
‘revolutions’, and they designate the passage from one theory to another: 
from the mechanics of Galileo and of Newton to Special Relativity; from 
the latter, from electrodynamics, and from continuist thermodynamics to 
quantum theory. We have here the emergence of new forms of the same 
science, which redefine their object each time without, however, replacing 
it with a different one, as was the case for proto-scientific knowledge. In 
this discontinuous succession of forms, the old form presents itself as an 
approximate case of the new one, yet one that is expressible in the language 
of the latter. It is, so to speak, the new form that explains the old form, and 
specifies its conditions of validity. The former includes the latter as an 
approximate case. The emergence of new forms no longer cancels out the 
old ones; it rectifies and integrates them. In these conditions, the notion of 
conceptual tradition is profoundly modified. The best proof of this is the 
style of its death. In pre-science, conceptual traditions are assassinated; 
here, they die by the exhaustion of their own possibilities. This difference – 
fundamental, in my view – seems to show that the questions and problems 
that presided over its birth are internal to science; or, at the very least, that 
it has been possible to make them adopt its language completely. Thus, 
each tradition can speak the language of the other, and all can be translated 
into the language of distant successors. In optics, the language of the 
Alhazanian tradition may be translated into that of the Newtonian tradition, 
which is impossible for Euclidean optics; and the language of the first two 
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traditions may later be translated into that of Fresnel, etc. Such translation 
is not only in the diachrony of victorious science, but it is also valid in syn-
chrony. Let us mention the example of two rival contemporary traditions: 
that of fluxions begun by Newton and that of differential calculus, founded 
by Leibniz. Despite the famous controversy and the distance that separates 
their styles – the former is geometrical, the latter algorithmic – each can 
speak the other’s language, and both are translatable into the standard 
language of analysis. This fundamental feature is proper not only to mathe-
matics, but also common to all scientific knowledge, even that which, 
according to Bachelard’s expression, are phenomeno-technical. 

In science, thanks to a certain epistemological closure that characte-
rises it, the notion of conceptual tradition is liberated to a much greater 
degree than in the pre-science of the corresponding ‘objectal’ tradition. The 
role of exogenous elements not only becomes minimal, but above all it is 
controlled at the time of the constitution of theoretical models and the 
demonstration of their validity. Linguistic and technical surveillance pro-
tects us against hidden Gods. 

This independence by no means diminishes the role of the ‘objectal’ 
tradition – quite the contrary. If the conceptual tradition precisely indicates 
the temporal and human constituents of the ‘objectal’ tradition, the latter, in 
order to be established, requires the undertaking of work which would 
allow us to understand the formation of the community of scientists, their 
modes of learning, their choice of which sectors to develop and with which 
rhythm, etc.; in other words, all the material and social elements that have 
established the framework of the conceptual tradition. These elements may 
illuminate the rhythms and the diffusion of the conceptual tradition, but 
they cannot shed light on systems of concepts and the proofs of their vali-
dity. To be sure, the choices of investment and allocation of resources, the 
training of scientists and the multiplicity of competencies, the stratification 
of their community, social ideologies as well as scientific ideologies, 
among many other factors, may explain controversies when the facts are 
imperfectly established and proofs not rigorously carried out. They also 
shed light on the conflicts of interpretation which almost always accom-
pany the passage to application, the unequal development of different dis-
ciplines, etc.; but they cannot inform us about the constitution of valid 
theoretical models. This last task is, so it seems, the particular duty of the 
history of science; it is this task that it must define if it wants to constitute 
itself as a genuine discipline. Work on the ‘objectal’ tradition, which the 
historian of sciences can probably not do without, falls under other specia-
lities, subject to other criteria, which range from archaeology to social psy-
chology, via codicology and economics, among others. The differences 
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between the objectal tradition and the conceptual tradition lie not only in 
objects and methods, but they are much more deeply rooted in the very 
nature of their necessity. Moreover, it is perhaps here that resides the 
source of all the conflicts and controversies, or, if one prefers a ready-made 
expression, the reason for the chasm between ‘internalists’ and ‘externa-
lists’, or between the adepts of ‘social history’ and historians of science. In 
a word, the objectal tradition deals, with our actions: with psychological, 
social, and historical events, with things that are here and now; in brief, 
with contingent facts. The formation of an academy, the functioning of a 
great research centre, the organisation of a laboratory, the modes of trans-
mission of knowledge, the material support of texts, the allocation of 
resources, the scientist’s social affiliations, his psychological profile, etc., 
are all so many contingent facts. Even if psychology, sociology, econo-
mics, and so on, can identify a kind of necessity in them, there is none in 
their relations to the facts of science. Conversely, it is the necessity cha-
racterizing them that makes these facts recognizable. Such is the case for a 
mathematical theorem, a physical law, etc. It is for this reason, moreover, 
that an objectal fact is not liable to be true or false, whereas for the con-
ceptual fact its character of necessity is also a criterion of truth. We can 
thus understand that every globalising vocation is condemned in advance to 
theoretical defeat. Thus, today, the flourishing temptation to extend social 
history to the conceptual tradition resembles like two grains of sand the 
ambition to extend psychology to logic: not long ago, the latter resulted in 
the famous ‘psychologism’ which unleashed the fury of philosophers like 
Kant, Husserl, and Cavaillès; the former did not fail to result in ‘histori-
cism’. What is more, the thesis of the extension of social history cannot 
itself be defended, for it in turn will be of the order of contingency, and the 
vicious circle will be closed. Besides, if we wanted this thesis of social 
history to be possible, we would have to evacuate from science both its 
truth-value and the distinction between true and false. Conversely, to 
extend conceptual history to the objectal tradition leads to a ‘pure history’, 
or a philosophy of history that is no longer a history of science. Yet the 
whole problem of the history of science, the one to which all of its diffi-
culty is reduced, consists in this: the production of the facts of science, 
quite determinate as the production of human beings and the results of their 
actions, transcends, as an effect, the contingent conditions of its advent; 
and this production transcends these conditions in order to distinguish itself 
from them by its necessary character. In a nutshell, the whole problem con-
sists in knowing how necessity emerges from contingency. The historian of 
science then reveals himself to be what he has always tried to be: neither a 
‘science critic’, in the sense of an art critic; nor a historian, in the sense in 
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which we understand a specialist in social history; nor a philosopher, like 
the philosophers of science; but simply a phenomenologist of conceptual 
structures, of their genesis and of their affiliations, in the midst of concep-
tual traditions that are always in transformation. Today more than ever, this 
self-awareness seems to me necessary if we want the history of science to 
be constituted as a genuine discipline instead of being merely a domain of 
activity. Also today, we must construct a new discipline, as necessary as it 
is legitimate, simultaneously with the history of science, but independently 
from it: that of social research on the sciences. Such independence is the 
guarantee that both the history of science and social research on the 
sciences may be formed as true disciplines, which deal with the cultural 
phenomenon of science. 
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THE TRANSMISSION OF GREEK HERITAGE INTO ARABIC 

 
 
 
Historians of Arabic science and philosophy, whatever their allegiance, 

all acknowledge the importance of the translation of the Greek heritage into 
Arabic. They know that if they ignore this fact, they will understand noth-
ing about the emergence and development of these disciplines in Arabic, 
and thereafter, in Latin. This is not at all surprising: to measure the impact 
of the Greek patrimony, one could either become familiar with the actual 
evolution of these domains in Islamic science, or simply rely on the testi-
mony of ancient historians and biobibliographers themselves (e.g., Ibn 
Iṣhāq al-Nadīm).1 

Historians of Greek science and philosophy, also provide evidence, 
however indirect, for the significance of the Greek heritage that was trans-
lated into Arabic. Indeed, if these historians ignore the Arabic versions of 
Greek writings, they are condemned to missing a considerable part of their 
quarry, and to depriving themselves of a precious means of understanding 
it. Indeed, some of these writings, for which the Greek text is lost either in 
part or as a whole, exist only in a single Arabic translation. The commen-
taries of Arabic scientists, along with the progress they made in the disci-
plines pertinent to these writings, are a powerful tool for reaching a better 
understanding of the latter and situating them in the history of the disci-
pline. One need only think of Diocles, Apollonius, Ptolemy, Diophantus, 
Alexander of Aphrodisias, among many others. 

Everyone recognizes the exceptional breadth of this phenomenon of 
scientific and philosophical transmission and its importance for the history 

 
1 Ibn Iṣhāq al-Nadīm, Kitāb al-fihrist, ed. R. Tajaddud, Teheran, 1971. See 

particularly the seventh chapter, pp. 299–360 and pp. 417–25. English translation by 
B. Dodge, The Fihrist of al-Nadim, 2 vols, New York, 1970. One of the earliest studies, 
now a classic, is Max Meyerhof’s ‘Von Alexandrien nach Bagdad. Ein Beitrag zur 
Geschichte des philosophischen und medizinischen Unterrichts bei den Arabern’, 
Sitzungsberichte der Berliner Akademie der Wissenschaften, Philologisch-historische 
Klasse, 1930, pp. 389–429. 
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of science and of philosophy. And yet it is far from getting the attention it 
deserves. Many texts have yet to be properly edited and, in order to give a 
satisfactory account of them, many studies must yet be undertaken. Even 
more importantly, a change of perspective is necessary to put this research 
back on a more fruitful path. This change, which is now underway, must 
occur in both the method and the very concept of the object of research. To 
study the transmission of the Greek patrimony into Arabic solely from a 
philological perspective, which is by far the most frequent approach, is the 
surest way of missing the most essential points: the motivation for the 
translation, its extension, and the new forms that it constantly adopted. To 
examine this transmission solely with the goal of restoring Greek writings 
that were definitively or temporarily lost is to miss the very evolution of the 
phenomenon. To be sure, these studies are completely legitimate and 
sometimes locally important. As soon as they are generalized, however, 
they become the trees that hide the forest: they are taken to be the means of 
describing the evolution of the translation movement from Greek into 
Arabic. Recent research on this phenomenon has tried to correct this 
perspective.2 It is this correction that we attempt to present and examine 
here. 

 
 
1. TRANSMISSION AND TRANSLATION: SETTING UP THE PROBLEM 

1. Towards a new approach 

It therefore seems urgent to abandon the dominant conception of 
transmission and translation. To this end, we must remind ourselves of two 
well-known elementary facts. First, it is crucial to remember that the new 
Muslim state stretched over the major part of the Hellenistic world. The 
two regimes therefore involved the same peoples, but the latter underwent a 
more or less massive change of language and religion. These peoples 
therefore inherited a conglomeration of know-how, technical objects, and 
institutions; together, these formed the elements of a social and economic 

 
2 R. Rashed, ‘Problems of the Transmission of Greek Scientific Thought into 

Arabic: Examples from Mathematics and Optics’, History of Science 27, 1989, pp. 199–
209; repr. in Optique et Mathématiques: Recherches sur l’histoire de la pensée 
scientifique en arabe, Variorum reprints, Aldershot, 1992, I. See also D. Gutas, Greek 
Thought, Arabic Culture. The Graeco-Arabic Translation Movement in Baghdad and 
Early ʿAbbāsid Society (2nd–4th/8th–10th centuries), London/New York, 1998; 
J. L. Kraemer, Humanism in the Renaissance of Islam: The Cultural Revival during the 
Buyid Age, 2nd edn., Leiden, 1992. 
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patrimony that is as relevant to the history of techniques as to the history of 
institutions. At the heart of this heritage, however, also lies a body of 
dormant texts, as it were, and a body of elementary teaching, notably in 
theology, astrology, alchemy, or medicine. The second fact is the follow-
ing: to this heritage are added other contributions, arising from different 
horizons, especially Persian, Sanskrit, and Syriac. To ignore these facts is 
to neglect the important role of practices, know-how, technical objects, and 
institutions in the circulation of knowledge. Such an omission quickly 
reduces the issue of transmission only to matters of translation, and the 
only portion of the Greek heritage to survive would then be its bookish 
part. In this case, in other words, one runs the risk of missing everything 
that happened in the wake of the means mentioned earlier: elementary 
geometry, logistics, agronomy, hydrostatics, metrology, etc. – in short, all 
the branches that will later become parts of full-fledged disciplines, or 
simply of practical geometry. Even though this heritage can probably not 
single-handedly explain the emergence and development of the sciences 
and philosophy in the new Islamic culture, it nevertheless remains among 
the latter’s important elements.  

Conversely, it is not unusual for the act of translating to be presented 
as passive, related to teaching, and always set in the same register, regard-
less of the context in which it is carried out. On this account, the act is that 
of a translator, often a physician, who knows Greek and who renders into 
Arabic – haphazardly and based on chance encounters – Greek writings 
pertinent to various disciplines that do not always fall within his compe-
tence. Translation from Greek is therefore cast as a matter of chance, with 
no good reason for either the choice of books, or the opportunity to trans-
late them. In short, according to this often implicit account, translation 
focused on what it stumbled upon, as best it could, and had a scholastic 
motivation, insofar as the translated texts allegedly were intended solely for 
teaching. Finally, the register remained the same, since the act of transla-
tion required nothing more than knowledge of Greek (or Syriac).  

This picture, of transmission first and of translation second, has led to a 
doctrine that one encounters here and there, notably among modern biobib-
liographers.3 If one believes its proponents, translation to acquire Greek 
sciences and philosophy is the first stage of a ‘law’, according to which 
three stages succeed each other logically and historically: assimilating the 
acquired knowledge is the second stage, followed by creative production in 
the third stage. This rather naïve doctrine presents the same picture as the 

 
3 See for example in F. Sezgin, Geschichte des arabischen Schrifttums, vol. V, 

Leiden, 1974, pp. 25 ff. 
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preceding one, and sees the translation effort as merely a desire for accul-
turation. Unfortunately, both this doctrine and the picture that underlies it 
collide head-on with several facts, only two of which we mention here. 

It has not been sufficiently emphasized that translation was concurrent 
with innovation. A few examples illustrate the point: optics and catoptrics 
with al-Kindī, the geometry of the conics with al-Ḥasan ibn Mūsā and his 
student Thābit ibn Qurra (d. 901), and number theory, also with the latter. 
Once it is properly grasped, this concurrence raises the long-forgotten 
question of the intimate relationship between translation and research, or of 
the very form of the translation in relation to its audience, as we shall see. 

 
 

2. Cultural transmission, scientific transmission 

The second fact pertains to the hypothesis – widely conceded but rarely 
discussed – of a water-tight continuity between the scientific and philo-
sophical research in Antiquity and Late Antiquity and the research that 
developed in Arabic. Now this continuity is in effect only point by point 
and seems both fragile and paradoxical. First, the institutional point of view 
will raise the question of the Arabization of the administration and of the 
tools of power, that is, the Dīwāns.4 In earlier work, we have shown that 
the Arabization and evolution of the Dīwān made possible the translation 
of a ‘logistics’ and the beginning of research into it, which in turn contrib-
uted to the conception of a non-Hellenistic discipline: algebra, with al-
Khwārizmī. We have also shown how the culture of the Dīwān, which was 
necessary for the creation of a document-intensive bureaucracy, created a 
specific social stratum. It was the latter’s linguistic and literary needs, as 
well as the demands of – among other disciplines – logistics, algebra, and 
geometry that stimulated both translation and inventive research.5 At this 
level, one can truly discern a certain continuity, as also appears in such 
other sectors as architecture, farming techniques, etc. But matters are rather 
different when one considers scientific and philosophical research. This 

 
4 R. Rashed, ‘Les recommencements de l’algèbre aux XIe et XIIe siècles’, in 

J. E. Murdoch and E. D. Sylla (eds), The Cultural Context of Medieval Learning, 
Dordrecht, 1975, pp. 33–60; repr. in R. Rashed, The Development of Arabic 
Mathematics: Between Arithmetic and Algebra, Boston Studies in the Philosophy of 
Science 146, Dordrecht, 1994, pp. 34–84, particularly pp. 53 ff. 

5 Abū al-Wafāʾ al-Būzjānī’s book On the Needs for Scientific Arithmetical Science 
for Kuttāb (writers, secretaries, civil servants in administrative offices), ʿUmmāl 
(prefects, tax collectors) and Others belongs to this tradition. Cf. an edition of Abū al-
Wafāʾ’s book in A. S. Saidan, ʿIlm al-Ḥisāb al-ʿArabī, Amman, 1971, vol. 1. 
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kind of research was becoming rare and disappearing in both Alexandria 
and Byzantium.6 In Arabic from the 9th century on, however, one witnesses 
a genuine scientific and philosophical renaissance, the foundations of 
which – linguistic and historical as well as philosophical and theological – 
had been solidly laid in the 8th century. 

For the new scientific community, in short, Alexandria, Byzantium, 
and the other cities of the oikoumene constituted a ‘dormant library’ that 
preserved a wealth of manuscripts from Antiquity and Late Antiquity. All 
the historical evidence points in this direction.7 However, the absence of 
continuity at this level raises two closely related questions, only one of 
which matters here. How indeed can one make sense of the renewal that 
occurred by leapfrogging over the centuries in order to return to Apollonius 
and Aristotle, for example? What are the relations between this renaissance 
and the transmission of the Greek heritage, and notably its translation? 
Indeed, only in light of this scientific and philosophical renaissance does 
the question of translation makes sense: this very link that seems to offer 
the best means of grasping it.  

The transmission of the Greek heritage into Arabic followed mainly, 
but not uniquely, two paths that were interrelated despite their unequal sig-
nificance and their different natures. Although it is well known to 
historians of society and culture, the first, which we mentioned earlier, has 
barely been explored: it is the one associated with technical subjects, crafts, 
and institutions. These are techniques, organisations, and ideologies that 
the ancient citizens and inhabitants of the Greek-speaking Mediterranean 
had established to ensure both their material and social existence. This path 
is that of the transmission of the Dīwān translated into Arabic under 

 
6 J. F. Haldon, Byzantium in the Seventh Century; The Transformation of a Culture, 

Cambridge, 1990; H. D. Saffrey, ‘Le chrétien Jean Philopon et la survivance de l’école 
d’Alexandrie au VIe siècle’, Revue des études grecques, 1954; L. G. Westerink, 
Anonymous Prolegomena to Platonic Philosophy, Amsterdam, 1962. 

7 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle. Vol. I: 
Fondateurs et commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-
Qūhī, Ibn al-Samḥ, Ibn Hūd, London, al-Furqān, 1996, p. 142; English translation: 
Founding Figures and Commentators in Arabic Mathematics. A History of Arabic 
Sciences and Mathematics, vol. 1, Culture and Civilization in the Middle East, London, 
Centre for Arab Unity Studies, Routledge, 2012. See also T. M. Green, The City of the 
Moon, Leiden, 1992. Al-Masʿūdī’s description in Murūj al-dhahab (Les prairies d’or), 
ed. C. Barbier de Meynard and M. Pavet de Courteille, revised by C. Pellat, Section XI 
Historical Studies, Beirut, 1966, vol. 2, §§ 1389–1398, pp. 391–6, shows that the traces 
of Hellenism in Ḥarrān around the 3rd century after the Hegira are essentially religious. 
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Hishām ibn Abī al-Malik (r. 724–743);8 it is also the path taken by the 
procedures of practical geometry, logistics, and disciplines such as 
medicine, alchemy, astrology, agronomy, the military arts, or architecture. 
To this category also belong the treatises on elementary logic and theology, 
deemed necessary to religious teaching in the context of the Nestorian and 
Jacobite monasteries.9 On this first path, which was in effect completely 
natural, since the Hellenized populations had followed it for a millennium, 
also circulated translations of scientific texts, as we shall see below. The 
second path, which is much clearer and better known, is that of learned 
translation, pertaining to the philosophical and scientific writings of 
Antiquity and Late Antiquity. By its extent, this path stands out sharply 
from all prior translation efforts, including those in the Latin and Syriac 
worlds.10 It would be unrealistic to think that these two paths were 
impermeable and mutually exclusive. Indeed, several clues prove the 
contrary, and future research will no doubt find intermediate routes that 
will help us circumscribe better the social phenomenon of the transmission 
of heritage and translation. For now, it suffices to highlight one 
incontestable general characteristic: this translation movement went hand 
in hand with the unification, the Arabization, and the Islamization of the 
Muslim empire and its administration. 

 
 

3. Scholarly transmission: one myth and several truths 

However that may be, if one can trust the legend, the second path was 
officially ‘opened’ by one of the grand Caliph al-Maʾmūn’s dreams. As the 
legend goes, the Caliph had conversed with Aristotle in a dream. After 
having recounted this episode, the ancient biobibliographer al-Nadīm 
writes: 

 

 
8 Al-Nadīm, al-Fihrist, p. 303. 
9 One might consider the iconic figure of Patriarch Timothy, who collaborated on 

the translation of Aristotle’s Topics from Syriac into Arabic, which was commissioned 
by the Caliph al-Mahdi. Cf. S. P. Brock, ‘Two Letters of the Patriarch Timothy from the 
Late Eighth Century on Translations from Greek’, Arabic Sciences and Philosophy, 9, 
1999, pp. 233–46. See also J. van Ess, Theologie und Gesellschaft im 2. und 3. 
Jahrhundert Hidschra. Eine Geschichte des religiösen Denkens im frühen Islam, Bd. 
III, Berlin/New York, 1922, pp. 22–8. 

10 H. Hugonnard-Roche, ‘Les traductions du grec en syriaque et du syriaque en 
arabe’, in J. Hamesse and M. Fattori (eds), Rencontres de cultures dans la philosophie 
médiévale, Louvain-la-Neuve, 1990, pp. 131–47. 
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This dream was one of the surest reasons for rendering the books (into 
Arabic). Al-Maʾmūn then wrote to the king of the Romans to ask for permis-
sion to send what he (al-Maʾmūn) would choose from the ancient sciences 
stored and preserved in the land of the Romans. After some hesitation, the 
king accepted. Al-Maʾmūn then sent a group, including al-Ḥajjāj ibn Maṭar, 
Ibn al-Biṭrīq, Salmān who was associated with the House of Wisdom, and 
others. They took what they had chosen. When they brought these to al-
Maʾmūn, he ordered them to translate the texts. It is said that Yūḥannā ibn 
Māsawayh was among those who went to the land of the Romans.11 

Al-Nadīm then notes that many others imitated the imperial model. 
Thus al-Ma’mūn’s protégés – the Banū Mūsā – had sent to the ‘land of the 
Romans the famous translator Ḥunayn ibn Isḥāq (d. 873)’, who returned 
‘with precious books and unique works on philosophy, geometry, music, 
arithmetic and medicine’.12 According to another account, it seems that 
Muḥammad (d. 873), the eldest of the Banū Mūsā, was part of an expedi-
tion to the Byzantine empire.13 Several other historical sources allude to 
emissaries sent to Byzantium, to Alexandria, to the monasteries in the inte-
rior of the ancient Hellenistic world, in order to search for Greek manu-
scripts on science and philosophy throughout the entire 9th century and 
even later. 

Legendary though it may be, al-Maʾmūn’s dream expresses, among 
historians and biobibliographers of the time, the clear awareness that this 
translation movement differed qualitatively from its predecessors. It is this 
difference that we must try to grasp.  

3.1. The rebirth of research 

The ancient historians were aware that the translation movement had 
begun well before the reign of al-Maʾmūn (813–833). More precisely, one 
can discern before this period two stages within a first phase. Several 
fragments of information recounted by biobibliographers tell us that 
translators had already been hired under the Umayyads. So it happened that 
the grandson of the dynasty’s founder, Khālid ibn Yazīd (d. after 704), had 
asked a certain Stephanus, to translate books of alchemy from the Coptic 
and the Greek. Al-Nadīm offers the following commentary on this 
testimonial: this is ‘the first translation from one language to another in 

 
11 Al-Nadīm, al-Fihrist, pp. 303–4. 
12 Ibid. 
13 Ibn Khallikān, Wafayāt al-aʾyān, ed. I. ʿAbbās, 8 vols, Beirut, 1978, vol. 1, 

p. 313. 
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Islam’.14 This testimonial has recently been questioned,15 but at least it has 
the merit of noting that ancient historians already ascribed to this period a 
definite interest in translation and attributed a specific role to Khālid ibn 
Yazīd. The same al-Nadīm reports another testimonial that corroborates the 
first: at this time, during the reign of the Caliph Hishām ibn ʿAbd al-Malik, 
the Dīwān was translated from Greek into Arabic. Also in this very same 
period, in the reign of the latter’s father, and on the advice of the same 
Khālid ibn Yazīd, coins were first minted in Arabic and no longer in Greek 
(see the accounts of Ibn al-Athīr and al-Nuwayrī).16 Yet another witness of 
the same type claims that, at the end of the very same 7th century, 
Māsarjawayh translated into Arabic a medical compendium by Ahrun.17 

These past vestiges – the aptest expression in this case – indicate that, 
simultaneously with the movement for the Arabization of the Dīwāns in 
particular, that is, of the administration and of its texts, several translations 
took place, thanks to the initiative of individuals and in response to imme-
diate practical needs. Other vestiges, of indeterminate date, but very likely 
belonging to the era between this period and the beginnings of the ʿAbbāsid 
dynasty, testify to the existence of translations, most notably in astronomy: 
for example, the translation of Theon of Alexandria’s Introduction to the 
Almagest, which al-Nadīm characterized as an ‘ancient translation’ (naql 
qadīm). 

With the beginning of the ʿAbbāsid dynasty, Arabization which had 
advanced considerably, continued to progress. To this, one should add a 
policy of great construction projects on account of the displacement of the 
centre of the Empire and increasing urbanisation. The translation effort 
could thus only speed up and spread farther. One name exemplifies this 
movement, that of the second ʿAbbāsid caliph al-Manṣūr (r. 754–775).  

Ancient historians18 all agree in emphasizing al-Manṣūr’s personal 
interest in astrology. Thus when he decided to found the new capital, 
Baghdad, he commissioned astrologers to compute the astrological chart 
and to determine the most propitious moment to begin construction. It is on 
this occasion that the names of Abū Sahl ibn Nawbakht, Ibrāhīm al-Fazārī, 

 
14 Al-Nadīm, al-Fihrist, p. 303. See also p. 419. 
15 M. Ullmann, ‘Khālid ibn Yazīd und die Alchemie. Eine Legende’, Der Islam, 

55, 1978, pp. 181–218. 
16 Al-Nuwayrī, Nihāyat al-arab fī funūn al-adab, ed. M. al-Ḥīnī, Cairo, 1984, 

pp. 223–4; Ibn al-Athīr, al-Kāmil fī al-tārīkh, ed. C. J. Tornberg under the title Ibn El 
Athiri Chronicon quod perfectissimum inscribitur, 12 vols, Leiden, 1851–71; repr. 13 
vols, Beirut, 1965–67. 

17 Al-Nadīm, al-Fihrist, p. 355. 
18 Al-Masʿūdī, Muruj al-dhahab, Beirut, 1991, vol. 4, p. 333. 
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and Māshāʾallāh surface. From many different provinces, the caliph also 
brought workers, craftsmen, jurists, and geometers:19 all of these guilds 
were necessary to bring to fruition this colossal project. Let us pause briefly 
on this information. Abū Sahl ibn Nawbakht was not only an astrologer; 
but also a mutakallim, that is, a theologian-philosopher. According to al-
Nadīm’s report, he left an autograph of a kind of legendary history of the 
sciences, the epistemological and historical origins of which he traced to 
Babylonian-Persian astrology.20 Was this doctrine intended to justify the 
practice of astrology in which the Caliph himself believed? However, even 
this practice required a true knowledge of astronomy and particularly of the 
composition of the zījs. As for al-Fazārī (second half of 8th century), he was 
not only an astronomer but also a mathematician. He not only composed 
and edited a zīj, but also wrote on astronomical instruments – astrolabes 
and sundials, which required a solid knowledge of stereographical projec-
tions. It therefore seems possible that this group of astrologer-astronomers, 
accompanied by other geometers, would have carried out all the necessary 
surveys for the foundation of Baghdad, as well as calculating its astrologi-
cal chart. 

 
New needs appear that implicitly encourage a particular kind of 

research: the composition of zījs and the exact representation of spheres in 
a plane. Although the disappearance of texts drastically limits our 
knowledge of sources that would have allowed us to evaluate this incipient 
research, clues remain that alert us to the new intellectual environment. Al-
Manṣūr allegedly received an Indian delegation that included an astrono-
mer, in the presence of al-Fazārī to whom he would have given an Indian 
zīj. On this account al-Fazārī together with Yaʿqūb ibn Ṭāriq would have 
taken on the adaptation into Arabic. The history may perhaps be uncertain, 
but it nevertheless captures the picture that people had of the period.21 
Another, equally late account (from 330/941) by a certain al-Akhbārī, and 
recorded by historian al-Masʿūdī, also draws attention to al-Manṣūr’s inter-
est in astrology, and also to the presence around him of Abū Sahl ibn 

 
19 As al-Nuwayrī says in Nihāyat al-arab fī funūn al-adab, vol. 22, p. 90: ‘He (al-

Manṣūr) wrote to every country to ask that they send artisans and masons and he 
decreed that eminent and just men, honest and educated in jurisprudence and geometry, 
should be chosen’. 

20 Al-Nadīm, al-Fihrist, pp. 299–300. 
21 For a similar case, see al-Jāḥiẓ, Kitāb al-bayān wa-al-tabyīn, ed. ʿA. Hārūn, 4 

vols, Cairo, n.d., vol. 1, pp. 88–93. French translation of the passage in M. Aouad and 
M. Rashed, ‘L’exégèse de la Rhétorique d’Aristote: Recherches sur quelques commen-
tateurs grecs, arabes et byzantins’, Medioevo 23, 1997, pp. 43–189, at pp. 89–91. 
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Nawbakht, al-Fazārī, and ʿAlī ibn ʿĪsā – the astrolabe expert, who was con-
siderably younger. It is reported that al-Manṣūr is ‘the first Caliph for 
whom books in foreign languages were translated into the Arabic lan-
guage.’22 Al-Akhbārī then names several translated titles, including the 
Almagest, the Elements, Nicomachus of Gerasa’s Introduction to 
Arithmetic. He further writes that for him were translated ‘all the various 
Ancients in Greek, Byzantine, Pahlavi, Persian and Syriac and that these 
were diffused among individuals who examined them and made efforts to 
master them.’23  

Regardless of the historical value granted late evidence, it does indeed 
reflect the opinion of those who followed the period of al-Manṣūr. Thanks 
to the rulers’ initiative, translations were undertaken; but in the back-
ground, research was beginning that required the translation of specific 
works. The accelerated Arabization demanded the constitution of a new 
library on the scale of an empire extending from the Indus to the Atlantic. 
As to the books that al-Akhbārī mentions, what should one make of them? 
Nothing contradicts the accuracy of the information about the Almagest, 
which is indeed corroborated by a passage from al-Nadīm, according to 
which al-Manṣūr’s vizier, Khālid ibn Barmak, would have ordered a first 
translation, which proved unsatisfactory and was later corrected at his 
request.24 This may be the translation in question. By contrast, 
Nicomachus’s Introduction to Arithmetic was first translated from Syriac 
by Ḥabīb ibn Bihrīz. But the latter ‘translated several books for al-
Maʾmūn’,25 that is, at least 40 years later – which is possible but improba-
ble. As to Euclid’s Elements, it presupposes a translation that antedates  
al-Ḥajjāj’s first translation. Since no other information corroborates its 
existence, the question remains open. 

The intervention of political power to request translations from the 
Greek and other languages; the constitution in Arabic of a library in the 
scale of the new world, which is, at least, a consequence of the continuous 
arabization of the State and of the culture for more than a century and a 
half; and finally the response to research needs: such are the imperatives to 
which translation movement was responding at the end of its first phase 
and at the beginning of the second. Several ancient translations, unknown 
until very recently, may well belong to this intermediary phase. Thus we 
know that al-Kindī had access to a translation of Archimedes’ The 

 
22 Al-Masʿūdī, Murūj al-dhahab, Beirut, 1991, vol. 4, p. 333. 
23 Ibid. 
24 Al-Nadīm, al-Fihrist, p. 327. 
25 Ibid., p. 304. 
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Measurement of the Circle, different from the one that will later be made 
from a Greek manuscript.26 The selfsame al-Kindī knew about a translation 
of Euclid’s Optics that differs from the one that has reached us and that 
most probably was produced before the latter. Finally, we have just found 
an ancient translation of the beginning of Anthemius of Tralles’s 
Mechanical Paradoxes.27 

The diversity of these translated texts is striking: Euclid’s Optics, 
Archimedes’ Measurement of the Circle, Anthemius of Tralles. To these, 
one could also add several other treatises. In the current state of our 
knowledge, however, these involve relatively short texts that nevertheless 
seem to be linked with research, as we shall see. As to the translations 
themselves, they are literal and use a terminology that will be thoroughly 
recast in the second phase of the translation movement (see below). 

3.2. Institution and profession: the age of the Academies 

This movement accelerates as it enters the second phase, in which the 
translation becomes at once institution and profession. Al-Maʾmūn’s dream 
not only characterizes this phase, but also draws its meaning from it.  

Even at its apogee at the beginning of the ʿAbbāsid dynasty, the first 
phase of the translation movement cannot be confused with the one that 
will soon follow, whether one considers the number of translations, the 
diversity of the translated writings, or the increased technicality and spe-
cialization of the translators. At this point, translation becomes both a sci-
entific profession and an institution. There are several reasons for this 
transformation, which begins at the time of al-Maʾmūn and increases even 
more under his successors. One reason that is often overlooked is the 
change in the encyclopaedia of knowledge. Between the middle of the 8th 
century and the middle of the 9th, several disciplines emerge that are 
directly tied to the new society, its ideology, and its organisation. These 
involve, for example, the various areas of research stimulated by the need 
to treat the sacred texts and their interpretation. One thus sees the emer-
gence of a full spectrum of linguistic disciplines ranging from ethno-
linguistics to lexicography based on genuine phonological research; and 
thanks to combinatorial thinking (al-Khālil ibn Aḥmad), they included 
grammar and philology.28 Consider also the development of kalām, the 

 
26 R. Rashed, ‘Al-Kindī’s Commentary on Archimedes’ The Measurement of the 

Circle’, Arabic Sciences and Philosophy, 3, 1993, pp. 7–53. 
27 R. Rashed, Les Catoptriciens grecs, I: Les miroirs ardents, edited, translated 

with commentary, Collection des Universités de France, Paris, 2000, pp. 343–59. 
28 See below ‘Algebra and linguistics’. 
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philosophico-theological science, with its many schools and their ramifica-
tions.29 One can also mention the various domains of history and the birth 
of methods for the critical analysis of testimony; the development of her-
meneutical studies, notably that of the Koran; the various logico-juridical 
sciences necessary for research into Islamic law, etc. To this, one should 
also add algebra itself, as well as other disciplines born from practice and 
from the administration of the Empire. This encyclopaedia of knowledge is 
therefore far removed from that of Late Antiquity: somewhat later, al-
Fārābī will offer a sketch of its contents in his Enumeration of the 
Sciences.30 

Whereas this new encyclopaedia echoes the disciplines and their diver-
sity as well as of the culture of the time, it also points to an advance that 
becomes noticeable upon reading the books of the ṭabaqāt (classes of 
scholars) and of the ancient biobibliographies: a growing specialisation. A 
scholar belongs not only primarily to a profession, sometimes two inter-
connected ones (for example, mutakallim, philosopher-theologian, and 
jurist), but within the same profession, he belongs to one school or the 
other: Kūfā and Baṣra for example, for grammarians; Baṣra and Baghdad 
for theologian-philosophers.31 All of these new disciplines and the special-
ists in them, the number of which is constantly growing, created both a 
demand and an audience. The philosopher-theologian wanted to have more 
and better knowledge in philosophy, logic, and even statics and physics.32 
The religious requirements – determining the direction of Mecca and the 
time of prayer in such a vast empire – demanded new knowledge in astron-
omy, just as the progress of the medical sciences was now necessary to 
meet the needs of medicine in the urban centres. Such positions as 

 
29 R. M. Frank, ‘The Science of Kalām’, Arabic Sciences and Philosophy, 2.1, 

1992, pp. 7–37; J. van Ess, Frühe Muʿtazilitische Häresiographie, Wiesbaden, 1971. 
For an insight into the extremely wide-ranging branches of thought, cf. Shahrastani, 
Livre des religions et des sectes, French translation with introduction and notes by 
D. Gimaret and G. Monnot, Louvain/Paris, 1986. 

30 Al-Fārābī, Iḥsāʾ al-ʿulūm, ed. ʿU. Amīn, 3rd ed., Cairo, 1968. 
31 From the outset these differences have been perceived as constituent parts. In the 

two fields mentioned, see Abū Saʿīd al-Anbārī, Al-Inṣāf fī masāʾil al-khilaf bayn al- 
naḥwiyyīn al-baṣriyyīn wa-al-kūfiyyīn, Beirut, 1987 and Abū Rashīd al-Nīsābūrī, Al-
masāʾil fī al-Khilāf bayn al-Baṣriyyīn wa-al-Baghdādiyyīn, ed. M. Ziyāda and R. al-
Sayyid, Beirut, 1979. 

32 For example, Abū al-Hudhayl and his nephew al-Naẓẓām, Cf. M. A. Abū Rīda, 
Ibrāhīm b. Sayyār al-Naẓẓām wa-arāʾuhu al-kalāmiyya al-falsafiyya, Cairo, 1946; 
A. Dhanani, The Physical Theory of Kalam. Atoms, Space and Void in Basrian 
Muʿtazili Cosmology, Leiden, 1994. 
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administrator of the Dīwān and private secretary (which became a genuine 
profession33) required a rather extensive general culture. In short, these 
individuals all constituted a large audience for disciplines and a culture that 
had to be translated, most notably from the Greek and Persian. Among the 
translated books, one thus finds works with a cultural aim that focus on 
such subjects as the moral opinions of the philosophers34 or the interpreta-
tion of dreams.35 

This second phase of the translation movement soon witnessed the 
institutionalization of both translation and the Greek heritage. An abun-
dance of facts and anecdotes shows that caliphs, viziers, princes, the 
wealthy, and even some scholars founded libraries and observatories and 
encouraged translation and research.36 It has not been sufficiently empha-
sized, however, that these new institutions included not only individuals, as 
had been the case before, but also groups and teams that were often rivals 
and competitors.37 All of these means served to integrate the Greek heritage 
into the new scientific regime. By way of example, the House of Wisdom 
(Bayt al-Ḥikma) founded by al-Maʾmūn in Baghdad, included astronomers 
such as Yaḥyā ibn Abī Manṣūr, translators such as al-Ḥajjāj ibn Maṭar 
(who translated Euclid’s Elements and Ptolemy’s Almagest), and mathe-
maticians such as al-Khwārizmī. Later, in another group linked with this 
same House, the three Banū Mūsā brothers, mathematicians and astrono-
mer who encouraged and financed translation; the translator of Apollonius, 
Hilāl ibn Hilāl al-Ḥimṣī, and the translator and mathematician, Thābit ibn 
Qurra. We also know that translators and scholars formed groups around 
the Banū Mūsā, around al-Kindī and Ḥunayn ibn Isḥāq, etc. Finally, the 
mosque, the observatory, and the hospital were so many venues and insti-
tutions in which other groups of specialists worked.  

 
 
 

 
33 See for example Ibn Qutayba, Adab al-kātib, ed. A. Fāʿūr, Beirut, 1988; al-

Jahshayyai, Kitāb al-wuzarāʾ wa-al-kuttāb, Beirut, n.d. 
34 See Testament de Platon pour l’éducation des jeunes, ed. L. Cheikho, Traités 

philosophiques anciens, Beirut, 1911, for Ḥunayn ibn Isḥāq’s translation of Plato. 
35 For example, Ḥunayn ibn Isḥāq’s translation of the Book of Dreams by 

Artemidorus of Ephesus (see the critical edition by T. Fahd, Damascus, 1964). 
36 M. G. Balty-Guesdon, ‘Le Bayt al-Ḥikma de Bagdad’, Arabica, 39, 1992, 

pp. 131–50; Y. Eche, Les bibliothèques arabes publiques et semi-publiques en Méso-
potamie, en Syrie et en Égypte au Moyen-Âge, Damascus, 1967. 

37 Ancient bibliographers report conflicts, for example, between al-Kindī and his 
collaborators on the one hand, and the Banū Mūsā and their group, on the other.  
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The way translation is organized during this period brings to the fore 
two interrelated characteristics with a very special significance. First of all, 
carried out on a grand scale, translation is not limited only to writings with 
a practical goal. Second, on more than one occasion, works will be 
retranslated – not only those from the first phase, but even some from the 
beginning of the second phase. Thus Euclid’s Elements was translated three 
times; the Almagest at least three times, etc. These retranslations corre-
spond to a change in the criteria of the act of translating. In short, transla-
tion had become the act of individuals belonging to competing groups and 
schools. The criteria of translation had changed. The translator, no longer 
what he was during the first phase, had now acquired a two-fold training in 
languages and in science and philosophy. But before explaining this evolu-
tion and examining who was translating, and how and why, one must first 
note that translation followed neither a didactic order (from the easiest to 
the most difficult books), nor the chronological order in the series of Greek 
authors. Certainly, no pre-established plan governed the translation; one 
should not therefore believe that it occurred haphazardly, with the discov-
ery of books to be translated. On the contrary, several witnesses from this 
period suggest that scholars chose the work to be translated before they 
searched for the manuscripts needed for the translation. Thus Ḥunayn ibn 
Isḥāq had decided to translate Galen’s On Demonstration before he set out 
in search of manuscripts;38 likewise when the Banū Mūsā wanted to trans-

 
38 In an autobiographical note on his search for a manuscript of Galen’s 

Demonstration, Ḥunayn ibn Isḥāq states: ‘He [Galen] composed this work in 15 books. 
His aim was to show the way of demonstrating what is demonstrable necessarily. This is 
Aristotle’s goal in Book IV of his Organon. To date, none of our contemporaries has 
seen a complete set of this work; but Jibril took great care about his search, as did I in 
my quest for this work in Mesopotamia, throughout Syria, Palestine, and Egypt, until I 
reached Alexandria. I found nothing from it, except about half of it in Damascus. But 
these books were incomplete and out of order. Jibril, however, had found books of this 
work, which were not those that I found.’ From this account, one can infer that searches 
took place not only in Byzantium, but throughout the whole of the ancient empire; that 
scholars went to Alexandria, among other places, in search for Greek manuscripts; that 
the manuscript of such an important work as this was ‘simply’ found in Damascus; that 
the translators themselves travelled independently of the great manuscript expeditions, 
such as the one ordered by al-Maʾmūn; and finally that our knowledge of translations of 
Greek into Syriac and Arabic is still inadequate. These conclusions are confirmed by 
another account that is worth recounting. Yaḥyā (Yūḥannā) ibn al-Biṭrīq, a member of 
the famous expedition sent by the Caliph al-Maʾmūn to Byzantium in search of Greek 
manuscripts, tells how he received the order from the Caliph to look for the manuscript 
of the Secret of Secrets: the translator Yūḥannā b. al-Biṭrīq said: ‘I left unvisited not one 
of these temples in which the philosophers had hidden their secrets; and not one of the 

(Cont. on next page) 



 2. THE TRANSMISSION OF GREEK HERITAGE INTO ARABIC 

   

33 

late Apollonius’s Conics.39 All of these characteristics of the translation 
movement’s second phase reveal a phenomenon that has too long gone 
unnoticed: the tight connections between a massive translation effort and 
active and innovative research. These links in particular interest us here.  

3.3. An ideal type of translator: Ḥunayn ibn Isḥāq’s journey 

Before examining these links, let us consider briefly the training of this 
new generation of translators, the very ones who will transmit the essential 
core of the Greek philosophical and scientific heritage throughout the 9th 
century and especially during its second half. In contrast to the majority of 
their predecessors, these translators were neither enlightened amateurs 
familiar with an ancient language nor specialists, physicians or alchemists – 
capable of giving an approximate Arabic translation of one of the books in 
their discipline. Henceforth we confront genuine professionals of both the 
languages and the sciences. The ideal type of the latter, so to speak, is the 
famous Ḥunayn ibn Isḥāq.40 The narrative of his biography that has reached 
us is of considerable interest: a colourful literary piece that, whether true or 
legendary, certainly highlights the ideal characteristics of the new profes-
sion. (Everything nevertheless suggests that this ideal trajectory has more 
to it than vague similarities with historical reality.) A Christian (Nestorian) 
Arab born in 808 to a pharmacist father in Hira, Ḥunayn’s journey begins 
in Baṣra, where we see him perfect his Arabic. He thus knew that the lan-
guage of translation was not the vernacular used in daily life. This choice 

                                         
(Cont.) great men among the ascetics, made wise by the knowledge thereof, whom I 
thought might have in his possession the object of my search, until I came to the temple 
that Asclepius had built for himself. There I met a devout and pious ascetic eminent in 
knowledge and possessed of a penetrating intelligence. I made him aware of my 
goodwill towards him, I stayed as his guest, and I used guile to get him to put into my 
safekeeping books which were in his temple, and among them I found the book I had 
been looking for, the object of my quest and of my covetousness’ (ed. A. Badawi, 
Fontes Graecae doctrinarum politicarum islamicarum, Cairo, 1954, p. 69).  

39 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-Haytham. 
Théorie des coniques, constructions géométriques et géométrie pratique, London, al-
Furqān, 2000, Chap. I; English translation: Ibn al-Haytham’s Theory of Conics, 
Geometrical Constructions and Practical Geometry. A History of Arabic Sciences and 
Mathematics, vol. 3, Culture and Civilization in the Middle East, London, Centre for 
Arab Unity Studies, Routledge, 2013. 

40 See G. Bergsträsser, Ḥunain ibn Isḥāq über die syrischen und arabischen Galen-
Übersetzungen, Abhandlungen für die Kunde der Morgenlandes, XVII, 2, Leipzig, 
1925. See also G. C. Anawati and A. Z. Iskandar, ‘Ḥunayn ibn Isḥāq’, Dictionary of 
Scientific Biography, 1978, vol. 15, Suppl. I, pp. 230–48. 
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underlies the legend according to which he met one of the greatest Arabic 
linguists: al-Khālil ibn Aḥmad.41 In the story of his life, this legend plays a 
role that is at once seminal and emblematic: for Arabic, he would have had 
al-Khālil ibn Aḥmad himself as a patron. We meet him next in Baghdad, 
the stage of his proper scientific training; he also studies medicine under 
the tutelage of one of the great physicians of the time: Yūḥannā ibn 
Māsawayh. It is here that the hero meets his destiny. Driven away from his 
circle by Ibn Māsawayh, Ḥunayn sets out again on the road of his training; 
this is the third stage. He travels to one of the centres of Hellenism in order 
to perfect his Greek – the biographers are not clear whether it is in the 
Byzantine empire or in Alexandria. Several years later, he reappears in 
Baghdad, reciting by heart Homer’s poetry;42 at the emblematic level, such 
a mastery of Greek naturally constitutes the counterpart to al-Khālil’s 
earlier tutelage in Arabic. 

Here are then three distinct stages, each necessary for the training of 
the new type of translator: henceforth he will be a translator-scholar who 
masters Greek, Arabic, Syriac, and science. These stiff requirements echo 
two facts: the translated science is still a living science. As we shall see 
below, the point of translating was not to reconstitute the history of a sci-
ence, but rather to pursue lively research and to carry out a living practice. 
One of the tasks of the translator – this is the second fact – is henceforth to 
build Arabic as a scientific language. This involves linguistic research in 
the proper sense of the term, which requires a training similar to the one 
Ḥunayn ibn Isḥāq ostensibly received. 

Ḥunayn spends the rest of his life translating Greek medical books as 
well as several books of philosophy, some of which were required by the 
medical curriculum. It is while carrying out these translations, the quality 
of which meets unanimous approbation, that he started researching scien-
tific Arabic. The census of his translations includes 129 books, roughly two 
thirds in Syriac and one third in Arabic. The clear preponderance in favour 
of Syriac reflects the make-up of the medical community of his day, and 
also the structure of the demand. The positions of court physicians were 
still largely filled by physicians of Syriac origin: it is from them that most 
of the requests for translation come, to meet the needs of practice or 

 
41 ‘He [Ḥunayn ibn Isḥāq] stayed some time and his master in Arabic was al-Khalīl 

ibn Aḥmad’ (Ibn Abī Uṣaybiʿa, ʿUyun al-anbāʾ fī ṭabaqāt al-atibbāʾ, ed. N. Riḍā, 
Beirut, 1965, pp. 257 and 262).  

42 Ibid. p. 258. 



 2. THE TRANSMISSION OF GREEK HERITAGE INTO ARABIC 

   

35 

research.43 And in fact, among the commissioners named in the historical 
sources, one finds Bakhtīshūʿ ibn Jibrāʾīl, Salmawayh, Dāʾūd, Yūḥannā ibn 
Māsawayh, who are all Syriac physicians; and the Banū Mūsā, highly cul-
tured mathematicians. In addition to his medical practice, Ḥunayn ibn Isḥāq 
also wrote several medical works of his own, and some books of Arabic 
grammar and lexicography.44 To understand this enormous production, let 
us remember a second feature that characterizes it: the organisation of 
translation and research into genuine working teams. Around Ḥunayn, one 
finds an entire school, the members of which include his son Isḥāq, his 
nephew Ḥubaysh and ‘Īsā ibn Yaḥyā, as well as the copyists al-Aḥwal and 
al-Azraq.45 

As one can see, this new type of translator is distinguished not only by 
the requirements of the linguistic and scientific training for which he is 
responsible, but also by the new tasks he has taken on: research into both 
scientific Arabic and in science. As the century progresses, a gradual and 
latent transformation starts to confirm what was embryonic at the time of 
Ḥunayn ibn Isḥāq: the transformation of the translator-scientist into 
scientist-translator. This is the distance that separates Ḥunayn from Thābit 
ibn Qurra (d. 901). 

3.4. Third phase: from translator-scientist to scientist-translator 

Thābit ibn Qurra is one of the great mathematicians not only of Islam, 
but also of all time. He began life as a moneychanger. His mother tongue 
was Syriac, and he perfected his Greek and Arabic enough to translate 
astronomy, mathematics, and philosophy. In any case, it is on account of 
these talents and his linguistic knowledge that Muḥammad ibn Mūsā, 
returning from an expedition in search of manuscripts in the Byzantine 
Empire, ‘discovers’ him in his native town of Ḥarrān (or in one of the 
surrounding villages, Kafr Tūtha) and takes him along to Baghdad. 
Welcomed by Muḥammad ibn Mūsā into his own home, Thābit receives 
mathematical training under the guidance of the three Mūsā brothers and 
especially the youngest, al-Ḥasan, the mathematician of genius. Once his 
training is complete, Thābit ibn Qurra translates a considerable number of 

 
43 Cf. H. Hugonnard-Roche, ‘L’intermédiaire syriaque dans la transmission de la 

philosophie grecque à l’arabe: le cas de l’Organon d’Aristote’, Arabic Sciences and 
Philosophy 1, 1991, pp. 187–209. 

44 Ibn Abī Uṣaybiʿa mentions among his writings a book on grammar (Kitāb fī al-
naḥw) and a book on the classification of names of simple medicines (Kitāb fī asmāʾ al-
adwiyya al-mufrada ʿalā ḥurūf al-muʿjam), (ʿUyūn al-anbāʾ, ed. N. Riḍā, p. 273).  

45 Ibid., pp. 260, 270. 
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Greek mathematical treatises, including Archimedes’ On the Sphere and 
Cylinder, the three last books (lost in Greek) of Apollonius’s Conics and 
Nicomachus of Gerasa’s Introduction to Arithmetic. He also revises many 
translations – Euclid’s Elements and Ptolemy’s Almagest, among others. 
Finally, Thābit ibn Qurra composes numerous works in astronomy and 
mathematics, which are so important that they practically dwarf his crucial 
work as translator.  

Between the translator-scientist in the pattern of Ḥunayn and the 
scientist-translator in the mould of Thābit falls an entire intermediate 
category. It is composed of eminent translators whose scientific training is 
as wide-ranging as it is solid, notably Ḥunayn’s own son, Isḥāq ibn Ḥunayn 
(d. 911) and Qusṭā ibn Lūqā (d. beginning 10th century), among many 
others. Nonetheless, two traits accompany this new phase of translation: a 
noticeable change in both training requirements and the criteria used in 
translating, and a major strengthening of the links between scientific and 
philosophical research and translation. As we have noted with Thābit, all of 
these factors generated previously unknown activities: the revision of older 
translations or of those done by a non-specialist in the subject. 

 
 

2. TRANSLATION AND RESEARCH: A DIALECTIC WITH MANY FORMS 

 
If we ignore scientific and philosophical research, we will not 

understand the first thing about the translation movement from Greek into 
Arabic. It is this research that illuminates the selection of books to be 
translated and that drives its evolution. This statement does not derive from 
anything I have postulated; nor is it a Gestalt-like grasp of the act of 
translation. On the contrary, it is nothing more, but also nothing less, than 
history. We will therefore draw several examples from various domains, in 
order to illustrate and to clarify as much as possible this dialectic between 
research and translation. The variety of the contexts and, of course, the 
limits of my own competence have determined my choice: mainly optics, 
geometry, and arithmetic. 

1. Coexisting and overtaking: optics and catoptrics 

Let us begin empirically, by listing the titles of the main Greek works 
on optics and catoptrics translated into Arabic, along with the names of 
their translators. 
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1. Euclid’s Optics was translated at least twice into Arabic, once before 
the middle of the 9th century. Al-Kindī wrote a critical commentary on it, 
on the basis of his own research in optics.46 

2. Ptolemy’s Optics; the Greek text is lost, as is the Arabic translation, 
which was very probably not done before the end of the 9th century. Only 
the Emir Eugenius of Sicily’s Latin translation survives.47 The surviving 
documents suggest that this work, and particularly the fifth book on 
refraction, entered the discussion rather late in the development of optics, 
that is, during the 10th century (notably in the research by al-ʿAlāʾ ibn Sahl, 
among others). 

3.  The Catoptrica attributed to Euclid. I have shown that traces of this 
work exist in Arabic, notably in a 9th-century book written by Qusṭā ibn 
Lūqā.48 

4. Diocles’s Burning Mirrors: only two propositions from it were cited 
by Eutocius.49 The Greek original is lost; only an Arabic version survives – 
a relatively precocious one, judging from its vocabulary.50  

5. Anthemius of Tralles’s Burning Mirrors (Mechanical Paradoxes). 
The extant Greek text is incomplete. It was translated at least twice, 
perhaps three times, into Arabic; the first time, before the middle of the 9th 
century, the second, rather later. At least one of the Arabic versions seems 
complete.51 

6 Burning Mirrors and Abridged Conics. This is an Arabic translation 
of a lost Greek work, written – according to the Arabic transcription – by a 
certain ‘Dtrūms’, who has yet to be identified.52 

7. The Bobbio Fragment on burning mirrors, a text that has left no trace 
in Arabic.53 

To this list, one can add a few titles of lesser importance, such as Hero 
of Alexandria’s Catoptrica, fragments of which have survived in an ancient 
Arabic translation.54 

 
46 R. Rashed, ‘Le commentaire par al-Kindī de l’Optique d’Euclide: un traité 

jusqu’ici inconnu’, Arabic Sciences and Philosophy, 7.1, 1997, pp. 9–57. 
47 A. Lejeune, L’Optique de Claude Ptolémée dans la version latine d’après 

l’arabe de l’émir Eugène de Sicile, Louvain, 1956. 
48 R. Rashed, Œuvres philosophiques et scientifiques d’al Kindī. Vol. I: L’optique 

et la catoptrique, Leiden, 1996, Appendix II, pp. 541–645. 
49 R. Rashed, Les Catoptriciens grecs, 1st part. 
50 Ibid., p. 21. 
51 Ibid., Appendix, pp. 343–59. 
52 Ibid., chap. II, pp. 155–213. 
53 Ibid., chap. IV, pp. 272 ff. 
54 Various writings in this tradition survive in Arabic. 
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This is the sum total of the texts in optics and catoptrics. Several 
conclusions are immediately obvious. The essential core of Greek works 
was known and translated into Arabic, sometimes more than once. This is 
what I mean when I describe translation as large scale and multiple – 
moreover, several treatises were translated into Arabic before the middle of 
the 9th century. Finally, these treatises were not only studied, but also 
subjected to scientific criticism beginning in the middle of the same 
century. Al-Kindī, for example, offers a detailed and thorough critique both 
of Euclid’s Optics and Anthemius of Tralles’ book.55 One should not be 
under the impression that the translations occurred in the order given 
above; rather translation followed the order of research. Before coming 
back to this point, however, we might start by noting the difference 
between the two phases of translation, in order to lift out their criteria. The 
example of Anthemius of Tralles offers a good example.  

It is certain that the first translation of Anthemius’ Mechanical 
Paradoxes took place before the middle of the 9th century, at the very time 
when Arabic research on burning mirrors seems to get underway. The 
efforts of al-Kindī and Qusṭā ibn Lūqā in this area leave no room for doubt 
about this point. A detailed examination of this translation shows both that 
it is literal and that it uses an archaic vocabulary, that is one that al-Kindī 
himself has already abandoned. The second translation took advantage of 
the research that was underway, not only by choosing a more precise and 
appropriate lexicon, but also by improving the syntax to produce a more 
readable text.56 

 
55 R. Rashed, L’optique et la catoptrique d’al-Kindī. 
56 In order to illustrate this situation, let us take a single example. 
Anthemius wrote: τοῦ Η σημείου μεταξὺ τῆϛ τε χειμερινῆϛ ἀϰτῖνοϛ ϰαὶ τῆϛ 

ἰσημερινῆϛ νοουμένου ὡσανεὶ ϰατὰ τὴν διχοτομίαν τῆϛ ὑπὸ ΕΒΓ γωνίας ϰαὶ 
ἐκϐληθείσηϛ τῆϛ ΗΖ ὡς ἐπὶ τὸ Θ σημεῖον (Les Catoptriciens grecs, p. 350, 10–13). 

The first translation reads as follows:  
wa-li-yufʿal ʿalāmat H wāsiṭatan bayna al-shuʿāʿ al-shatwī wa-shuʿāʿ al-istiwāʾ, 
ka-annahā qāṭiʿa wasaṭ zāwiyat EBC. wa-li-yukhraj khaṭṭ HG ilā ʿalāmat I.  

[…] Let the sign Η be made intermediate between the winter solstitial ray and the 
equinoctial ray, as if it cut the middle of the angle ΕΒΓ. Let the straight line ΗΖ  be 
drawn to point Θ (ibid., p. 287, 7–9). 

The translator renders the Greek νοεῖσθαι by the verb faʿala (to make), a very 
awkward translation to say the least. Under the rather improbable assumption that he 
might have wished to avoid a form of the verb wahama (to imagine, to conceive of), he 
could have chosen jaʿala or kana. Note moreover his usage of ʿalāma (sign) to render 
the Greek σημεῖον. Although one still occasionally encounters this usage in the 9th 
century, it is already becoming much rarer. 

(Cont. on next page) 
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The difference between these two types of translation was already 
noticed at the time, even though its historic dimension was not. Indeed it 
was not a coincidence that, both in the 9th century and later, scholars raised 
the matter of different styles of translation: al-Kindī debates it; his 

                                         
(Cont.) The second translation of this same phrase reads: 

wa-li-takun nuqṭat H fī al-wasaṭ fīmā bayna khaṭṭay BE, BC ʿalā niṣf zāwiyat 
EBC. wa-nukhrij HG ilā nuqṭat I. 

Let the point Η be in the middle, between the two straight lines ΒΕ (the solstitial 
line of winter) and the straight line ΒΓ (the equinoctial line), on half of the angle 
EΒΓ. Extend ΗΖ to point Θ. 

Both the lexicon and the syntax of the second translation are better suited to Arabic 
and to the language of geometrical optics. 

Let us pursue this example a little farther. The Greek text continues as follows: ἐὰν 
τοίνυν κατὰ τὴν θέσιν τῆϛ ΗΖ εὐθείαϛ νοήσωμεν ἐπίπεδον ἔσοπτρον, ἡ ΒΖΕ ἀ ϰτὶϛ 
προσπίπτουσα πρὸϛ τὸ ΗΖΘ ἔσοπτρον λέγω ὅτι ἀναϰλασθήσεται ἐπὶ τὸ Α σημεῖον 
(ibid., p. 350, 14–17), which the translator renders as follows: 

fa-matā mā naḥnu tawahamnā mirʾa dhāt saṭḥ mustawin fī mawḍiʿ khaṭṭ HG al-
mustaqīm mawuqiʿan li-al-shuʿāʿ alladhī dalāʾiluhu BGE ʿalā mirʾat GHI, az‘umu 
annahu yuʿṭafu rājiʿan ilā mawḍiʿ A. 

When we then imagine a mirror having a plane surface in the position of straight 
line ΗΖ, the locus for the ray whose signs are ΒΖΕ on mirror ΖΗΘ, I maintain that 
it is reflected onto position Α. 

Note that the expression fa-matā mā naḥnu tawahhamnā is redundant and that its 
syntax seems non-Arabic; it would have been better to write fa-matā tawahhamnā. 
Likewise, it is more correct to use the preposition ʿalā instead of fī. The remainder is no 
better; after al-mustaqīm, the passage should read: 

wa-kānat mirʾat GHI mawqīʿan li-shuʿāʿ dalāʾiluhu BGE; fa-aqūlu innahu 
yanʿakisu ilā mawḍiʿ A. 
Note that, in this case, literalism has a negative effect. Conversely, the use of 

dalāʾiluhu BGE is archaic; later translators will abandon it. Likewise, ʿaṭafa rājiʿan as a 
translation of ‘to reflect’ begins to disappear in the 9th century. Finally, the use of azamu 
(I opine, I claim) instead of aqūlu (I say) to translate λέγω does not appear in 
translations after the middle of the 9th century. 

Turning now to the second translation of the second sentence, we read: 
fa-in tawahamnā saṭḥan mirāʾiyan mawḍūʿan ʿalā mawḍiʿ khaṭṭ HGI, fa-innahu 
yakūn shuʿāʿ BGE, idhā waqaʿa ʿalā mirʾat HGI, yarjaʿu ilā nuqṭat A. 

If we imagine a mirror surface located in the position of the straight line ΗΖΘ, then 
if the ray ΒΖΕ falls on the mirror ΗΖΘ, it returns to point Α. 

Although this less literal translation does not convey exactly the letter of the Greek 
text (assuming that we are dealing here with the very same text, which is by no means 
certain), it does render the meaning in an Arabic that is correct from the vantage points 
of both vocabulary and syntax. 
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contemporary, the learned philosopher al-Jāḥiẓ,57 also treats it. To illustrate 
this point, one need only cite al-Kindī’s words to a correspondent who did 
not understand Ptolemy’s description of an instrument in Book V of the 
Almagest: 

You asked me, o brother showered with compliments, to describe the 
instrument that Ptolemy mentioned at the beginning of Book V of the 
Almagest, when you began to have doubts about the description that he gives 
of this instrument and its usage. Your doubts pertain not to a defect in his 
exposition, but to the difficulty in the organization of his words, for this man 
with his sophisticated language is far removed from observing most people’s 
customary use of words; for this reason, access to the order of his words is 
difficult, even though their significations are clear to those who undertake to 
translate his books from Greek into Arabic, since the difficulty in the order 
of his words has become the reason why the translator has difficulty 
understanding them. Thus, for fear both of presenting their own opinions 
instead of the meaning of his words, and of being led into error about their 
true essence, they [the translators] have striven to present the same order in 
Arabic, and they have successively substituted word-for-word the Arabic 
equivalent. 

Translators have thought constantly about what they have gained from 
this book, and have sought, and lifted out, its significations in order to 
eliminate errors. Not all of those who translated some of his books 
succeeded, but only those who were most competent and sufficiently skilled 
in Greek to avoid missing two things at once: knowledge of the 
significations of the book and the precision of its words. Indeed, whoever 
sets out to interpret the meaning of what he has translated without 
understanding that meaning, brings about two things at once – he loses the 
significations and he loses the words. In this respect, this is prejudicial to 
whomever examines their translation with the aim of truly grasping 
something about the views of the book’s author. 

Conversely, if the translator describes the word such as it is, even if it is 
difficult to understand it, he then elicits understanding of the thought of the 
book’s author, even if one attains this only with great effort.58 

In the language of the period, this crucial text tells us what translation 
from Greek into Arabic involved, and it alludes to the two main styles we 

 
57 Kitāb al-Ḥayawān, ed. ʿA. Hārūn, vol. 1, pp. 75 ff. Cf. Abū Ḥayyān al-Tawḥīdī, 

Kitāb al-imtāʿ wa-al-muʾānasa ed. A. Amin and A. al-Zayn, reprod. Būlāq, n.d., pp. 
112, 115–16, 121. See also M. Mahdi, Language and Logic in Classical Islam, in G. E. 
von Grunbaum, Logic in Ethical Islamic Culture, Wiesbaden, 1970, pp. 51–3. 

58 Al-Kindī, Risāla fī dhāt al-ḥalaq, ms. Paris, Bibliothèque Nationale, no. 2544, 
fols 56–60. 
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have just mentioned. In addition to the lexical difficulty, it is syntactic 
difficulty that predominates. These two difficulties characterize specialized 
language (in this case, astronomy). In fact, there are three styles of 
translation: that of the translators who proceed word for word, thus running 
the risk of losing the meaning; that of the translator-scientists who try first 
to grasp the meaning of the concepts; and finally, among the latter, only 
those who are ‘competent and skilled in Greek’ and who succeed in 
eliminating errors. Absent this distinction, which characterizes Ḥunayn, 
Isḥāq, etc., al-Kindī prefers the word-for-word style. 

The historical significance of these reflections is clear even though al-
Kindī, who was himself in constant contact with both types of translator, 
does not mention it. In fact, if the first translation was often undertaken in 
response to the needs of incipient research, the second was usually linked 
to much more advanced research. For catoptrics, al-Kindī and his 
contemporary Ibn Lūqā are good examples of this point. Since he had 
access to the first Arabic version of The Mechanical Paradoxes, al-Kindī 
wrote a whole treatise on burning mirrors.59 One finds therein not only a 
critique of the many weakness in Anthemius’s text, but a mass of new 
results. Ibn Lūqā was also doing research in catoptrics60 and composed a 
treatise on burning mirrors. It is at this time that most of the Greek treatises 
on mirrors were translated into Arabic, as a rigorous study of the 
vocabulary demonstrates. The research progress that al-Kindī and others 
who followed him achieved will have a rather paradoxical result: on the 
one hand, it stimulates a new and better translation of The Mechanical 
Paradoxes, which will be used by such successors of al-Kindī as Ibn ʿĪsā (a 
second-tier author);61 on the other hand, it reduces the role of the translated 
Greek texts to one of mere historical significance. The likes of ʿUṭārid and 
Ibn ʿĪsā were still interested in them at the beginning of the 10th century. In 
the work of Ibn Sahl, his contemporaries, and his successors at the end of 
that century, however, the Greek texts are little more than a rather pale 
memory. 

Burning mirrors, however, represent only one chapter of Hellenistic 
optics. The latter also includes optics proper: that is, the geometrical study 
of perspective and of optical illusions; catoptrics, that is, the geometrical 
study of the reflection of visual rays on mirrors; meteorological optics, 
which examines such atmospheric phenomena as the halo and the rain-
bow... These are the chapters that al-Fārābī mentions in his Enumeration of 

 
59 R. Rashed, L’optique et la catoptrique d’al-Kindī. 
60 Ibid., see Appendix II. 
61 Ibid., Appendix III, pp. 647–701. 
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the Sciences. To these geometrical chapters, one should also add the doc-
trines on vision that mark the works of the physicians and the writings of 
the philosophers. In each of these domains, the transmission of the Greek 
heritage occurred along the lines of the model previously analyzed for 
burning mirrors.  

Historical research is not yet in a position to tell us which optical con-
cepts medical practice had transmitted before the end of the 8th century. 
Around this time, however, and throughout the first half of the 9th century, 
one encounters ophthalmological research among such physicians as 
Jibrāʾīl ibn Bakhtīshūʿ (d. 828/9)62 and Yūḥannā ibn Māsawayh after him. 
In any case, the topic garnered sufficient interest for Ḥunayn ibn Isḥāq to 
write for the medical community a compendium in which he presents the 
contents of Galen’s writing on the anatomy and physiology of the eye.63 
Ḥunayn also translates the pseudo-Galenic treatise On the Anatomy of the 
Eye.64 Did ophthalmological research and practice stimulate the study of 
optics and catoptrics? This seems plausible, even though it is too early to 
answer the question. In any event, it is around this time that the main Greek 
works in optics and catoptrics were translated – Euclid, Theon, Hero – 
(Ptolemy’s Optics was in all likelihood not translated until the end of the 
century). Thus, whereas Arabic optics is the sole heir of Greek optics, its 
history is from the outset that of the correction and critique of the latter.  

It is a significant fact that in the middle of the 9th century Euclid’s 
Optics was not only available, but already the focus of corrections. We now 
know that, at this date, Euclid’s Optics existed in not one, but two transla-
tions. The first, which exists in several manuscripts, often departs from the 
text of the two Greek versions that we know today – notably in passages as 
fundamental as the preliminary definitions. Two 13th-century mathemati-
cians, Naṣīr al-Dīn al-Ṭūsī and Ibn Abī Jarrāda, will comment on this 
Arabic translation. The second translation is at least as old as the first, since 
al-Kindī was using it in the middle of the 9th century. The identification of 
this version has profoundly changed our ideas about the textual history of 
Euclid’s Optics, which Heiberg had outlined and which was recently a 

 
62 Al-Nadīm, al-Fihrist, pp. 354–5. 
63 See his two books Daghal al-ʿayn (The Disorder of the Eye) and Fī maʿrifat 

miḥnat al-kaḥḥalin (On the Knowledge of the Proof of Occulists). Cf. M. Meyerhof and 
C. Prufer, ‘Die Augenheilkunde des Juhana ben Masawaih’, Der Islam 6, 1915, pp. 
217–56 and especially M. Meyerhof, The Book of the Ten Treatises on the Eye Ascribed 
to Ḥunain ibn Isḥāq (809–877 AD), Cairo, Imprimerie Nationale, 1928, pp. 11–12. 

64 M. Meyerhof, The Book of the Ten Treatises on the Eye, pp. 18 ff.; P. Sbath and 
M. Meyerhof, Livre des questions sur l’œil de Honaïn ibn Isḥaq, in Mémoires présentés 
à l’Institut d’Égypte, Cairo, 1938, vol. 36.  
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matter of controversy. In brief, Heiberg distinguished between the Optica 
genuina (Vienna, phil. gr. 103) and the version he labeled ‘of Theon’, the 
oldest manuscript of which is Vat. gr. 204. It is only recently, however, that 
this thesis was invalidated: the texts that Heiberg attributed to Theon (Vat. 
gr. 204) are now confirmed as Euclid’s, and the Optica genuina should be 
considered a later development. It was recently thought if we take into 
account the two Arabic versions, we are able to show that there were not 
only two, but four, pairwise independent textual traditions of Euclid’s 
Optics. This confirms that no one tradition preserves the sole correct ver-
sion of Euclid’s text.  

As far as we know, al-Kindī wrote the very first critical commentary of 
Euclid’s Optics. The title of his book unambiguously expresses his inten-
tion: Correction of the Errors and Difficulties Owing to Euclid in his Book 
Called Optics. But this book is preceded by another of al-Kindī’s works, 
On the Diversity of Perspectives. Although the Arabic is lost, this text was 
translated into Latin as Liber de causis diversitatum aspectus (De aspecti-
bus). The first quarter of the book seeks to justify the rectilinear propaga-
tion of light rays by means of geometrical considerations about shadows 
and the passage of light through slits. Al-Kindī was thus developing points 
from the epilogue to the second version of Euclid’s Optics, which Heiberg 
had attributed to Theon. For now, it matters little whether this attribution is 
well founded. What matters here is that by the middle of the 9th century, at 
least this prologue, if not the whole version, was known in Arabic. In the 
second part of De aspectibus, al-Kindī takes up the main doctrines of vision 
known since Antiquity, adopting in the end extramission theory with a few 
modifications. This discussion has at the least the advantage of showing 
that al-Kindī knew about his predecessors’ theories of vision. In the last 
part of De aspectibus, he studies the phenomenon of reflection and estab-
lishes the equality of the angles that the incident and reflected rays form on 
either side of the perpendicular to the mirror at the point of incidence. His 
demonstration is not only geometrical but also experimental. ‘Experimental 
verification’ takes place in a traditional language that bears traces of the 
prologue to the Optics attributed to Theon and that Ibn al-Haytham will 
fundamentally rethink at the beginning of the 11th century. 

The point of this quick overview of De aspectibus is to display both the 
kind of research carried out in optics in the middle of the century and the 
gap that separates it from Euclidean optics in the strict sense, which formed 
the background for the reception of the latter. In fact, it is after he com-
poses De aspectibus that al-Kindī writes his critical commentary on 
Euclid’s Optics. The chronology of al-Kindī’s optical writings is thus clear: 
his critical commentary on Euclid follows his own contribution to optics. 
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This order explains, at least in part, the meaning that his critical commen-
tary embodies. In light of his own results, al-Kindī then examines one after 
the other of Euclid’s definitions and proposition. He integrates criticisms 
that he had already levelled at Euclid during the composition of his own 
book, corrects what appears incorrect to him, proposes other demonstra-
tions that he judges better, and, drawing on his own resources, tries to bring 
out the underlying ideas. 

Like his works on burning mirrors, al-Kindī’s optical writings are a 
perfect example of the conjunction of research with the translation of the 
Greek heritage. They also show that, without a meticulous study of the 
Arabic versions, it is impossible to reconstitute either the conceptual or the 
textual tradition of the Optics. 

The 9th century holds other examples besides that of al-Kindī. One of 
his collaborators and colleagues, Qusṭā ibn Lūqā, is also interested in optics 
and catoptrics. Later, in the 870s, he too writes a book called On the 
Causes of the Diversity of Perspective Found in Mirrors.65 This catoptric 
research shows that Ibn Lūqā knew not only Euclid’s Optics, but also the 
Catoptrica attributed to him. In Chapter 10, Ibn Lūqā seems to use the first 
proposition of the latter work; likewise, in Chapter 22, one can identify 
traces of Propositions 7, 16, and 19 from the same book. In the following 
chapter, one finds traces of Proposition 21; in Chapter 28, he uses Proposi-
tion 5. Although these similarities do not prove that Ibn Lūqā had in hand 
an Arabic version of the Catoptrica, they nevertheless strongly suggest that 
he had access to a still unknown source that had picked up several proposi-
tions from this book. 

The second important treatise that we have inherited from Greek optics 
is Ptolemy’s. Unfortunately, we are at a loss when it comes to dating and 
setting the context of this translation, which is no longer extant. One 
scholar believed that he could recognize in al-Kindī’s De aspectibus 
several passages ‘that are clearly inspired by expositions found in the 
version of Eugenius’66 (i.e, the Latin translation from Arabic). On this 
account, al-Kindī would thus be a terminus ante quem for the Arabic 
translation. This seems incorrect, as I have shown elsewhere, that the 
prologue to the version attributed to Theon67 suffices to explain what 
appears in De aspectibus. The first evidence that we currently have for the 

 
65 R. Rashed, L’optique et la catoptrique d’al-Kindī, Appendix II. 
66 A. Lejeune, L’Optique de Claude Ptolémée, p. 29. 
67 ‘Le commentaire par al-Kindī de l’Optique d’Euclide: un traité jusqu’ici 

inconnu’. 
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Arabic translation of Ptolemy’s Optics is that of ʿAlāʾ ibn Sahl – rather 
late, towards the end of the 10th century.68 

Since it is therefore necessary to proceed by means of conjecture, it 
seems that this translation was carried out at the end of the 9th century or at 
the beginning of the 10th. I believe that the translation of this book became 
necessary when research on refraction developed in both optics and catop-
trics for lenses, as the works of Ibn Sahl pointedly attest. It is no coinci-
dence that Book V of Ptolemy caught his attention. As long as we do not 
know the date of the translation, however, every statement, including my 
own, remains pure conjecture. However that may be, it remains the case 
that the progress of Arabic optics with Ibn Sahl and Ibn al-Haytham 
(d. after 1040) demoted these translations to items of mere historical inter-
est and often could not prevent their fall into oblivion.  

By using geometrical optics, we have seen how the various phases of 
the translation movement are interrelated. Although they are easy to spot, 
these phases multiply and overlap. We also notice a particular kind of 
translation, which might be called in medias res insofar as it is directly tied 
to research and follows its evolution. Anthemius and Euclid are translated 
in phase with the research of al-Kindī, Qusṭā ibn Lūqā, and others. Progress 
of this domain of study in turn stimulates efforts to take up anew the trans-
lation of these very same writings. Everything indicates that the translation 
of Ptolemy’s work also follows upon the emergence of the study of 
refraction. 

2. Translation and recursive reading: the case of Diophantus 

We now turn to another type of translation, distinct from the preceding 
insofar as the translation does not go hand-in-hand with research, but fol-
lows it after a certain interval. In short, translation is stimulated in order to 
enrich research that is already well-developed, active, and prosperous. In 
this situation, translation is akin to the masterful recovery of an ancient 
text, which will be reactivated and in effect reinterpreted with a meaning 
that was not originally its own. In cases of this sort, there of course was 
neither a revision nor a second translation. Diophantus’s Arithmetic is a 
perfect illustration of this type of translation. 

 

 
68 R. Rashed, Géometrie et dioptrique au Xe siècle: Ibn Sahl, al-Qūhī et Ibn al-

Haytham, Paris, 1993; English version: Geometry and Dioptrics in Classical Islam, 
London, 2005. 
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Probably, but far from certainly, in the 2nd century, Diophantus of 
Alexandria wrote an arithmetical summa in 13 books that was probably 
modelled on Euclid’s Elements. In this work, Diophantus clearly states his 
intention in the preface to the first book: to construct an arithmetic theory, 
ἀριθμητιϰῂ θεωρία. The elements of this theory are the integers consid-
ered as pluralities of units, μονάδων πλῇθος, and the fractional parts as 
fractions of magnitudes. The constituent elements of the theory are not only 
present ‘in person’, but also as species of numbers. The term εἶδος, trans-
lated into Arabic as nawʿ and later into Latin as species, is in no sense 
reducible to the meaning of ‘power of the unknown’. In the Arithmetic, this 
concept covers equally and without distinction the indeterminate plurality 
and the power of a number with any plurality whatsoever, that is, provi-
sionally indeterminate. This last number is called the ‘unstated number’, 
ἂλογος ἀριθμός. To understand better this concept of species, one must 
remember that Diophantus refers to three species: that of the linear number, 
that of the plane number, and that of the solid number. The species generate 
all the others, which at the limit take their names. Thus the square-square, 
the square-square-square, and the square-cube are all squares. The cubo-
cubo-cube is a cube. In other words, the species thus generated can only 
become such by composition, and the power of each is necessarily a 
multiple of 2 or 3. In the Arithmetic, there is no 7th power, for example, nor 
a 5th power in the statement of the problems. All told, the concept of poly-
nomial is missing. At the same time, the composition of Diophantus’s work 
thus suddenly becomes clearer: the point is to combine these species with 
one another, under certain conditions, using the operations of elementary 
arithmetic. To solve a problem is to try to continue in every case ‘until 
there remains one species on one side and the other’.69 Contrary to what 
one often reads, Diophantus’s Arithmetic is not a book of algebra, but a 
genuine treatise of arithmetic in which one tries to find, for example, two 
square numbers the sum of which is a given square. 

The second point that demands an explanation pertains to a work writ-
ten at the time of the Caliph al-Maʾmūn, between 813 and 833: 
al-Khwārizmī’s Algebra, the book that first conceived of algebra as an 
autonomous discipline. Having defined basic terms and operations, al-
Khwārizmī studies algebraic equations of the first and second degree, 
together with associated binomials and trinomials, the application of alge-
braic procedures to numbers and to geometrical magnitudes, then 
concludes his book with indeterminate problems of the first degree. He 

 
69 See our edition, Diophante: Les Arithmétiques, Livres V, VI, VII, Collection des 

Universités de France, Paris, 1984, p. 103. 
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frames these problems in algebraic terms and solves them by means of 
these concepts. Al-Khwārizmī’s successors, notably Abū Kāmil, carried out 
further research on ‘indeterminate analysis as an integral part of algebra’.70  

It was while he was doing research on indeterminate analysis as a 
chapter of algebra that Qusṭā ibn Lūqā translated seven books of the 
Arithmetic. The first three correspond to the first three of the Greek 
version. The following four are lost in Greek, and for Books 4, 5 and 6 of 
the Greek version they seem never to have been translated into Arabic. 

These two preliminary explanations allow us better to formulate the 
problem of the translation of the Arithmetic. We confront, on the one hand, 
algebra as a new discipline that is definitely not Hellenistic, for having 
been established only half a century earlier, and one chapter of which 
focuses on indeterminate analysis; and, on the other hand, the Arithmetic – 
which treats problems that, after being translated into the terminology of 
this new discipline, will belong to the latter’s domain. This interpretation 
was not accessible to the first randomly chosen translator. But Qusṭā ibn 
Lūqā, who did translate the Arithmetic, understood the utility of 
Diophantus’s book for research in this new discipline, and in particular for 
indeterminate analysis. It was he who anachronistically gave the Arithmetic 
its first algebraic reading. It is not hard to imagine the consequences of this 
reading, not only for research, but also for translation. Before examining 
these effects, let us introduce the translator. Qusṭā ibn Lūqā was a Greek 
Christian from Baalbek, who, according to al-Nadīm, was a good translator 
who had mastered Greek, Syriac and Arabic.71 Also according to the 
ancient biobibliographers, he was called to Baghdad, the capital, to partici-
pate in the translation of the Greek patrimony around the 860s. He thus 
belonged to the generation of slightly later translators who, by virtue of 
both heritage and training, possessed an elaborate and polished terminology 
in many different areas of learning. Included among these lexica, it is 
important to emphasize that of algebra. Qusṭā ibn Lūqā also belonged to the 
professional category of translator-scientist, fully conversant with the vari-
ous scientific disciplines, and therefore in full possession of the means of 
understanding the meaning of the works they were translating. The titles of 
the works that Qusṭā translated and that have come down to us belong to a 
wide range of competencies. Among them are the little astronomical trea-
tises: Autolycus’s On Risings and Settings; On Habitations, On Days and 

 
70 R. Rashed, ‘Combinatorial Analysis, Numerical Analysis, Diophantine Analysis 

and Number Theory’, in Rashed (ed.) Encyclopedia of the History of Arabic Science, 3 
vols, London/New York, Routledge, 1996, vol. 2, p. 376–417. 

71 Al-Nadīm, al-Fihrist, p. 304. 
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Nights, and the Sphaerica, all by Theodosius; Aristarchus’s On the Sizes 
and Distances of the Sun and Moon; Hero of Alexandria’s Barulkos; 
Archimedes’ On the Sphere and Cylinder; Alexander of Aphrodisias’s 
commentary of On Generation and Corruption; as well as a part of his 
commentary on the Physics. And last but not least, Hypsicles’s Books XIV 
and XV, additions to Euclid’s Elements. Qusṭā must therefore have trans-
lated mainly books on mathematics and philosophy, fields to which he had 
contributed books of his own.  

It is thus with all of the competence expected of the translator-scientist 
that Qusṭā ibn Lūqā took on the Arithmetic in the 860s. His translation 
stands out by its blatantly algebraic appearance. It is as if this translator-
scientist took Diophantus to be al-Khwārizmī’s successor and to speak the 
same language. Indeed he drew on al-Khwārizmī’s lexicon to translate into 
Arabic both mathematical entities and operations. This lexical choice 
reflects Ibn Lūqā’s interpretative bias: the Arithmetic is a work of algebra. 
This bias will have a very long life; it reappears in the work of Thomas 
Heath72 and can still be found today. 

Ibn Lūqā’s choice transpires already in his translation of the title of the 
work. Instead of Arithmetical Problems, προϐλήματα ἀρίθμητιϰά, which 
can be found in the colophons of some books (al-Masāʾil al-ʿadadiyya), he 
translates the title as The Art of Algebra, Fī ṣinaʿat al-jabr. The funda-
mental terms are also translated by those that algebraists used, despite the 
irreducible semantic difference separating them. Take, for example, the 
expression ἄλογος ἀριθμός, a key concept in Diophantus’s arithmetical 
theory, which designates the provisionally indeterminate number that will 
necessarily be indeterminate at the end of the solution. This concept puz-
zles such modern translators as Ver Eecke, who renders it in French as 
arithme. Ibn Lūqā translated it with the word ‘thing’ (cosa, res), that is, 
‘the unknown’ of the algebraists. The successive powers of this entity 
δύναμις, ϰύβος, etc., are also rendered by the algebraic terms māl 
(square), kaʿb (cube), etc. What is more, Ibn Lūqā translates the term 
πλενρά by the Arabic jidhr, ‘root of the square’, thereby distinguishing 
Diophantus’s usage from his own.  

The operations have also been made algebraic. Thus, Diophantus for-
mulates the first operation with the phrase προσθεῖναι τὰ λείποντα εἴδη 
ἐν ἀμϕοτέροις τοῖς μέρεσιν, ‘to add the species subtracted on one side 
and the other from the two members’. Ibn Lūqā translated the phrase by a 
single noun: al-jabr, the very word from which the discipline takes its 

 
72 See T. L. Heath, Diophantus of Alexandria: A Study in the History of Greek 
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name. Likewise, when Diophantus writes: ἀ ϕελεῖν τὰ ὃμοια ἀπὸ τῶν 
ὁμοίων, ‘to subtract the similar from the similar’, Ibn Lūqā also translates 
this formula by a single word, which is used by algebraists to describe this 
operation: al-muqābala. Further investigation leads one to the conclusion 
that this algebraic choice was deliberate and systematic. 

This choice could not, however, cover all of Diophantus’s vocabulary: 
Ibn Lūqā also had to invent new terms and expressions, if only to translate 
the very terms that Diophantus used to designate certain methods of reso-
lution. He thus coined his own terminology when he translated ἡ  διπλῆ 
ἰσότης, a concept of which Diophantus was particularly fond, by al-
musāwāt al-muthanna, the ‘double equality’, replicating with this expres-
sion the Greek mathematician's own semantic procedure. Finally, to trans-
late the originally philosophical expressions that Diophantus used, such as 
γένος, εἶδος, οἰ ϰεῖον, ϕύσις, μέθοδος. Ibn Lūqā, who was himself a 
translator of minor philosophical treatises, borrows from philosophy its 
already-canonical lexicon.  

Diophantus’s Arithmetic was therefore translated in light of al-
Khwārizmī’s Algebra. This translation clearly stands out by comparison 
with the writings on Burning Mirrors and Optics; it is also distinct from the 
translations of Euclid’s Elements or Ptolemy’s Almagest. The remaining 
question is to discover what were the reasons for this translation, and what 
were the reasons that motivated the translator’s choice. We will then per-
haps be in a better position to understand the transmission of this portion of 
the Greek patrimony. 

To answer this question, we need to examine the subsequent life of this 
translation. In Arabic, the first research on indeterminate analysis (nowa-
days called Diophantine analysis) in all likelihood began immediately after 
al-Khwārizmī. As we have already pointed out, al-Khwārizmī takes on 
some indeterminate problems in the last part of his Algebra. Nothing, how-
ever, indicates that he is interested in indeterminate equations for their own 
sake; in any case, indeterminate analysis does not appear in his work. That 
said, the place of this analysis in Abū Kāmil’s later book (c. 870) tells a 
different story. Its high level of understanding, the allusions to other mathe-
maticians working in this field after al-Khwārizmī and whose writings are 
now lost, and finally the references to their own terminologies leave no 
room for doubt: Abū Kāmil was neither the first nor the only successor of 
al-Khwārizmī to work actively on indeterminate equations. It was therefore 
during one half-century that the context attuned to interest in Diophantus’s 
Arithmetic took shape. Conversely, when read in light of the new algebra, 
which was precisely Ibn Lūqā’s reading, the Arithmetic immediately found 
its place among the work in progress on indeterminate analysis. It even 
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went so far as to give a genuine thrust to the development of this chapter, 
which will later get its own proper name: fī al-istiqrāʾ. One can also see 
that the impact of the Arithmetic on the Arab algebraists was more of an 
extension than an innovation. 

 
 

3. Translation as a vehicle of research: the Apollonius project 
 
We have just examined two translation types: translations contempora-

neous with, and in the same domain as, research; and translation that fol-
lows research by a certain interval and eventually integrates the translated 
work into a tradition that was initially different from it. There were also 
three styles of translation – by an amateur, a professional, or a scientist 
translator, with the latter gradually predominating as the century advances. 
But these types and these styles were not the only ones: translation is 
sometimes stimulated not by one single research activity, but by a whole 
variety of them, some of which do not properly pertain to the field of the 
translated work. In such a case, the work is translated in order to carry out 
the research relevant to it, as well as to the research of other disciplines that 
are either fully established or in the process of formation. The translation of 
Apollonius’s Conics is a perfect example of such a pattern. 

We should not forget that the study of conic sections represents the 
most advanced part of Hellenic research in geometry. Apollonius’s Conics 
had been considered the most difficult mathematical work from the patri-
mony of antiquity. It includes the sum total of the knowledge of conic 
curves produced by geometry after Euclid, Aristaeus the Elder, etc., which 
Apollonius magisterially enriched, in the last three books in particular. His 
treatise will remain the most complete on this subject, at least until the 18th 
century. Although composed of eight books, only seven survive. Indeed the 
eighth disappeared relatively early, perhaps before Pappus73 in the 4th cen-
tury. The first seven all survived in Arabic translation. The extant Greek 
text, consisting of only the first four books, is the one Eutocius edited in the 
6th century. 

Recall also that, beginning in the second half of the 9th century, mathe-
maticians are treating problems that require an appeal to conic sections: 
some problems were raised in astronomy and optics (parabolic, ellipsoidal, 
and conical mirrors); the determination of the areas and volumes of curved 
surfaces and solids, etc. To appreciate this, one need only skim the titles of 
the works by al-Kindī, al-Marwarūdhī, al-Farghānī and the Banū Mūsā. 

 
73 R. Rashed, Les mathématiques infinitésimales, vol. III, Chap. I. 
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Thus al-Farghānī drew on conic sections in order to provide the first 
demonstrative exposition of the theory of stereographical projections, 
which the astrolabe requires. Even more significant is a research direction 
that begins to dawn during this time and that will grow ever stronger as the 
century progresses: beginning with the Banū Mūsā, researchers are inter-
ested simultaneously in the geometry of the conic sections and in the meas-
urement of curved surfaces and volumes. So it was that al-Ḥasan, the 
youngest of the three Banū Mūsā brothers, wrote a treatise of enormous 
importance on the generation of elliptical sections and the measurement of 
their areas.74 Al-Ḥasan then conceived of a theory of the ellipse and of 
elliptical sections using the bifocal method, that is, a path different from 
Apollonius’s. He thus considers the properties of the ellipse as a plane sec-
tion of a cylinder, as well as the different kinds of elliptical sections. His 
own brothers report that al-Ḥasan wrote his book without truly knowing 
Apollonius’s Conics. He only had a faulty copy, which he could neither 
translate nor understand. If proof were needed, the path that he took clearly 
substantiates this testimony. 

It is therefore easy to understand the interest that the Conics generated; 
not only did the desire to see the work translated come from several direc-
tions, but the need to study this chapter of geometry also became an urgent 
priority. The Banū Mūsā thus set out to find a translatable copy of 
Apollonius’s work. It was only after al-Ḥasan’s death that his brother 
Aḥmad found in Damascus a copy of Eutocius’s edition of the first four 
books. This key would unlock the eventual translation of the seven books. 
Such a task exceeded the skills of an ordinary translator. It was a team that 
tackled it until a scientist-translator eventually took it up. It was Thābit ibn 
Qurra who had translated the three last books, which are the most difficult, 
and, according to Apollonius, the most original. It was very probably also 
Thābit who collaborated with the two living Banū Mūsā brothers – Aḥmad 
and Muḥammad – on the revisions and translation of the whole work. 

Without a doubt, this was teamwork, since such other translators as 
Hilāl ibn Hilāl al-Ḥimṣī also participated in the translation.75 As noted 
above, however, this undertaking remains the product of scientist-
translators: Thābit ibn Qurra and the Banū Mūsā, acting at the very least as 
revisors. Overseen by creative scientists of the highest order, this transla-
tion cannot be confused with either an ordinary translation or one by a 
translator-scientist. To be sure, like the latter, this translation of Apollonius 
renders into Arabic a Greek work that was perfectly understood and mas-

 
74 Ibid., vol. I. 
75 Ibid., vol. III. 
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tered. In addition, however, it takes on a clear heuristic value. The transla-
tion of the scientist-translators constitutes genuine means for discovery and 
the reconfiguration of knowledge. If it plays this role, it is because, of all 
translations, it is the one most intimately connected with research. To illus-
trate this new role, let us return to Thābit ibn Qurra, and begin with his 
book On the Sections of the Cylinder and its Lateral Surface.76 

Having access to the seven translated books of the Conics, Thābit in a 
sense goes over the book of al-Ḥasan ibn Mūsā we have just mentioned. 
Apollonius’s Conics thus serves as a model for a new theory of the cylinder 
and of its plane sections. His master’s book will give him means that he 
will further develop himself, namely, geometric projections and transfor-
mations. Indeed, Thābit ibn Qurra takes the first step in this direction by 
treating the area of the cylinder as a conical surface and the cylinder as a 
cone whose summit is cast off to infinity in a given direction. He begins by 
defining the cylindrical surface, then the cylinder, just as Apollonius in the 
Conics had first defined the conical surface, then the cone. Thābit also fol-
lows the order of Apollonius’s definitions: axis, generator, base, right or 
oblique cylinder. The analogy of his procedure is further confirmed when 
one examines the first propositions of Thābit’s book.77 The Conics serves 
as his model for developing his new theory of the cylinder; and it is to meet 
the needs of the latter that he develops the study of geometric transfor-
mations. 

Reliance on the translation of the Conics is thus built into the research 
that al-Ḥasan ibn Mūsā and his student Thābit ibn Qurra carry out. But, as 
we have said, this is not the only line of research. Thābit and his contem-
poraries also take up geometrical constructions by means of conic sections, 
namely the two means and the trisection of the angle. Astronomer-
mathematicians, such as al-Farghānī, also draw on conic sections to study 
projections, in order to give a rigorous foundation to the plates of the 
astrolabe.  

One might easily think that the translation of the Conics constitutes a 
unique example on account of its high geometrical level. Important as its 
sophistication is, this is not the main point. After all, Thābit ibn Qurra also 
translated Nicomachus of Gerasa’s Introduction to Arithmetic, a lower-
level neo-Pythagorean book of arithmetic.78 Here, too, all signs indicate 
that this translation also fit into the research of this scientist-translator. 
Starting from one of Nicomachus’s descriptive statements, Thābit elabo-

 
76 Ibid., vol. I, pp. 458–673. 
77 Ibid., vol. I. 
78 Ed. W. Kutsch, Beirut, 1958. 
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rates the first theory of amicable numbers along with his famous theorem.79 
Thābit establishes his new theory based not only on Nicomachus, but also 
on the arithmetic books of Euclid’s Elements. Such a research program 
could not have taken place without an extensive scientific culture; indeed, 
the latter was growing ever richer and more extensive as the scientific 
community and its institutions grew. One of the means for this growth was 
precisely translation.  

The translation activities of the Greek patrimony were growing not 
only in extent but also – thanks to research – in understanding. Thus the 
criteria of good translation developed continuously, which explains the 
equally massive movement of retranslation and of revision focused on the 
translated works. In other words, retranslating and revising became two of 
the hallmarks of the translation movement that turned the Greek patrimony 
into Arabic. Thus Euclid’s Elements was translated three times, and the last 
version was also revised. Likewise for the Almagest and for certain works 
by Archimedes, some works in optics, etc. Revision became a kind of 
standard, beginning from the time when al-Kindī revised some translations 
done by Qusṭā ibn Lūqā, and Thābit ibn Qurra those of Isḥāq ibn Ḥunayn.  

 
 

4. Ancient evidence of the translation-research dialectic: the case of the 
Almagest 

 
In spite of its highly technical character, the translation of the Conics 

fairly reflects the general state of affairs. This example illustrates con-
cretely the reasons that underlie the act of translation, those that stimulated 
retranslation, and finally those that initiated revisions of the translations. If 
we overlook a few differences attributable to the very nature of the disci-
pline and its objects, as well as to the high standard of proof required in it, 
the situation is analogous to that found not only in the other mathematical 
sciences, but also in alchemy or in medicine. The case is similar for astron-
omy, for example, and so is the context for the translation of the most 
important work of ancient astronomy – the Almagest. Ibn al-Ṣalāḥ, the 
learned scholar of the 12th century, gives us an invaluable account when he 
writes: 

There were five versions of the Almagest, in various languages and transla-
tions: a Syriac version that had been translated from the Greek; a second ver-

 
79 F. Woepcke, ‘Notice sur une théorie ajoutée par Thābit ben Qorrah à 
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sion that al-Ḥasan b. Quraysh translated from Greek into Arabic for al-
Maʾmūn; a third version that al-Ḥajjāj b. Yūsuf b. Maṭar and Halyā b. Sarjūn 
translated from Greek into Arabic, also for al-Maʾmūn; a fourth version from 
Greek to Arabic by Isḥāq b. Ḥunayn, for Abū al-Ṣaqr b. Bulbul – we have 
Isḥāq’s original autograph; and a fifth version that is Thābit ibn Qurra’s revi-
sion of Isḥāq b. Ḥunayn’s translation.80 

In approximately one half-century, then, there appear at least three 
translations of the Almagest, plus one revision by one of the most prestig-
ious mathematicians and astronomers of the period. With a few exceptions, 
the Greek astronomical library was translated into Arabic during the 9th 
century. Equally significant is the fact that two translations of the Almagest 
were produced in the two decades of al-Maʾmūn’s reign. The only way to 
understand this remarkable fact is to take research into consideration. We 
owe an account of the latter to Ḥabash al-Ḥāsib, an eminent astronomer of 
the day. 

Ḥabash begins by describing the state of astronomical research before 
al-Maʾmūn. He mentions that some astronomers established principles and 
claimed to have reached a high level of scientific knowledge about the Sun, 
the Moon, and the stars, but without having ‘proposed about this a clear 
demonstration of it and a true deduction’.81 Ḥabash says nothing about the 
identity of these astronomers or their works. This, in his view, is how mat-
ters stood until al-Maʾmūn. Thereafter, astronomers set out to verify and to 
compare the various astronomical tables already translated into Arabic, 
namely the Indian astronomic table (zīj al-Sindhind), the astronomical table 
of Brahmagupta (zīj al-Arkand), the Persian astronomical table (zīj al-
shāh), the ‘Greek cannon’, that is, Ptolemy’s Handy Tables, and ‘other 
zījs’. This verification of the results from the various astronomical tables 
led to the following result: ‘each one of these zījs is sometimes correct and 
sometimes strays from the path of truth’.82 

Who took on the first step in this research? Ḥabash does not say. We 
know, however, that this activity had begun much earlier, with al-Fazarī 
and Yaʿqūb ibn Ṭāriq, and that at the time of al-Maʾmūn the names are 
plentiful. However that may be, it was after this verification and in the 
wake of this negative result that al-Maʾmūn ordered Yaḥyā ibn Abī Manṣūr 
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al-Ḥāsib to ‘return to the fundamentals of astronomical tables and to gather 
the astronomers and scientists of his time to collaborate on research about 
the foundations of this science, with the intention of correcting it, since 
Ptolemy proved that it is possible to grasp what astronomers try to know’.83 
The mathematician and astronomer Yaḥyā ibn Abī Manṣūr al-Ḥāsib fol-
lowed al-Maʾmūn’s orders. He and his colleagues chose the Almagest as 
their foundational book, and in Baghdad made observations of the move-
ments of the Sun and the Moon at various times. After Yaḥyā ibn Abī 
Manṣūr’s death, al-Maʾmūn directed another astronomer, Khālid ibn ʿAbd 
al-Malik al-Marwarūdhī, this time in Damascus, to undertake the first his-
torically recorded continuous year-long observation of the movements of 
the Sun and the Moon.84 During this period of active research in astronomy, 
Ptolemy’s Almagest was translated twice. A similar analysis pertains to the 
other disciplines linked with astronomy, such as research on sundials and 
the translation of Diodorus’s Analemma, or spherical geometry, and the 
translation of Menelaus’s famous work. 

This analysis makes it possible for us not only to understand the vari-
ous phases of the translation movement, but also to glimpse its end, which 
occurs when the results and methods of the new research overtakes the 
inherited science. This does not happen at the same moment in every disci-
pline but, for a good number of them, the translation movement ends at the 
turn of the century. 

 
 

3. PROSPECTIVE CONCLUSION 
 

Despite the fundamental historical research undertaken in this 
domain,85 the question of the transmission of the Greek philosophical patri-
mony into Arabic remains unanswered. With a few exceptions, the work to 
date has taken place under one of the following rubrics: philological, 
philologico-archaeological, or historical. Philological research is devoted to 
the problems of lexicon and syntax that Arabic translation raises. 
Philologico-archaeological study tries to identify real or virtual Greek 
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works behind the Arabic text, based on the postulate that the diffusion of a 
word reflects that of the concept. For its part, historical research examines 
the impact of the translated text on the philosophers of classical Islam. 
Although philology and history are necessary, the studies of translation that 
belong to these disciplines do not absolve the scholar from trying to 
discover either what was at stake in the translation, or the reasons for it, or 
the translator’s choices. These tasks will apparently require us to look 
beyond the ‘first philosopher among the Arabs’, al-Kindī, in order to 
encounter the theologian-philosophers (al-mutakallimūn) who were his 
predecessors or his contemporaries. As the examples of, among many 
others, Abū Sahl ibn Nawbahkt, Abū al-Hudhayl and al-Naẓẓām86 show, 
the mutakallimūn were customers, albeit highly critical ones, of 
metaphysics, physics, biology, and logic in order to develop their own 
deliberately rational discourse. In the writings of the Aristotelian neo-
Platonic tradition, al-Kindī himself found the discipline that not only 
provides a foundation of a rational discourse acceptable to all, but also is 
susceptible to argumentation of a mathematical sort.87 In all likelihood, the 
context of the theologian-philosophers will someday give us the key to 
understanding the reasons motivating the first steps of this massive 
movement of philosophical translation, and the choice that, in this context, 
privileged the writings from the Aristotelian tradition of Neoplatonism.  

 
86 M. A. Abū Rīda, Ibrāhīm b. Sayyār al-Naẓẓām wa-arāʾuhu al-kalāmiyya al-
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87 R. Rashed, ‘Al-Kindī’s commentary on Archimedes’ The Measurement of the 
Circle’. 
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READING ANCIENT MATHEMATICAL TEXTS: 
THE FIFTH BOOK OF APOLLONIUS’S CONICS 

 
 
 

How ought one read an ancient mathematical work? What are the 
means best suited to interpreting it? Both historians and philosophers of 
mathematics have constantly grappled with these questions. Even a histo-
rian who is so indifferent to mathematical facts that he treats them as he 
would a painting or a theological text (i.e., as a sociological fact) cannot 
avoid this question. At the very least, he will have to classify mathematical 
works, if not organize them into a hierarchy. 

The answers to these questions are nevertheless far from being 
immediate and simple: one need only recall the debates and controversies 
that opposed various historians when dealing with these queries. In order to 
circumscribe the problem, let us distinguish two tasks that are implicit in 
every interpretation of a mathematical work. The first is also the duty of 
every historian who reads a philosophical work: the need to bring out the 
structure both of its networks of signification and of the argumentation 
even as one draws out the author’s intuitions. It is by examining the articu-
lation of these structures that the historian can reconstruct the work and 
insert it into the tradition(s) to which it belongs. But whereas the historian 
of philosophy can restrict himself to this interpretative task without passing 
judgment on the truth of its doctrinal elements, matters are completely dif-
ferent for the historian of mathematics. Indeed, everyone knows that it is in 
examining the truth of its mathematical facts (theories and theorems) and 
the validity of its demonstrations that one truly reads the work. But this 
task runs into many difficulties when the work that one reads is ancient, 
that is, the product – sometimes preserved in a dead language – of a 
mathematical rationality that is no longer our own, and of a society and 
culture that have long ago disappeared, such as those of ancient Egypt, 
ancient Mesopotamia, ancient Greece, and the like. It is true that, when 
reading, the historian will take advantage of certain characteristics that 
make a mathematical text distinctive. Indeed, whatever its nature, this text 
is translatable into other mathematical languages. 



58 INTRODUCTION 

This possibility is itself a consequence of an even more fundamental 
property: once established or proven, a mathematical theory or theorem 
remains such for all time and everywhere. In no instance has a theorem 
been rejected after having been proven. This same theorem can thus be 
stated in languages other than the one in which it was originally 
formulated. Now this possibility of translation is at once theoretical and 
historical.  

Indeed, theoretically, one can state the same fact in several languages. 
Thus the plane in hyperbolic geometry can be defined axiomatically, as it is 
in Lobatchevsky, and the latter’s plane geometry was thus elaborated as in 
Euclid’s Elements. One can also consider a portion of a plane in hyperbolic 
geometry as the surface of a pseudosphere, where the geodesic curves play 
the role of straight lines. One can also take the interior of a circle as a plane 
in hyperbolic geometry. This possibility of translation is moreover at the 
origin of the concept of model in logic.  

But it often happens that these multiple translations are historical rea-
dings in which one can, moreover, see one of the main vectors in the 
development of mathematics. One takes up again the ancient mathematical 
facts in another language, in a mathesis that is different from theirs. So it 
was that the mathematicians of the 10th and 11th centuries, notably Alhazen, 
then those of the 17th century, such as Fermat, read certain works of 
Archimedes, and later this same work of Archimedes was translated into 
the language of integral sums. One can also call to mind Diophantus’s 
Arithmetic read in the language of classical algebra and, more recently, the 
works of Euler and Lagrange on the theory of quadratic equations which 
were later rethought by Kummer, Dedekind, and Kronecker in the language 
of field of algebraic numbers. 

There are many examples of this theoretical and historical plurality of 
readings, each of which finds a new richness in the mathematical object. 
For this reason, the historian of mathematics finds himself in a slightly 
paradoxical situation, one in which the stability of the mathematical fact is 
opposed to the variety of the matheseis into which this very fact is inte-
grated. To return to the reading of Archimedes by his successors, the orga-
nization of his ontology is not the same in Archimedes or in Alhazen or in 
Fermat, no more than are the methods, the languages, and the power of 
extension of mathematical thought.  

Take a simple example, that of Diophantus’s famous problem (II.8), 
‘To divide a given square into two squares’.1 

 
1 Here is the text: ‘To divide 16 into two squares. Let us assume that the first 

square is the square of arithmos (x2). The second square will be then 16 units minus a 
(Cont. on next page) 
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Following the invention of algebra, Arab mathematicians read this pro-
blem as an indeterminate second-degree equation of two variables.  
x2 + y2 = a2 . Others, who had developed the entire Diophantine analysis, 
saw in it an arithmetic problem – a numerical right triangle. One can also 
read it as a problem of rational parametrization of the circle (x = ut; y = ut 

– a; from which x =
2au

1 + u2  and y = a ⋅
u2 −1

1+ u2 ; the point (0, –a) is rational). It is 

with respect to this problem that Fermat in the margin formulated the 
impossibility of decomposing an nth power into a sum of two nth powers 
when n ≥ 3. This remark is at the origin of Fermat’s famous last theorem, 
which was only proven in 1994. 

The mathematical fact is true regardless of the reading of it, but the 
mathesis is different each time. 

The questions thus read: Can the historian indifferently choose any 
given reading? Or is there one reading which, being better than the others, 
allows one to situate a mathematical work in history? Or, finally, is it 
necessary to multiply the readings? And if so, which ones? 

The most common temptation is to read the work in light of the works 
of the author’s predecessors. This is precisely what happened when one 
tried to read Diophantus’s Arithmetic in the language of logistics and of the 
arithmetic of his predecessors; or to read Descartes’s Géométrie only in the 
language of the late-medieval cossists or of Christopher Clavius. But this 
unique reading runs the risk of missing what the work contains by way of 
new forms, and what the successors will not cease to bring to light and 
enrich. Thus the history of a mathematical work is also the history of the 
later mathematicians’ exploitation of it. Moreover, the historian who would 
restrict himself to examining the predecessors would run another risk, that 
of drifting into a search for origins that are frequently buried in limbo. The 

                                 
(Cont.) square of arithmos. 16 units minus a square of arithmos must therefore equal a 
square. I make up the square of  any indeterminate quantity of arithmoi minus a number 
of units equal to the root of 16 units. Let it be two arithmoi minus 4 units. The square 
will then be 4 squares of arithmos plus 16 units minus 16 arithmoi. This is equal to 16 
units minus a square of arithmos. Add to both sides the quantity subtracted, and subtract 
the quantity of the same nature, then 5 squares of arithmos are equal to 16 arithmoi, and 
the indeterminate number will be 16

5 . The first square will be 256
25 , the second one 144

25 , 
and their sum 400

25 ; that is, 16 units, and each of them is a square’ (Apollonii Pergaei 
quae graece exstant cum commentariis antiquis, edidit et latine interpretatus est I. L. 
Heiberg, 2 vols, Leipzig, 1891, 1893; repr. Stuttgart, 1974).  
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discussion underway for almost two centuries on the origins of al-
Khwārizmī’s Algebra illustrates well the limits of this type of research.2 

Another temptation can overcome historians, especially when their 
knowledge of the predecessors is uncertain or fragmentary, namely the 
temptation to comment on the statements of the author by drawing on other 
phrases borrowed from his own text. This type of commentary, which is 
necessarily limited, in fact runs the risk of becoming nothing more than a 
dull paraphrase of the mathematical transcription of the text. What is more, 
this reading is even more poorly equipped than the preceding one to unco-
ver new truths masquerading in ancient garb. It is not rare for such rea-
dings, which tout their ‘fidelity’ to the text, to end up betraying its 
mathematical content. It will therefore be necessary to elaborate a genuine 
strategy for the reading of ancient works. 

Let’s remember, first of all, that a good number of these works suffered 
serious accidents during the course of their transmission, and that our 
knowledge of their authors and predecessors is poor and sketchy. Such is 
the case of Apollonius and his Conics, with Menelaus and his Spherics, 
with Diophantus and his Arithmetic, and of many other Alexandrian and 
Arabic mathematicians. It may also happen that one must wait for centuries 
and for the help of a different kind of mathematics in order to begin reading 
and exploiting the work. Only in the 9th century did one begin to read 
Diophantus. Apollonius had to wait until the 10th century for the reactiva-
tion of research on the geometry of the Conics, and so on. 

It is therefore necessary, first of all, to begin by rigorously establishing 
the texts of the author and of his mathematical successors. At this stage, it 
is advisable to seek the help of another mathematics, from which one can 
borrow tools sufficient to actualizing all the mathematical information in 
the work one is reading. In other words, starting from another mathematics, 
it is a matter of elaborating a model that allows one to go farther in one’s 
understanding of the text. It even happens that this model, sometimes con-
ceived on the basis of recent mathematics, plays a revelatory role in unvei-
ling methods that underlie the work in question. This model thus has an 
instrumental and heuristic role. Thus, to read Diophantus’s Arithmetic, 
some have proposed a model forged from the concepts of algebraic geo-
metry applied to the field of rational numbers. Such a model is on the sur-
face ahistorical. In other cases, the mathematics of the model, in this case 
still different from that of the work one is reading, is nevertheless inscribed 

 
2 R. Rashed, Al-Khwārizmī: Le commencement de l’algèbre, Paris, Librairie A. 

Blanchard, 2007; English translation: Al-Khwārizmī: The Beginnings of Algebra, 
History of Science and Philosophy in Classical Islam, London, Saqi Books, 2009. 
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in the posterity of the latter. As we will see, this is the case for 
Apollonius’s Conics, and for algebraic-analytic mathematics.  

If the reliance on models for the interpretation of an ancient work 
seems indispensable to me, it is because the work evinces a blurry rela-
tionship of identity and difference with later mathematics, whether this link 
is theoretical or historical. It is a truism that this model is not the object. 
The model and the interpreted work pertain, as I have said, to two different 
matheseis or conceptual traditions. 

But this instrumental and heuristic use of models runs the risk of a 
double displeasure. First of all it will displease those who do not distin-
guish the model from its objects. Indeed, some eminent mathematicians did 
not hesitate to find in Diophantus’s Arithmetic not only algebra, but also 
the very notions of algebraic geometry and its methods (the methods of the 
chord and of the tangent). This attitude nevertheless has nothing to do with 
the procedure that consists in making a brutal regression, without any 
model at all, in order to discover in the ancient text concepts and 
procedures that required several more centuries to conceive them. This is 
the procedure that Jean Dieudonné followed when he wrote about 
Apollonius’s Conics:  

[In the study of normals to conics], the evolutes of conics are completely 
characterized and studied. Apollonius’s theorems translate immediately in 
our notation into the equation of the evolute that only the underdeveloped 
state of Greek algebra prevents him from writing.3 

It is one thing to rely on a model developed on the basis of another 
mathematics. It is a very different thing to project its concepts and methods 
onto a work conceived in a different mathematics.  

The recourse to models will also displease historians who are upset by 
the reflection of recent mathematical concepts on the tarnished mirrors of 
ancient times; in this, they will see an anachronistic procedure. 

Note that the model is not unique. One can elaborate several of them, 
beginning from different mathematics. The Arithmetic of Diophantus, for 
example, can be accommodated to an algebraic model, an arithmetic 
model, a geometric model, even though Diophantus was no more an alge-
braist than a geometer. The same can be said of the fifth book of 
Apollonius’s Conics, as we shall see. The whole problem is therefore to 

 
3 J. Dieudonné, Cours de géométrie algébrique, I: Aperçu historique sur le 

développement de la géométrie algébrique, Paris, PUF, 1974, p. 17; quoted from the 
English translation, History of Algebraic Geometry: An Outline of the History of 
Development of Algebraic Geometry, transl. J. D. Sally, New York, Chapman and Hall, 
1985, p. 2.  
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find a model that is, so to speak, minimal, capable of gathering all the 
information contained in the text and of exhaustively explaining all of the 
mathematical facts found in it.  

Finally, one must confront the model with the mathematics of the 
author and of his period in order to remove from it all notions extraneous to 
the context of the work. Thus, in the case of the Arithmetic, once one has 
removed the concepts of algebraic geometry, there remain a small number 
of algorithms (corresponding in particular to the method of the chord and 
the method of the tangent) which give an account of all the problems that 
the author considers. The model has thus allowed one to identify a small 
number of methods and to illuminate Diophantus’s procedures, about 
which it has been claimed since Hankel that they were only the chance 
examination of a succession of problems.4 It is precisely this confrontation 
that is the test of truth and that allows one to judge the pertinence of the 
model. 

To illustrate briefly this historical research and this strategy, I will dis-
cuss the fifth book of Apollonius’s Conics. 

The fifth book is certainly one of the high points of ancient and classi-
cal mathematics. If one compares it to all the others books in Apollonius’s 
treatise, it is without a doubt the most important and most difficult. Its dif-
ficulty is all the greater because Apollonius’s analysis is missing. Whereas 
this book is fundamentally the most analytical of the seven books of the 
Conics, its style of composition is purely synthetic. Understandably, it is 
not easy to make a systematic commentary on it. Of course, such a com-
mentary requires first a genuine critical edition as well as a rigorous tran-
slation, which I believe I have accomplished. One can then attempt a com-
mentary that requires multiple angles of attack. The first is certainly not a 
reading of the contribution of Apollonius in those of his predecessors but 
only, and insofar as the documents allow it, a precise mapping of the ques-
tions that his predecessors raised and the way in which Apollonius picks up 
on them. One approaches the second reading by means of an algebraic-
analytic model, the elaboration of which occurs a millennium after 
Apollonius and the development of which will continue for several more 
centuries. Although alien to the mathematics of the Conics, this algebraic-
analytic mathematics nevertheless finds one of its historical roots in 
Apollonius’s book. One can see here all of the complexity of the relations 
of identification and of difference. A third reading, using the theory of the 
singularities of differentiable applications, even if it is stripped of every 

 
4 H. Hankel, Zur Geschichte der Mathematik in Altertum und Mittelalter, 1st ed., 

Leipzig, 1874; reprod. Hildesheim, Georg Olms, 1965, pp. 164–5. 
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historical dimension, nevertheless helps one to appreciate all of the 
richness of the objects that the Alexandrian mathematician considered. Of 
course, within the framework of a brief study, one can only sketch the 
broad strokes of these readings. In this rapid sketch, I will pause on a single 
curve – the parabola.  

 
What were Apollonius’s intentions when he was writing the fifth book? 

What was his project? Apollonius’s explanations are miserly. In the pro-
logue to the first book of the Conics, there is just one small phrase in which 
he says that the Book V deals ‘more fully with maxima and minima’,5 that 
is, with the extremal lines that one can draw from a given point to the 
points of the curve. To understand this allusion, our only source is the pro-
logue to Book V. 

In his cover letter when sending Book V to Attalus, Apollonius 
sketches a rapid chronology of the research that he hopes to undertake in it, 
and explains his own contribution. Regrettably, both the chronology and 
the explanation are very brief, indeed rather allusive. He writes first to 
Attalus: 

In this book are found propositions on maximum and minimum lines.6 

Thus is the territory designated. He continues:  

You must know that our predecessors and contemporaries scarcely took up 
the investigation of minimal lines and they showed thereby which straight 
lines touch the sections, and also the the reciprocal of this proposition; that 
is, what happens to the straight lines that touch the sections, such that, if this 
happens, the straight lines are tangent. 

From this historical reflection, we learn that the predecessors and con-
temporaries took an interest only in minimum lines with the unique goal of 
determining the tangents to conic sections. One can thus see that, for the 
ancients, this was a continuation of Euclid’s study of tangents to the circle. 
Even though our information about the predecessors and contemporaries of 
Apollonius is incomplete and full of lacunae, one can see in it an allusion 
to the second book of Archimedes’s On Floating Bodies, and to mathema-
ticians in the tradition of Conon and of Dositheus, who treated the parabo-
lic mirror, several of whom Diocles mentions. The latter indeed draws on 
two properties of the parabola that pertain to the tangent and to the normal: 

 
5 Apollonius of Perga. Conics, Books I–III, translation by R. R. Catesby Taliaferro, 

New Revised Edition, Sante Fe New Mexico, Dana Densmore Editor, 2000, p. 2.  
6 See our edition, translation, and commentary on Book V of Coniques, Apollonius: 

Les Coniques, Tome 3: Livre V, Berlin/New York, Walter de Gruyter, 2008, p. 223, 5. 
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the vertex of the parabola is the middle of the subtangent; the subnormal is 
equal to half of the latus rectum.7 Apollonius himself takes up this study in 
Propositions 27 to 33, and informs us thereby about the type of research 
that his predecessors and contemporaries pursued. In fact, the point is to 
study the orthogonality of the minimum straight line ending at point A of 
the conic section, beginning from a point B in the concavity of the curve 
and from the tangent in A. Recall, for example, Proposition 27:  

The straight line drawn from the extremity of one of the minimum straight 
lines that we mentioned and which is tangent to the section, is perpendicular 
to the minimum straight line.8 

Given a parabola of axis ΒΓ, the tangent to the extremity A of a mini-
mum straight line is perpendicular to this straight line.  

 

 
Fig. 1 

 
If we can believe Apollonius, his predecessors and contemporaries had 

determined that the tangents were perpendicular to the minimum straight 
lines originating from the axis, a study that Apollonius, as we shall see, 
integrates into a larger field. 

Let us listen to more of Apollonius. 

For our part, we have shown these things in the first book without using, in 
order to demonstrate this, what pertains to minimal lines; and we wanted to 
arrange matters such that they would be located near the place where we 
explained the generation of the three sections, in order to show thereby that, 
for each of the three sections, there can be an infinite number of these 

 
7 R. Rashed, Les Catoptriciens grecs. I: Les miroirs ardents, Collection des 

Universités de France, Paris, Les Belles Lettres, 2000, pp. 103 ff.  
8 See our edition, Apollonius: Les Coniques, Tome 3: Livre V, p. 313, 17–18. 
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tangent straight lines, and on account of what happens and what is necessary 
to them, like that which happened for the first diameters.9 

Apollonius thus explains that, if like his predecessors, he did not draw 
on the minimum straight lines when searching for tangents, it is because, 
unlike them, he wanted to elaborate a theory of tangents to conical curves 
as he had done for the diameters, and in relation to the diameters rather 
than the orthogonals. Thus, in order to give an account of their infinite 
number and of their necessary properties, it is not enough to study the tan-
gents using the orthogonals; but one must proceed as one does for the 
diameters, by studying them on their own. Contrary to the studies carried 
out by Euclid in Book III of the Elements or by Archimedes in On Spirals, 
Apollonius’s research is devoted not to the tangent to the curve – the circle 
or the spiral – but to the tangent to a class of curves, namely, conic 
sections. In this new study, one must moreover treat several themes of 
research other than tangent or orthogonal, such as (for example) tangent 
and ordinate, tangent and diameter, tangent and asymptote, different 
methods for determining the tangents, etc. Now, this unprecedented exten-
sion of both the domain and the themes seems to have required a more 
detailed elucidation of the concept of tangent as well as an elaboration of 
the theory that encompasses it. This task was all the more necessary 
because Apollonius was beginning deliberately to examine the properties 
of the tangent for an entire class of conic sections before returning to his 
study of a sub-class: central conics on the one hand, and parabolas on the 
other. It is in his first book, where he treats the generation of conic sections 
that, as we have shown,10 Apollonius lays the foundation for this theory of 
tangents, to which he devotes a dozen propositions. 

Having elaborated a theory of the tangent in which the minimum 
straight lines play no foundational role, Apollonius returns to the matter to 
undertake a systematic study of them. But this study very naturally requires 
a study of their alter-ego: the maximum straight lines. This is precisely the 
theme associated with Book V: extremal straight lines. Let’s listen again to 
Apollonius writing to Attalus: 

As to the propositions in which we discussed the minimal lines, we have 
distinguished and isolated them, separately, after a lengthy inquiry; and we 
have gathered everything stated about them together with what was stated 
earlier about the maximal lines, because we have seen that those who study 
this science need this in order to know the determination and analysis of 
 
9 Apollonius: Les Coniques, Tome 3: Livre V, p. 223, 10–14. 
10 See R. Rashed, Apollonius: Les Coniques, Tome 1.1: Livre I, Berlin/New York, 

Walter de Gruyter, 2007. 
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problems, as well as their synthesis, in addition to what pertains to them in 
themselves: this is one of the things to which study aspires.11 

The statements are transparent, and the goal is clear: the fifth book is a 
treatise devoted entirely to extremal lines, both for the intrinsic interest of 
these mathematical objects and for the utility they have in diorismoi and 
the analysis and synthesis of the problems. The main point is to study the 
distance from a given point on the plane to a variable point describing one 
conic section or the other. In particular, one should determine if there are 
solutions for each of the three conic sections and, if the latter exist, how 
many. Such is the goal of the fifth book. In the course of this study, how-
ever, a subgroup of propositions will appear that expressly concerns the 
normal: Propositions 27 to 33. In addition to this group, one constantly 
encounters this notion of orthogonal as soon as one examines the progres-
sion of the fifth book in a little more detail. 

To grasp the place of the study of the normal in the fifth book and 
before undertaking a detailed commentary, let us recall that the study of the 
distance from a given point E in the plane of the conic section to a variable 
point M on the section, namely the distance l = EM, takes place in two 
phases. The three sections are related to their axis which, in the case of the 
ellipse, may be the large or the small axis. The vertex Γ of the section is 
taken as origin on this axis. Apollonius considers in general the points M 
on one half of the section separated from this axis. 

M
M
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1

 
Fig. 2 

 
I: The point E is taken as a point on the axis of the section, which is a 

straight half-line internal to the section in the case of the parabola or the 
hyperbola, and a line segment in the case of the ellipse. In Propositions 1 to 
43, Apollonius studies the variation of l as a function of the abscissa of a 
variable point M, and shows the existence of a straight line EM1 of a mini-
mal length l1 (if E is taken on the minor axis of the ellipse, it will be a 

 
11 Apollonius: Les Coniques, Tome 3: Livre V, pp. 223, 15–225, 3. 
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maximum straight line). Apollonius shows in particular that in every case a 
minimum (or maximum) straight line is normal to the section.  

The exposition takes place in the following way: 
1. The propositions of the first group (1–3) are lemmas. 
2. Group (4–11): Apollonius shows that every point E of the axis is 

associated with a minimal distance l = EM, or a maximal distance if E is on 
the minor axis of the ellipse. For the three conics, Proposition 12 is a corol-
lary of Proposition 7. 

3. Group (13–25): he shows that every point M of the arc under consi-
deration is associated with a unique point E on the axis, for which the dis-
tance l is minimal. In group (16 to 32) he shows that this distance is 
maximal.  

4. Group (27–29): he shows that every straight line EM that yields a 
minimum (or maximum) distance is orthogonal to the tangent at point M; 
that is to say, that it is normal to the section.  

5. Group (31–33): he shows reciprocally that with every point M on the 
arc he considers, the normal cuts the axis at E, and l = EM is the minimal 
distance associated with point E (the distance is maximal if E is on the 
minor axis of the ellipse). 

6. Group (35–37): he studies the angle that the normal makes with the 
axis.  

7. Group (38–40): he studies the position of the point of intersection of 
the two minimum (or maximum) straight lines; in Proposition 38, for any 
conic section; in the two other propositions, for the ellipse. 

8. Group (41–43): he studies the conditions under which a minimum 
straight line cuts the section again. 

9. In the two remaining propositions (12 and 34), he offers some 
remarks on the distances. 

Such is the structure of the first part of Book V, which consists of 
forty-three propositions. Nine propositions directly concern the normal.  

 
II: The point E is not taken on the axis. This point E and the part of the 

section considered are on one side and the other of the axis. Apollonius 
then studies the straight lines passing through E and which are the supports 
of the minimum straight lines examined in I. He discusses in this part (Pro-
positions 44 to 63) the existence and number of such straight lines. The 
central part consists of Propositions (51, 52) and (62, 63). The group (44, 
49, 51, 58, 62) is devoted to the parabola, whereas group (45 to 48, 50, 52 
to 57, 59, 63) treats the ellipse, and group (45 to 50, 52 to 61 and 63) the 
hyperbola. 
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III: The third group (64 to 77) is devoted to the study of the variation 
of the distance l when the point M describes the section under considera-
tion; Apollonius brings into play the results of the proceeding discussions 
and notably Propositions 51 and 52. 

The group (64, 67, 72 plus Lemma 68) is devoted to the parabola; the 
group (65, 67, 72 and the Lemma 69) treats the hyperbola, and the group 
(66, 73 to 75 and the Lemmas 70 and 71) of the ellipse. 

The remaining Propositions 76 and 77 are particular cases. 
In these groups one encounters, as in Propositions 73, 74, 75, results 

pertaining to the normals. 
 
The fifth book is thus organized in these three parts. At this stage in the 

discussion, one could say that the examination of normals is naturally 
essential during the course of this study of the distances, but without being 
the focus all by itself; it represents an important part of this study without 
the latter being the goal. A more detailed description will show the mea-
ning and consequences of this conclusion.  

We now turn to the commentaries.  
 

First reading: 
From Apollonius’s own remarks, it transpires, on the one hand, that his 

predecessors and contemporaries were raising questions about minima and 
maxima, and on the other hand, that it is precisely this reflection that he 
intends to take up in greater detail. Apollonius names neither his predeces-
sors nor his contemporaries, and he does not expose the results of their 
research. We know, however, from other sources that two mathematical 
techniques for the examination of the problems of solids were flourishing 
at the time: on the one hand, intercalation; and on the other, the intersection 
of conics. Thus, in his treatise On Spirals (Propositions 5, 7, 8, 9, in 
particular), Archimedes reduces the most difficult propositions to interca-
lations. On the other hand, according to the testimony of Apollonius him-
self, we know that scholars in the circle of Conon of Alexandria used the 
intersection of conics to study the problems of solids. But we know also 
that some problems, such as the two means, were studied by means of both 
techniques. Now, many propositions of Book V can be reduced to neusis, 
under different forms. There, Apollonius treats the diorism of the intersec-
tion of the conic section with a circle with a given centre and a variable 
radius. He also gives there the intercalation of a given straight line directed 
to a given point between a conic and one of its axes. The topic seems to 
have been treated by his predecessors, if we can believe his prologue. One 
knows moreover that Archimedes, in Book II of On Floating Bodies, draws 
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on normals to the parabola. We also just saw that the testimony of Apollo-
nius, according to which his predecessors had determined that the tangents 
were perpendicular to the shortest line issuing from the axis, proceeding as 
it were as Descartes would do later, in the second book of his Géométrie. 

 
The determination of the minimum straight lines issuing from the 

points of one of the axes of a conic section was therefore a well-known 
problem at the time of Apollonius. Not only does the mathematician take it 
up, but he considers a problem that is more general and that requires other 
means: the straight lines issuing from any given point in order to study how 
it reduces to the problem of determining a solid locus. Let us take up this 
problem.12 

Since a conic is determined by its axis, its vertex and its latus rectum, 
one tries to draw normals to it from a fixed point P. One requires that P and 
the feet of these normals be in the opposite half-planes facing the axis of 
the conic. Let us restrict ourselves to the case of the parabola. 

If PM is normal to parabola P  and cuts the axis at Q, we know that 
sub-normal QZ (Z being the orthogonal projection of M on the axis) is 
equal to the semi-latus rectum p. The search for them resembles a neusis: 
to insert between the axis and P , a straight line QM directed towards P and 
whose projection QZ is equal to a given straight line. The point P being in 
the inferior half-plane, one begins by determining the locus of points M of 
the superior half-plane such that, if PM cuts the axis at Q, the projection 
QZ from QM be equal to p.  

P

K

Q H Z

M
Y

 
Fig. 3 

 
12 Cf. also H.-G. Zeuthen, Histoire des mathématiques dans l’Antiquité et le Moyen 

Âge, Paris, Gauthier-Villars, 1902, pp. 178–82 and J. Itard, ‘L’angle de contingence 
chez Borelli: commentaire du livre V des Coniques d’Apollonius’, Archives 
internationales d’histoire des sciences, no. 56–57, 1961; repr. in Jean Itard, Essais 
d’histoire des mathématiques, collected and introduced by R. Rashed, Paris, Librairie 
A. Blanchard, 1984, pp. 112–38, at pp. 118–24. 
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The triangles PQK (K being the projection of P on the axis) and MQZ 
are similar, therefore 

QZ

ZM
=

KQ

KP
=

KZ

ZM + KP
=

KH + HZ

ZM + KP
, 

 
where one has introduced the point H of line KZ such that KH = p = QZ, 
therefore HZ = KQ. 

Thus  
QZ · (ZM + KP) = ZM · (KH + HZ),  

 
therefore 

KH · KP = QZ · KP = ZM · HZ  
 
if one eliminates the equal expressions QZ · ZM = ZM · KH. This relation 
means that the point M belongs to the hyperbola HP with asymptotes HZ, 
HY that passes through point P. More precisely, M is on the branch of HP 
in the superior half-plane and P is on the other branch. 

Thus the feet of the normals at P   issuing from point P are the points 
of intersection of P   with HP. Thus  

HZ

KP
=

KH

ZM
,  

therefore  
HZ2

KP2 =
KH2

ZM2 =
KH2

2KH ⋅ AZ
=

KH

2AZ
  

where A is the vertex of the parabola and where one has taken into account 
the symptoma of the parabola ZM2 = 2p · AZ. Since the square KP2 and the 

segment 
KH

2
 are known, the determination of Z is pertinent to the lemma 

of Archimedes for Book II, Proposition 4 of On the Sphere and Cylinder: 
To divide the given straight line AH at point Z such that the ratio of the 
square of HZ to the given square KP2 be equal to the ratio of the given 

segment 
KH

2
 to AZ. 

The diorism of Proposition 51 can easily be reconstructed. Given that 
point K is fixed, let us find a position of point P on the perpendicular KP to 
the axis such that hyperbola HP is tangent to P  at a point B that is pro-
jected on the axis at E. One knows that the tangent to P   at B meets the 
axis at a point F such that EA = AF. If this straight line is also tangent to 



 3. READING ANCIENT MATHEMATICAL TEXTS 71 

 

HP, E is the middle of HF, therefore HE = EF = 2EA and E is therefore 
located at one third of AH starting from A. This determines point E, and 
therefore point B and point G where PB meets the axis, since GE = p. Thus 
one finally has P at the point where BG meets KP. Apollonius determines 

KP = Λ starting from BE by means of the proportion 
Λ

ΒΕ
 = 

KG

GE
=

HE

KH
. One 

has  
Λ2

HE2 = 
EB2

KH2  = 
2AE

KH
  

 

where AE = 1
3

AH and HE = 2
3

AH; thus Λ2 · KH = 8
27

AH3, which deter-

mines Κ as a function of AH. 

P

K

G H E A F

B

L

 
Fig. 4 

 
Let us consider now a point P′ of KP such that KP′ > Λ. One thus has 

KH · KP′  > KH · KP. As a consequence, for every point M of HP′, 
ZM · HZ > EB · HE. Thus the superior branch of the hyperbola HP′  is 
above that of HP and this branch is therefore completely exterior to P ; 
there is therefore no normal originating from P′ with a foot in the superior 
half-plane. 

If on the contrary KP′  < Λ, then KH · KP′  < KH · KP and ZM · HZ < 
EB · HE for every point M of HP′ . Consequently, the superior branch of 
HP′  is below that of HP  and it meets P  at two points separated by B. 
There are therefore two normals originating in P′ with feet in the superior 
half-plane. 

Note therefore that the points of intersection of this hyperbola and of 
the given parabola will be the feet of the normals originating from P(x0, y0). 

The entire problem consists in determining the points P whose hyper-
bolae are tangent to the parabola. The locus of these points is a curve (a 
semi-cubic parabola) that divides the plane into two regions such that, from 
the points of one, two normals can be drawn, and from the points of the 
other, a single normal. It is while searching for the conditions under which 
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these hyperbolae are tangent to the parabola that one determines the ordi-
nate of a point of this curve, its abscissa being known. 

We now know that this curve is the evolute of the parabola. But 
nothing allows us to say that Apollonius or anyone else before Huygens 
thought of this curve.  

 
1. In this study, Apollonius is as close as can be to the definition of the 

evolute of the parabola P , since to every abscissa x of a point P of the axis, 
he links a reference length Λ that is the ordinate of the point of the abscissa 
x on the evolute. It is nevertheless clear that he in no way considers this 
curve, and that in his treatise his consideration of the ordinates and the abs-
cissas of points only has meaning for the points of a conic.  

 
2. We have already noted that in the case of the parabola the construc-

tion of normals issuing from P reduces to Archimedes’ problem of divi-
sion. The commentary of Eutocius on The Sphere and the Cylinder 
contains a construction of this division, which Eutocius restored from a 
corrupt text that he attributes to Archimedes. This construction, applied to 
the problem that concerns us, determines the point Z as the projection on 
the axis AH of the intersection of a parabola of vertex A with axis AL 

perpendicular to AH and a right side KP2

AH , with a hyperbola with 

asymptotes AH and AL passing through the point B such that HB is 

perpendicular to AH and equal to KH
2

. These two curves are different from 

P  and from HP. The hyperbola depends only on K whereas the parabola 
depends on the position of P on KP, HP depends on the position of P, and 
P   is fixed. 

In the commentary of Eutocius, the diorism that allows one to determine 
under which conditions the two curves meet is also obtained by the deter-
mination of the position that guarantees the contact of the two curves. The 
hyperbola is fixed and one makes the parabola vary by changing the value 
of KP. As in the case of Apollonius, the properties of the tangents to the 
conics allow one to conclude that the contact occurs when on AH, Z is one 
third of the way from A. One also observes a kinship between the tradition 
that goes back to Archimedes and the research of Apollonius. 

 
3. One can express the idea that underlies the diorism of Archimedes or 

of Apollonius by saying that the properties of intersection of a fixed conic 
C with a mobile conic HP change only when HP becomes tangent to C, 
that is, when the transversality of the two curves is lost. One is close to the 
intuition according to which transversality is a stable property. 
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Let us add that the set of points P for which HP  and C  are not trans-
versal is the evolute of C, therefore a closed rare set. This is a perfectly 
simple and elementary case of the famous transversality theorem of Thom. 

 
4. Apollonius’s study of the determination of extremal straight lines 

originating from a given point is presented in a completely static manner in 
the sense that he compares the lengths of segments according to different 
positions of the extremity on the conic. Apollonius does not yet consider at 
this stage the continuous variation of a straight line joining a fixed point of 
the axis to a mobile point on the conic. Starting from Proposition 64 of the 
same book, however, he studies the continuous variation of the distance of 
a point E on the plane to a variable point M on the conic. One cannot 
overstate the innovative character of this study in Hellenistic mathema-
tics.13 

In the 11th century, Ibn al-Haytham further develops research into con-
tinuous variation. Among other things, he studies the asymptotic behavior 
of quantities such as segments, but also ratios of segments or of arcs of 
circles, using infinitesimal notions; his astronomical concerns (the apparent 
motion of a planet on the celestial sphere) are probably not alien to this 
work.14 

 
It is entirely plausible that Apollonius had, in one way or the other, 

carried out an analysis of this sort. Such a commentary is satisfactory since, 
on the one hand, it relies on no concept unknown to Apollonius and, on the 
other hand, takes into account his relations with the mathematicians of his 
day. Nevertheless, this commentary does not sufficiently clarify for us the 
link between the concepts elaborated by Apollonius and the mathematical 
rationality that suffuses them and with which Apollonius had to deal. If 
therefore one wants to grasp the true reasons for his research in the fifth 
book, and to elucidate all the mathematical facts present in it in order to 
understand what makes this book what it effectively is, it will be necessary 
to define this link and to follow its genesis. Now this explanatory task 
cannot be carried out properly in the author’s own mathematics. It will 
therefore be necessary to draw upon a model elaborated on the basis of 
another mathematics, at the risk of having to return to the text in order to 

 
13 See our edition, translation and commentary of Book V of the Conics. 
14 R. Rashed, Les mathématiques infinitésimales du IXe au XIe siècle. Vol. V: Ibn 

al-Haytham: Astronomie, géométrie sphérique et trigonométrie, London, al-Furqān, 
2006; English transl. Astronomy and Spherical Geometry: The Novel Legacy of Ibn al-
Haytham, London, Centre for Arab Unity Studies, Routledge, 2014. 
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appreciate the power that this model has of exhausting the information that 
it carries. One can trace the source of the first model to an algebraic-
analytical mathematics, stimulated by the reading of Apollonius’s Conics 
by al-Khayyām, Sharaf al-Dīn al-Ṭūsī, Descartes, Fermat, etc. 
 
Second reading: 

One expects that this model will describe the evolution of research in 
the course of the fifth book, will illuminate the links between the different 
themes broached by the mathematician, and will draw out the reasons for 
the mathematical facts he establishes. It is in this manner that the themes 
emerge around which the book is organized: the extremal distance of a 
variable point of a conic curve to a given point on the plane, which can be 
on the axis or outside the axis; a theory of normals and a study of the 
variation of a geometrical quantity: the distance between the point given on 
the plane to the points on the curve. Now, if the study of minimum and 
maximum straight lines circumscribes the domain of research, the study of 
normals and of the variation of distances, stands out as an area of research 
that is as fertile as it is innovative. It is moreover with this research that 
Apollonius’s study distinguishes itself from that of his predecessors and 
contemporaries. Let us consider quickly and partially the example of the 
parabola.  

 
Apollonius begins by studying the length l – the distance – of a given 

point E (x0, y0) to a point M (x, y) that describes the parabola P  related to 
the rectangular system (Γx, Γy) formed by the axis and the tangent to the 
vertex with y2 = 2 px. He considers the following case: 

 
• E is given on the axis x0 > 0, y0 = 0 and M on the semi-parabola with a 

positive ordinate; on the axis Γx, one takes the point Z such that ΓZ = p. 
 
  l2 = EM2 = x − x0( )2

+ y2 = x2 − 2x x0 + x0
2 + 2 px , 

 
  l2 = f (x) = x2 − 2x x0 − p( ) + x0

2 ,  
 
  ′ f (x) = 2x − 2 x0 − p( ). 
 
The derivative ′f (x)  is positive or zero if x ≥ x0 – p, which always 

occurs when x0 ≤ p, that is when point E is between Γ and Z. In this case 
f(x) always increases and its minimum is obtained for x = 0, that is M = Γ. 
The minimal value l0 of EM is then EΓ = x0 (if x0 = p, one obtains l0 = p). 
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If on the contrary x0 > p, that is, if E is beyond Z on the axis Γx of the 
parabola, ′f (x)  < 0 for 0 ≤ x < x0 – p and f decreases in this interval. In this 
case, f(x) has a minimum for x = x0 – p, of value: 

 
x2 − 2x x0 − p( ) + x0

2 = x0
2 − x0 − p( )2

= 2x0 p − p2  
 

and the minimum value of EM is EM0 = l0 = 2x0 p − p2  where M0 is the 

point of the parabola of abscissa x0 – p. Its projection H0 on the axis is such 
that EH0 = p, and one therefore sees that EM0 is normal to the parabola. 
 

E Z

M

M

EH

y

x0

0

1  
Fig. 5 

 
 For every other point M, one has  
 

  EM 2 = l2 = l0
2 + x + p − x0( )2

 

 

  EM 2 = EM0
2 + xM − xM0( )

2
. 

 
Conclusion: To every point E on the axis Γx with the abscissa x0 ≥ p 

corresponds, on the semi-parabola with a positive ordinate, a point M0 of 
abscissa xM0

 = x0 – p such that the length EM0 = l0 be the minimal length of 
all the segments EM. 

Conversely, to every point M of abscissa xM on the semi-parabola, there 
corresponds, on axis Γx, a point E of the abscissa x0 = xM + p. Thus, 
through every point M, there passes one and only one straight line on which 
the axis isolates a minimum straight line. 

 
Next, Apollonius studies the angle that the minimum straight line 

makes with the axis. 
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In triangle MEH, angle MĤE is right, therefore MÊΓ < 90°. Assuming 

MÊΗ = α, one has tan α =
yM

p
. When M describes the parabola, yM increases 

from 0 to ∞, therefore tan α increases from 0 to +∞ and α increases from 0 

to 
π
2

. 

 
Immediate consequence: Two minimum straight lines, issuing from 

two points M and M1 with positive ordinates, intersect at a point O with a 
negative ordinate. 

� �

�

�

�

�
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Fig. 6 

 
The beginning of this commentary shows that, for Apollonius, the 

study of normals is intimately connected to that of minimum straight lines. 
The study of the number of minimum straight lines that meet in a given 

point reduces to the study of normals to the parabola that pass through that 
point. 

y2 = 2 px ⇒ 2y ′ y = 2 p ⇒ ′ y =
p

y
. 

p

y
 is the slope of the tangent at the point of the ordinate y, therefore −

y

p
 is 

the slope of the normal. 
 
Apollonius studies the normals that pass through O (x0, y0) and that 

meet the parabola at point (x, y). One has y – y0 = m (x – x0), where m = −
x

p
 

is the slope; whence m2p2 = 2 px (equation of the parabola) and x = m2 p

2
; 

and, substituting in the first equation, one has 
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 (*) f m( ) = pm3 + 2m p − x0( ) + 2y0 = 0 . 
 
• If y0 = 0, m = 0 is the solution for every value x0; m = 0 gives the 

straight line ΟΓ which is normal to the vertex Γ. 
 
If pm2 + 2 p − x0( ) = 0 , two cases emerge: 

x0 ≤ p, in which case the only root of equation (*) is m = 0; the only 
normal is ΟΓ. 

x0 > p; m 2 =
2 x0 − p( )

p
, whose two opposite roots m′ and m′′ that yield 

two normals at two symmetrical points in relation to the axis Γx. 
 
• If y0 ≠ 0, one can suppose that y0 < 0; the equation (*) is written 
 

(**) f m( ) = m 3 + 2m
p − x0( )

p
+

2y0

p
= 0. 

 
The study of the number of roots of the equation (x > 0, y < 0) is dedu-

ced from the sign of 27y0
2 −

8

p
x0 − p( )3

. 

 

One is thus led to study the equation y2 =
8

27p
x − p( )3 . 

Recall, however, that Apollonius had defined a ‘reference length’ k in 
two of the most important propositions of the fifth book, such as 

k 2 =
8 x0 − p( )3

27
. Thus, we can now understand the origins of this ‘reference 

length’, which Apollonius gives without explanation. 
 
The other particularly important 

theme is the study of the variation of 
the distance EM when M describes the 
semi-parabola. One demonstrates that, 
if the points M′ and M″ correspond to 
two normals originating from point E, 
then the distance EM increases when 
M traces the arc ΓM′, decreases when 
M traces the arc M′M″ and increases 
indefinitely when M moves away 
indefinitely. 

M

M

E

x

p

 
Fig. 7 
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This reading gathers all of the information contained in Book V and 
gives an account of all the mathematical facts established in it. Once one 
has eliminated all of the notions that are alien to Apollonius’s geometry, it 
sheds light on all of the facts that he established.  

 
Third reading: 

One can also read the research of Apollonius with the help of singula-
rities with differential applications. In this case, when the text of Apollo-
nius is no longer one of the sources of this theory, this reading nevertheless 
allows one to uncover a potentiality of his research, one that could only be 
actualized in another mathematics. At issue is a theory of evolutes (enve-
lopes of the normals to the parabola in this case), which allows one to 
unveil a posteriori the organization of the fifth book and to reveal the 
rational linkage of the propositions that compose it. 

 
Given a parabola P   of equation 
 

(1)  y2 = 2 px 
 

and a point E on the plane, with coordinates (ξ, η); one seeks the extremal 
values of the distance d (E, M) when M traces P . 

 
One can parametrize P   in order to express this distance as a function 

of one variable; by assuming that x = uy in equation (1), one finds 
 

(2)  x = 2 pu2, y = 2 pu. 
 
The square of the distance is written 
 

(3) d E, M( ) 2
= f u;ξ, η( ) = 4 p2u2 1 + u( )2

− 4 pu ξu + η( ) + ξ 2 + η2 . 
 

The problem thus reduces to studying the values of u for which this 
function passes through one extremum, also called critical values; they are 
also given by zeroing the derivative 

 
(4)   ′ f u;ξ, η( ) = 4p 4pu3 − 2u ξ − p( ) − η[ ] , 

 
which goes to zero together with the polynomial (5). 

 
(5)   P u;ξ ,η( ) = 4pu3 − 2u ξ − p( ) − η = 0 . 
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One notes that, with u fixed, the polynomial P is linear at (ξ, η); the 
equation P u;ξ ,η( ) = 0  thus defines a straight line N on the plane of E. This 
straight line passes through the point M defined by equation (2); its slope is 

equal to –2u. Since the slope of the tangent to P   at M is 
u

2
, one sees that N 

is one normal to P  at M (this is the foundation of algebraic-analytic study).  
 
Equation (5) is of the third degree, of the form α 3 + αa + b = 0 . It thus 

admits one or three finite solutions according to whether the discriminant  
 

(6)   Δ ξ, η( ) = 8 ξ −η( )3
− 27pη2  

 
is positive or negative. The limiting case, Δ ξ, η( ) = 0 defines a curve Q  with 
the equation. 

(7)  ξ −η( )3
=

27pη2

8
. 

 
This curve is a semi-cubic parabola, and it divides the plane into two 

regions: the interior, ξ,η( ) Δ ξ, η( ) > 0{ }  and the exterior ξ,η( ) Δ ξ, η( ) < 0{ } . 

One shows that, when E is inside Q, P has three finite roots; and when 
E is outside Q , there is only one root. 

The curve Q  is decomposed into a regular part X and a cusp Z at which 
the two arcs terminate: Q  = X ∪ Z . 

 
Fig. 8 

 
Without going into more detail, let us merely recall that the point of 

view adopted here leads to an examination of the dependence of the solu-
tions u of the equation ′ f u;ξ, η( ) = 0  in relation to (ξ, η) = E. One knows, 
for example, that outside the curve Q, these solutions are differential func-
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tions of (ξ, η) that depend regularly on E; in other words, the feet of the 
normals drawn from E depend regularly on E. Likewise, along the curve Q, 
the double root u of P depends regularly on E. 

 
The possible readings of an ancient mathematical work, and especially 

one that is as foundational as the Conics, are many, different, and in no 
way mutually exclusive. The first consists in trying to understand the work 
in the context of the research of its time, in relation to which, but also 
against which, it constituted itself. The job is neither easy nor definitive. 
Indeed scientific works are neither uniform, nor of a single piece, and those 
of ancient mathematicians also have their protrusions, their cleavages, and 
their stratifications. As ancient contributions, they are, moreover scarred by 
time and the vicissitudes of transmission and translation. Thus the recons-
truction of such a work is never more than a temporary arrangement, 
governed by the criteria of the period. It is always perfectible, subject to 
progress in our knowledge of the facts, or to a better understanding of 
mathematical results and methods. The goal of the historian who under-
takes such a reconstruction is twofold: to understand the intentions of the 
mathematical author; and to grasp the rational linkage of the concepts that 
he brought to bear in his work in order to grasp the mathematical reality at 
which he aims.  

One can also – this is the second route – forge a model capable of brin-
ging out the latent structure of a work as well as what it contains in poten-
tiality and will be exploited by later mathematicians. It is true that, by 
taking this approach, one tries to examine the work intrinsically, outside of 
diachronicity. This time, one is not at all interested in what it owes to the 
works of predecessors and contemporaries. No doubt this approach will 
provoke some to denounce this route as well as the elaborated ‘model’ by 
accusing them of anachronism. But this would be to ignore the function –
instrumental and heuristic – assigned to the model. And in fact, the 
example of Book V has shown us how the models have brought to light the 
themes of research – the theory of normals and the study of variation, 
among others – the networks of relations and the argumentative 
procedures. Moreover, these models are neither arbitrary nor exclusive, nor 
are they the only possible ones. All of them concern the same mathematical 
reality that Apollonius studied but, in every case, with a different recasting 
of the ontology. And each time new strata of meaning come to light in this 
mathematical reality that Apollonius struggled to grasp already two millen-
nia ago. The contribution of Apollonius is thus in no way a first approxi-
mation of one of the models invoked; it is itself a model elaborated from a 
particular organization of the ontology. 
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To read an ancient text, the historian of mathematics has no choice but 
to mobilize all of these methods and to give up all pretences to a chimerical 
fidelity to it. He must convince himself once and for all that sole subjection 
to the words alone does not necessarily guarantee faithfulness to the con-
cepts, and that the history of mathematics is always incomplete, always in 
need of reconstruction, always at the mercy of future mathematical 
advances.  
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THE FOUNDING ACTS AND MAIN CONTOURS  
OF ARABIC MATHEMATICS  

 
 
 
The classical mathematics is neither homogeneous nor seamless. Some 

of its chapters go back as far as Greek mathematics; consider, for example, 
plane geometry, the geometry of conic sections, and spherical geometry. 
Other chapters are rooted in Arabic mathematics, as the algebraic disci-
plines and the study of geometrical transformations testify. Yet others 
develop in 17th century Europe, such as the infinitesimal calculus. Never-
theless, one can safely say that the distinctive characteristic of classical 
mathematics is that it is ‘algebraic and analytic’. 

The problem is to determine as exactly as possible when and how this 
distinctive trait revealed itself, that is, when this algebraic-analytic ration-
ality was born and how it developed. Several founding acts were necessary 
for the emergence and constitution of this new rationality. I limit myself 
here to the founding acts of this rationality that one encounters in Arabic 
mathematics. Some others follow in Italian mathematics (the introduction 
of imaginary numbers), others with Viète and Descartes (the invention of a 
genuine symbolism), others yet in the same era that I call ‘the liberation of 
the infinite’. 

Recent historiography has made it possible to establish, definitively it 
seems, a fact, the reality of which one has always suspected: for at least 
five centuries, it was mainly in the lands of Islam and in Arabic that intense 
and fruitful mathematical research took place. Between the 8th and the 14th 
centuries, this research was carried out by personalities such al-Khwārizmī, 
Thābit ibn Qurra, Ibn al-Haytham, al-Khayyām, etc., but also by dynasties 
of scientists that constituted genuine teams and in the midst of schools of 
thought. Recall the dynasties of the Banū Mūsā, and the Banū Karnīb; the 
Niẓāmiyya of Baghdad, the schools of Marāgha, Samarqand, and many 
others. As one might expect, this high-level research was cumulative, 
diversified, and sometimes revolutionary. It was certainly cumulative: not 
only because it never stopped enriching the heritage of ancient mathemati-
cians, mainly Greek and Hellenistic, with new results in all the domains 
that the latter cultivated; but also because it did not take long to organize 
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itself into traditions to which every new generation continued to add its 
own discoveries to the acquisitions of predecessors. This high-level 
research was also diversified, for it witnessed the birth of many chapters 
unknown to the ancients, the elaboration of which remodelled both the 
organization and the extent of the encyclopedia of the mathematical sci-
ences. Consider, for example, algebra, algebraic geometry, combinatory 
analysis, the whole of Diophantus’s analysis, trigonometry, and many other 
fields. Finally, it was sometimes revolutionary, violating ancient prohibi-
tions and inventing new procedures: treating irrational quantities arith-
metically, changing the criteria of permissible geometric constructions, 
demonstrating geometrically algebraic algorithms as well as those of 
quadratic interpolations, explicitly introducing movement into geometry, 
etc.  

To paint this scientific activity, or at least some of its chapters, is to 
write its history with all requisite precision, to show when it started, what 
were the conditions that made its beginning possible, what was its regime, 
what obstacles appeared on its journey, and when it stopped. This episte-
mological history, which tries to combine the history of concepts with the 
history of texts, is the only one that, in my view, allows us to answer the 
foregoing questions. I would like to pause briefly at the beginnings of this 
research activity, that is, at the ideas and the concepts that founded it before 
examining the renewal of these ideas and of these concepts, that is, the new 
beginning of this same activity.  

My goal is not to rewrite the history of this research movement, but 
rather to try to describe it phenomenologically, as it were, to grasp what 
these beginnings signify, and what their reach was. This attempt will help 
us to situate this mathematical research in relation to both the ancients and 
the moderns, that is, in relation to Archimedes, Apollonius, Menelaus, etc., 
on the one hand, and Descartes, Fermat, Cavalieri, etc., on the other.  

 
1. It has not been emphasized sufficiently that mathematical research in 

Arabic begins in a rather paradoxical way. Even as Euclid’s Elements and 
Ptolemy’s Almagest were being translated, Arabic mathematicians took 
advantage of the situation to consummate their first break with the Hellen-
istic tradition. In other words, even as they were falling in line behind 
Hellenistic mathematics, they were distancing themselves from it. It was al-
Khwārizmī who brought about this first break while he was putting to use 
the translation of the Elements – al-Khwārizmī, whose colleague in the 
Academy of Baghdad, al-Ḥajjāj, was the translator of Euclid and of 
Ptolemy. This event occurred when al-Khwārizmī in the first third of the 9th 
century conceived of a new discipline: algebra. This was a founding act in 
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several respects – by what he assumes, by the nature of the object he 
proposes, by the language that he forges, and by the new mathematical 
possibilities that he generates.1 

Let us not forget that in this first book of algebra al-Khwārizmī wants 
to reach a goal that is precise and clearly formulated as such: to elaborate a 
theory of equations soluble by roots on which one can then rely indiffer-
ently for arithmetic and geometrical problems, a theory that is thus applica-
ble to calculation, to commercial exchanges, to inheritances, to land 
surveying, etc.2 

Contrary to his predecessors and to his mathematical contemporaries in 
all languages who began by setting themselves problems in order to for-
mulate them as equations, al-Khwārizmī starts with equations, the theory 
that allows one to obtain and classify them. As to the problems that can be 
solved with them, they are arithmetic as well as geometrical and infinite in 
number. Thus, in the very first part of his book, al-Khwārizmī first defines 
in his theory the primitive terms which, because of the requirement of res-
olution by roots and because of his know-how in this area, could pertain 
only to equations of the first two degrees. These primitive terms are the 
unknown – the ‘thing’ (al-shay’; later cosa) –, its square, rational positive 
numbers, the laws of elementary arithmetic, and equality. The main 
concepts that he introduces next are the equation of the first degree, the 
equation of the second degree, related binomials and trinomials, the normal 
form, the algorithmic solution and the geometrical proof of the algorithm. 
In each case, al-Khwārizmī seeks to establish on the same geometrical 
basis that the algorithm is justified and that it leads to the result. It is during 
this presentation that he takes care to justify the arithmetic treatment of 
quadratic irrational quantities, and to show geometrically the validity of 
this treatment. This brief reminder shows clearly that the novelty of al-
Khwārizmī’s project is theoretical, not technical. On the technical level, in 
fact, his book does not reach the level of Diophantus’s Arithmetic. The 
theoretical innovation of al-Khwārizmī’s algebra is that he does not draw 
on the notion of equation while he is solving problems, but that it is a 
primitive notion, originating from primitive terms, the combination of 
which must yield all possible equations. 

 
1 By ‘founding act’, I in no way mean symbolic gesture, or the manifestation of 

some kind of subjectivity, but a genuine project whose elements gradually make their 
appearance in the process of its effective realization. 

2 R. Rashed, Al-Khwārizmī: Le commencement de l’algèbre, Paris, Librairie A. 
Blanchard, 2007. English transl. Al-Khwārizmī: The Beginnings of Algebra, History of 
Science and Philosophy in Classical Islam, London, Saqi Books, 2009. 
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But this conceptual break with Babylonian, Greek, Indian, or other tra-
ditions, has even deeper roots that draw on a new mathematical ontology 
and on a new epistemology. The central concept of algebra – the unknown 
or ‘thing’ (cosa) – indeed, does not designate a particular entity, as was the 
case in the traditional ontology, but an object that can be indifferently 
numerical or geometrical. In other words, the object of the new discipline is 
neither the geometrical figure nor the rational numbers; and the properties 
that this discipline is supposed to study are no more those of measure than 
those of position and form. Its object is new and is not defined negatively: 
the mathematical entity finds itself invested with a new meaning, that of an 
entity that is sufficiently general to allow several determinations, geomet-
rical as well as arithmetical. This original indetermination is itself heavily 
laden with logical possibilities, destined to be realized more and more as a 
new means of studying one or the other perspective of the object are dis-
covered. In other words, the algebraic object that al-Khwārizmī conceives, 
cannot be obtained by abstraction from particular entities; nor can one 
reach it by close imitation of a form or an idea. The new ontology is neither 
Aristotelian nor Platonic; it is, so to speak, formal, in all likelihood the first 
ever encountered in the history of mathematics. Its impact first on mathe-
matics and then on philosophy will be considerable, witness the mathema-
tician al-Karajī and the philosopher al-Fārābī, for example. 

It is because algebra is conceived as a science that one can call it an 
epistemic novelty. Although apodictic like every other mathematical sci-
ence, it shares with art the feature of having its goals outside of itself, 
because it also seeks to solve arithmetic and geometrical problems. Thus 
algebra does not fit the Aristotelian-Euclidean schema.  

Finally, this new apodictic discipline is also algorithmic. In itself, the 
algorithm of solution admittedly must be an object of geometrical demons-
tration. Indeed, if one conceives of the solution as a simple decision proce-
dure, the procedure must be justified in a different mathematical language, 
that of geometry. Al-Khwārizmī thus breaks with all preceding and con-
temporary traditions of algorithmic mathematics.  

If such a sui generis conception of mathematical science was possible, 
it was thanks to a formal and combinatory choice that made it possible to 
establish an a priori classification of equations. This choice unfolds along 
the following stages: first, to determine a finite set of discrete elements, the 
number, the unknown (‘thing’, cosa) and the square of the unknown; 
second, from these elements, to rely on a combinatorics to obtain a priori 
all the possible equations; third, thanks to the theory, to isolate from these 
possible equations the cases that correspond to the criteria of the latter. 
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Thus from the eighteen equations he obtains, al-Khwārizmī selects the six 
canonical ones, thereby avoiding redundancy and repetition. 

This a priori classification of possible equations, which, along with the 
other characteristics we have just enumerated, presents the configuration of 
this beginning of algebra and characterizes a domain of classical mathe-
matics that will continue to grow. Thus did algebra begin, thanks to a break 
with the style of Hellenistic mathematics and of the other mathematics 
known at the time.  

But one recognizes a genuine incipient from, on the one hand, the 
conceptual and textual tradition that it inaugurates; on the other, the new 
ruptures that it in turn provokes. In the flesh, the tradition appears in the 
names of the mathematicians and the titles of their works. The successors 
of al-Khwārizmī soon multiplied: they set out first to extend algebraic cal-
culation much farther than the latter had done; second, to integrate Dio-
phantine rational analysis into algebra; and, finally, to formulate the proofs 
of algorithms more rigorously, in the language of Euclidean geometry. 
Let’s mention, among other mathematicians linked to these tasks, the 
names of Ibn Turk, Thābit ibn Qurra, Sinān ibn al-Fatḥ, and especially Abū 
Kāmil. To the latter we are indebted for the first treatise of algebra con-
taining a chapter devoted to rational Diophantine analysis. This book is 
also known for its translations into Latin and Hebrew translation, and for 
Fibonacci’s borrowings from it.  

As to the other breaks (alternatively, the other ‘new beginnings’) pro-
voked by this new conception of a mathematical science, embryonic forms 
of them exist in the new possibilities that the founding ideas and acts con-
tain. With the algebra of al-Khwārizmī, it indeed became possible to apply 
one discipline to another: arithmetic to algebra, algebra to arithmetic, 
geometry to algebra, algebra to geometry, and algebra to trigonometry… 
Every one of these applications resulted in the creation of new chapters in 
mathematics and, with the same stroke, redrew the map of the mathemati-
cal continent.  

Thus the application of arithmetic to algebra made it possible to con-
ceive the algebra of polynomials in the ancient sense, that is, the algebra of 

the elements of the ring Q[x,
1

x
]. We named this ‘new beginning’ of algebra 

for the act that made its realization possible, that is, the ‘arithmetization’ of 
algebra undertaken by al-Karajī (end of the 10th century) and his succes-
sors, such as al-Samawʾal ibn Yaḥyā. This arithmetization led to an un-
precedented development of abstract algebraic calculation, extended to 
irrational quantities, the species of which multiplied to infinity. Combina-
torial analysis figures among the other means forged to this end. It is pre-
cisely according to this model of polynomial calculation that decimal 
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calculation was reinterpreted and decimal fractions were invented. The 
difficulty that still persisted for al-Karajī was to apply Euclid’s divisibility 
algorithm to polynomials. But the only invertible elements of the ring 

Q[x,
1

x
] are the monomials. Al-Karajī thus divided a polynomial by a 

monomial, not a polynomial. It was to overcome this obstacle that his 12th 
century successor, al-Samawʾal, conceived the idea of continuous division 
and thus by approximation (limited development). 

In this algebra, research on rational Diophantine analysis delved deeper 
yet by introducing a new classification according to forms (linear, quad-
ratic, cubic).  

It is also in relation to this algebra, but against it as well, that mathe-
maticians such as al-Khujandī, al-Khāzin, Abū al-Jūd, al-Sijzī, etc., con-
ceived and developed complete Diophantine analysis. They often started 
with the study of numerical right triangles, before setting themselves many 
other problems, notably the theorem of Fermat for n = 3, 4. This choice of 
numerical right triangles and of similar problems can be explained both by 
the limitation of domain of the solution to integers and especially by the 
new requirements that these mathematicians imposed: to demonstrate in the 
Euclidean style and to justify in Euclidean terms the algorithms of solution 
of Diophantine equations. At the same time, one notices an important 
inflection in this domain: from now on, one searches for purely arithmetic 
proofs, notably by using congruences.  

The application of algebra to number theory made it possible not only 
to renew the proofs in domains that had already been cultivated, such as the 
theory of amicable numbers (Kamāl al-Dīn al-Fārisī), but also to conquer 
new domains: the study of elementary arithmetical functions, the sum and 
number of divisors. 

It was also in relation to algebra and, more specifically, to the devel-
opment of abstract algebraic calculation that they established a discipline 
that Hellenistic mathematics had never conceived: combinatorial analysis. 
It is precisely for the sake of algebraic calculation that al-Karajī established 
the binomial formula and Pascal’s triangle. The explicitly combinatorial 
interpretation is found among many mathematicians, particularly Naṣīr al-
Dīn al-Ṭūsī. Applied to diverse branches of linguistics, number theory or 
proportion theory, as well as philosophy, this combinatorial analysis was 
explicitly based on two ideas that, for most domains, characterized the 
thought forms of the era: to classify a priori all possible forms or all the 
elements of a finite set of discrete possibilities. Scholars were taking the 
same steps in domains as diverse as lexicography, prosody, cryptanalysis, 
mathematics, etc.  
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Even as the arithmetization of algebra was being pursued, however, the 
foundations of another program were being laid: the geometrization of that 
very same algebra. Two acts presided over the elaboration of this new pro-
gram. The first, carried out by several mathematicians of the 10th century 
beginning with al-Māhānī, consisted in translating problems of solid geom-
etry into cubic equations. The second was repeated several times during the 
10th century: to solve the cubic equation by means of the intersection of 
several conic curves (al-Qūhī, Abū al-Jūd, etc.). This last act is moreover 
the echo of a doubly negative predicament: they could not succeed in 
solving the cubic equation by means of roots and in addition they did not 
have the means of justifying the algorithm used for the solution of certain 
forms of cubic equation and of biquadratic equation, since these solutions 
are not constructible with a straight edge and compass. One thus witnesses 
several advances, all headed in the same direction. The first is that of al-
Qūhī who, for the cubics, conceives a theory equivalent to the application 
of areas for plane equations. As for al-Khayyām, he elaborates the first 
geometrical theory of cubic equations from a classification of all possible 
forms, which imposes the absence of equalization to zero. Next, he devel-
ops a classification as a function of the curves that are involved in the solu-
tion of equations. Finally Sharaf al-Dīn al-Ṭūsī, scarcely half a century 
after al-Khayyām, gives an analytical inflection to the theory, on account of 
the new requirement of demonstrating the existence of positive roots. These 
last two figures bring us face to face with the first research into elementary 
algebraic geometry.  
 

2. Scarcely three decades after al-Khwārizmī, the mathematicians of 
Baghdad threw themselves into other conquests, this time armed with a 
broader knowledge of the Greek heritage. Indeed, the research they had 
undertaken had breathed life into an entire translation movement devoted to 
many Greek books, for example, the Conics of Apollonius, On the Cutting-
off of a Ratio (by the same author), The Measurement of the Circle and On 
the Sphere and the Cylinder by Archimedes, Book 8 of Pappus’s 
Collection, and the Spherics of Theodosius and of Menelaus. Beginning in 
the 9th century, one can identify three interrelated research traditions: 
infinitesimal geometry, the geometry of conic sections, and spherical 
geometry. It remains to be seen which new founding acts distinguished 
each of these traditions and led the heirs of Hellenistic mathematics to 
develop these chapters. As I see it, two expressions suffice to designate 
these acts: first, point-wise transformations; second, continuous movement. 
Let us examine them in that order.  
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In the works of Archimedes and Apollonius, the use of point-wise 
transformations crops up in some proofs. In On Conoids and Spheroids, 
Archimedes draws on an orthogonal affinity. Apollonius apparently uses 
several transformations, notably in Plane Loci. That said, Archimedes’ 
book was never translated into Arabic; as to that of Apollonius, we know 
only what Pappus says about it. Neither Apollonius’s book nor the remarks 
of Pappus reached the Baghdad mathematicians. The only exception is 
Book VI of the Conics, in which Apollonius follows a proto-
transformational procedure, insofar as he tries to determine the conditions 
under which two conic sections are superimposable – that is, homothetic or 
similar – by means of symptomata (properties characteristic of each of the 
three conic sections) without, however, taking an interest in the very nature 
of these point-wise transformations. We therefore have every reason to 
believe that point-wise transformations as such were not part of the heritage 
received through translation. This historical fact is confirmed in the math-
ematicians’ conception of point-wise transformations: among the moderns, 
they are not merely used in demonstrations but also surface more and more 
as elements in the concept of the geometrical object. As one gradually 
advances from the mid-9th century, one no longer studies only the figures, 
but also their transformations and the relations that unite them. This is pre-
cisely what one begins to notice among the three Banū Mūsā brothers, their 
student and collaborator Thābit ibn Qurra, the astronomer-mathematician 
al-Farghānī (in his book al-Kāmil), and many others. Their successors 
devoted themselves so heavily to this domain that, by the end of the 10th 
century, al-Sijzī borrows from Thābit ibn Qurra a generic term (al-naql) to 
name the object ‘point-wise transformation’. Several decades later, in order 
to provide a foundation for this object, Ibn al-Haytham invents an entirely 
new geometrical discipline devoted mainly to studying the invariable ele-
ments of a figure when all the others change; he calls this discipline ‘the 
knowns’. 

Precisely this is the second founding act of Arabic mathematics: the 
introduction of point-wise transformations both into the concept of the 
geometrical object and into demonstration. Contrary to the act that founded 
algebra, this one is the achievement not of one individual, but of several 
simultaneously in different chapters: infinitesimal geometry and ‘the sci-
ence of projection’, as the ancient mathematicians and biobibliographers 
called it. Notably traceable to the Banū Mūsā, especially the youngest of 
the three brothers, al-Ḥasan, their student Thābit ibn Qurra, and the 
astronomer-mathematician al-Farghānī, this act was continuously extended, 
affirmed, and deepened in the following centuries, as one sees in the 9th 
century with al-Bīrūnī and Ibn al-Haytham. But it is impossible to under-
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stand anything about the way it sprang up without bearing in mind the 
geometry of conic sections, beginning with the translation of Apollonius’s 
Conics.  

Let us turn first to al-Farghānī and to the ‘science of projection’. 
One of the first disciplines born from this founding act is the ‘science 

of projection’ (ʿilm al-tasṭīḥ), which first appears around the mid-9th cen-
tury. Nothing surprising here: in this century astronomy flourished as it had 
not done since the second century. The astronomers did not restrict them-
selves to translating Greek works and a few Sanskrit texts, but they exam-
ined critically the theories and the calculations that they found in them. 
Specifically with this flowering of research in astronomy, the chapter about 
projections will separate itself from astronomy proper to become a chapter 
of geometry, even if its main area of application remains astronomy or, 
more precisely, astronomical instruments. Al-Farghānī played an essential 
role in this shift: he demanded that the procedures that astronomers used 
for the precise representation of the sphere be established on solid geomet-
rical foundations. As far as we know, he was the first to require such a con-
dition. These procedures enter into both the drawing of geographical maps 
and the construction of such astronomical instruments as the astrolabe.  

To establish these procedures on solid geometrical foundations is to try 
to make apodictic the knowledge of the domains that are in play. Every-
thing points to the following fact: if al-Farghānī was able to raise this ques-
tion and to conceive of such a project, it is because of his very recent 
knowledge of Apollonius’s Conics. Although Apollonius himself does not 
treat projections in this treatise, nevertheless in Conics, Book I, Proposi-
tions 4 and 5, he answers a specific question – about the nature of the inter-
section of the conic surface with a plane. It is with the help of these 
propositions that al-Farghānī proves the following: 

 
Given a circle of diameter AG, the 

tangent to the circle at G, and any chord 
BC. The projections from pole A of points 
B and C on the tangent are I and K 
respectively. 

Now AĜB = AĈB  (they are inscribed 
angles) and AĜB = AK̂G  (they have the 
same complement BÂG ); therefore 

(1) AĈB = AK̂G    
and 

(2) CB̂A = KÎA . 

A

B

C

G I K

 
Fig. 9 
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Stated in a different language, one can interpret these results as fol-
lows: given GB and CG, the heights of triangles GAK and GAI, respec-
tively, one has AG2 = AB · AK = AC · AI; therefore, in the inversion τ of 
pole A and of the power AG2, one has 

 
I = τ (C) and K = τ (B). 

 
And, according to (1) and (2), points B, C, I, K belong to a circle that is 

invariant under the inversion τ.  
Although al-Farghānī did not formulate the concept of inversion, he 

nevertheless recognized the transformation of a circle into a straight line 
and saw that the extremities of the chord and of the segment are on a circle 
that remains invariant under this transformation. 

This lemma in fact amounts to the following: the conic projection from 
pole A of a chord onto the tangent to the diametrically opposed point is a 
segment of the tangent such that the extremities of the chord and of the 
segment are on a circle invariant under the inversion τ with the same pole 
A, which transforms the given circle into the tangent line. By means of this 
lemma, al-Farghānī establishes that the projection of a sphere with point A 
as a pole onto a plane tangent to the point diametrically opposed to it, or on 
a plane parallel to that plane, is a stereographic projection.  

We cannot trace here the history of this chapter beyond al-Farghānī to 
Ibn ʿIrāq and al-Bīrūnī. Nevertheless, in order to appreciate how far al-
Farghānī had advanced, let us simply recall a few themes studied by al-
Qūhī and Ibn Sahl during the second half of the 10th century. These two 
mathematicians studied the conical projection from a point on the axis or 
off the axis of the sphere, and the cylindrical projection of a direction par-
allel or nonparallel to the axis of the sphere. They obtained many important 
new results, which were formerly attributed to later mathematicians. What 
is more, in this chapter, mathematicians such as al-Qūhī, Ibn Sahl, Ibn 
ʿIrāq, etc., invented new procedures of demonstration and hammered out a 
new language. Take, for example, al-Qūhī when he proves the following 
property: with every circle traced on the sphere and whose plane does not 
contain the pole, the stereographic projection associates a circle in the 
plane of projection, and inversely. To do so, he uses Conics, Proposition 
I.5, in which Apollonius studies the section by a plane of a cone with a 
circular base, for the case in which the plane of the base and the secant 
plane are anti-parallel. Al-Qūhī resorts to the technique of rabatment in 
order to make constructions in plane geometry possible. Thus the proofs 
are composed of comparisons of ratios, of proportions, and of rabatment; in 
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other words, of techniques that are traditional as well as non-traditional, 
that is, projective.  

As to the language, it is mixed: the vocabulary of proportion theory 
mingles with terms that henceforth designate projective concepts.  

The 10th century thus already had access to the beginning of a new 
chapter in geometry, one destined to be enriched by successive generations 
for whom Ptolemy’s Planisphere would at best be nothing more than a 
very distant ancestor. 

 
3. Another chapter that testifies to developments in the use of point-

wise transformations concerns the drawing of conic curves. It is likely that 
this problem is as ancient as the geometrical study of sundials and burning 
mirrors. Yet we know for sure that research on the drawing of conical 
curves was renewed by several occurrences: the reactivation of research in 
astronomy, on the one hand, and on burning mirrors and eventually lenses, 
on the other; and finally, beginning in the 9th century, the theory of cubic 
equations. Never before the 9th century had the search for effective proce-
dures for tracing these curves been so intense, manifold, and continuous. 
Beginning in the 10th century, entire chapters and even treatises were 
devoted to this question, which was at the time thematicized. Many famous 
mathematicians took an interest in it, such as Ibrāhīm ibn Sinān, al-Khāzin, 
al-Qūhī, Ibn Sahl, al-Sijzī, al-Bīrūnī, etc. Methods of tracing by means of 
points were proposed, then methods of continuous tracing for which one 
invents mechanical instruments, such as the famous perfect compass, or 
other optical procedures. Whether theoretical or technical, all of these 
methods rest on one or the other affine point-wise transformation, and 
sometimes even on a projective transformation, as is the case in Ibn Sinān. 

This research brought to the fore a question that, to date, had never 
been formulated: can one obtain conical curves starting from the circle, that 
is, with a transformation of the circle, and thus trace these curves by using 
that transformation? This question, which is already implicit in the writings 
of Ibn Sinān and Abū al-Wafāʾ al-Būzjānī, is formulated explicitly by the 
mathematician al-Sijzī in the second half of the 10th century. 

Here too, everything begins with the youngest of the Banū Mūsā, al-
Ḥasan, and his student Thābit ibn Qurra. Before he had access to a 
translation of Apollonius’s Conics al-Ḥasan had studied the ellipse and its 
properties as the plane section of a cylinder, as well as the different 
varieties of elliptical sections. Contrary to Apollonius, he proceeds by 
means of the bifocal method and designates the ellipse with the significant 
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expression ‘the elongated circular figure’.3 He then shows that this figure 
can be obtained from a circle by means of an orthogonal affinity, which is a 
contraction (or a dilation, as the case may be) according as the ratio of the 
major axis to the minor axis is less than 1 (or greater than 1, as the case 
may be). His student Thābit ibn Qurra, for his part, starts with a profound 
knowledge of Apollonius’s Conics. He begins by demonstrating the 
following proposition: the plane sections of two cylinders with a circular 
base that have the same axis and the same height are homothetic, the center 
of the homothesis being their common center situated on the axis and the 
homothetic ratio being the ratio of the diameters of the base circles.4 Next, 
Thābit demonstrates the proposition that al-Ḥasan had established. By 
using points, one can therefore rigorously trace the ellipse starting from the 
circle. But what about the parabola or the hyperbola? The grandson of 
Thābit ibn Qurra, Ibrāhīm ibn Sinān, soon raises the question and traces 
any point of the parabolic section by means of a circle. As to the hyperbola, 
Ibrāhīm ibn Sinān traces it by means of a circle and of a projective 
transformation aimed at transforming the circle into a hyperbola whose 
latus rectum is equal to the transverse diameter.  

If Ibrāhīm ibn Sinān raises in general the problem of drawing conics by 
means of points starting from the circle, this is neither contingent nor cir-
cumstantial. The title of his book alone is a program: On Drawing the 
Three Conic Sections. Moreover, in order to succeed in conceiving this 
project and in formulating the question, it was necessary to be interested 
much more than before in the study of geometrical transformations. One 
need only examine such works by Ibn Sinān as The Sundials, or The 
Anthology of Problems, in order to note his frequent usage of transfor-
mations.5 This interest only grew after Ibn Sinān. In the second half of the 
century, al-Sijzī wrote a treatise with a title that reflects his intention 

 
3 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: 

Fondateurs et commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-
Qūhī, Ibn al-Samḥ, Ibn Hūd, London, al-Furqān, 1996, Chap. I; English transl. 
Founding Figures and Commentators in Arabic Mathematics. A History of Arabic 
Sciences and Mathematics, vol. 1, Culture and Civilization in the Middle East, London, 
Centre for Arab Unity Studies, Routledge, 2012, Chap. I, p. 8. 

4 Ibid., Chap. II. 
5 See the edition, translation and commentary on these treatises in R. Rashed and 

H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe siècle, Leiden, E.J. Brill, 
2000. 
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perfectly: in All Figures are from the Circle,6 he explicitly takes up and in 
effect generalizes the book of his predecessor.  

During the 10th century, however, tracing these curves by means of 
points was no longer satisfactory, notably because of the construction of 
geometrical problems on the one hand, and the solution of cubic equations 
by means of the intersection of conic curves on the other. Thereafter, it was 
necessary to be convinced of the continuity of curves in order to discuss the 
existence of points of intersection. Added to these theoretical reasons for 
dissatisfaction were technical ones: the construction of patterns for para-
bolic and elliptical burning mirrors, plano-convex and biconvex lenses, as 
well as the construction of astrolabes and sundials. Two contemporaries, 
Ibn Sahl and al-Qūhī, invented instruments to make a continuous drawing, 
and an entire tradition of mathematicians focused on the geometrical study 
of these instruments, and of the continuous drawing of curves. Al-Sijzī 
belonged to it and wrote a treatise on the perfect compass.7 Everything was 
in place for the conception of the first treatise devoted entirely to methods 
of drawing by means of points and of continuous drawing of conic curves; 
such is the focus of al-Sijzī’s book on The Description of Conic Sections.8  

But to allow procedures for continuous drawing is to allow the notion 
of movement in geometry. Moreover, since point-wise transformations are 
now involved in demonstrations, transformations and continuous move-
ments therefore become the foundation for a new chapter in the geometry 
of the conic sections. Mathematicians like Kamāl al-Dīn ibn Yūnus (1156–
1248) and such students of his as Athīr al-Dīn al-Abharī (d. 1265) will 
continue to enrich this endeavour until the second half of the 13th century).9 
 

4. Point-wise transformations, or a continuous movement associated 
with point-wise transformations, characterized the founding acts of the new 
chapters as well as the renewal of the ancient chapters of geometry, begin-
ning in the mid-9th century. This is what we just saw with the ‘science of 
projection’ and ‘drawing conic curves’. Three other chapters also illustrate 
this: that devoted to geometrical constructions; the one on the theory of 
parallels; and finally the chapter that treats infinitesimal geometry. 

 
6 Edition, translation and commentary in R. Rashed, Œuvre mathématique d’al-

Sijzī, vol. I: Géométrie des coniques et théorie des nombres au Xe siècle, Les Cahiers du 
Mideo, 3, Louvain-Paris, Éditions Peeters, 2004.  

7 See R. Rashed, Geometry and Dioptrics in Classical Islam, London, al-Furqān, 
2005, Chap. V. 

8 Edition, translation and commentary in R. Rashed, Œuvre mathématique d’al-
Sijzī.  

9 See R. Rashed, Geometry and Dioptrics in Classical Islam, Chap. V. 
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Especially after the translations of Diocles’s Burning Mirrors,10 
Eutocius’s Commentary, and Archimedes’ Sphere and Cylinder, the math-
ematicians of this era inherited the construction of several solid problems: 
the two means, the trisection of the angle, Archimedes’ division of the line 
(Sphere and Cylinder, II.4). To these problems, they added many others, 
and they multiplied the constructions in particular. We know for example 
that many mathematicians took up the trisection of the angle and the cons-
truction of the regular heptagon. Unlike the ancients, however, they did not 
hesitate to modify the very criterion of the admissibility of construction for 
a solid problem. As a construction procedure, transcendental curves were 
banished, retaining only conic curves. The latter construction became 
admissible on the same terms as the use of the straight edge and compass 
for plane problems. It is important to emphasize that, if this new criterion 
was introduced, it was in answer to the practice of the algebraists who were 
beginning to translate solid problems into cubic equations, as attested in the 
works of al-Māhānī at the end of the 9th century. And it was precisely this 
new criterion that made it possible to gather into one chapter the dispersed 
studies of particular examples. But these studies drew on transformations 
and notably on similarity. Consider for example the problem of the regular 
heptagon. One begins by constructing the triangles, the ratio of whose 
angles are of one type or the other: (1, 2, 4), (1, 5, 1), (1, 3, 3), (2, 3, 2), 
before transforming it in order to inscribe it in the circle.11 In short it was 
thanks to conic sections and to transformations that this new chapter 
became constituted as such. 

Applications of the theory of conic section by geometers and algebra-
ists led to several developments at the heart of this very theory. The 10th 
century mathematicians thus examined more closely the properties of the 
harmonic division of the conics. Ibn Sahl even wrote a treatise on this 
topic. His younger contemporary, al-Sijzī, studied a new theme: plane sec-
tions and the classification of them. No one went beyond them before 
Fermat and his successors in the 17th century. No less important were the 
contributions of the mathematicians of the 11th century: Ibn al-Haytham in 

 
10 Les Catoptriciens grecs. I: Les miroirs ardents, edition, translation and com-

mentary by R. Rashed, Collection des Universités de France, Paris, Les Belles Lettres, 
2000. 

11 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn 
al-Haytham. Théorie des coniques, constructions géométriques et géométrie pratique, 
London, al-Furqān, 2000; English translation: Ibn al-Haytham’s Theory of Conics, 
Geometrical Constructions and Practical Geometry. A History of Arabic Sciences and 
Mathematics, vol. 3, Culture and Civilization in the Middle East, London, Centre for 
Arab Unity Studies, Routledge, 2013.  
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Egypt and ʿAbd al-Raḥmān ibn Sayyid in Andalusia. Both men were 
concerned with the generalization of the following classic problem: given 
two quantities, find two other quantities such that the four are in continuous 
proportion. This problem translates into a cubic equation that the algebra-
ists solved with the intersection of two conic curves. According to al-
Khayyām, Ibn al-Haytham generalized this problem for four quantities 
between two given quantities, which leads to a fifth degree equation solved 
by the intersection of a conic and a cubic. Everything thus indicates that 
Ibn al-Haytham had in hand a method analogous to that of Fermat in his 
Dissertatio tripartita. But the true generalization is that of ʿAbd al-Raḥmān 
ibn Sayyid, who, according to Ibn Bājja, wrote a work on the theory of 
conics in which he studied the intersection of a nonplane surface with a 
conic surface, that is, the general case of skew curves. Ibn Bājja recalls that 
Ibn Sayyid thus resolved the problem of two mean proportions ‘for as 
many straight lines as one wishes between two straight lines, in continuous 
proportion, and in this way he divided the angle according to any given 
proportion’. Let us not forget that one will have to wait for Jacques 
Bernouilli to raise this problem a second time. To these developments, one 
must add the study of the optical properties of conic sections, which al-
Kindī took up and which Ibn Sahl and Ibn al-Haytham generalized. 

Without a doubt, the theory of parallels is one of the fundamental 
chapters of the geometry of this era. The mathematicians who devoted 
themselves to it include Thābit ibn Qurra, al-Khāzin, Ibn al-Haytham, al-
Khayyām, Naṣīr al-Dīn al-Ṭūsī, among others. In two successive treatises 
that became the foundation for later research, Thābit ibn Qurra intention-
ally introduced the concept of continuous movement in order to define that 
of equidistance between parallels.12 

Finally, transformations were used heavily in a vast domain that one 
can call ‘infinitesimal geometry’, or ‘infinitesimal algebra’. It includes the 
measure of areas of curved surfaces and of the volumes of curved solids; 
isoperimetric and isoepiphanic problems; the solid angle; the study of 
variations of functional expressions such as trigonometric functions. 

Let us pause at the most traditional example on this list, that of the 
measure of areas and of volumes. Since research in this domain ended after 
Archimedes, not until al-Kindī and the Banū Mūsā in the 9th century does 
one witness the beginning of a return to it, probably the effect of a unique 
first meeting between the traditions of Archimedes and of Apollonius. This 
meeting occurred not in a vacuum, but in a milieu informed by the algebra 
of al-Khwārizmī and his successors. The Banū Mūsā and their student 

 
12 See below, ‘Thābit ibn Qurra on Euclid’s Fifth Postulate’. 
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Thābit ibn Qurra, who had been the first to arrange the meeting of these 
two traditions, stimulated research along two roads that would continue to 
branch and advance: on the one hand, a much more substantial and system-
atic arithmetization than had occurred before; on the other, a more deliber-
ate and more frequent use of point-wise transformations. To illustrate these 
perspectives quickly, recall that, in order to determine the area of a portion 
of a parabola, Thābit ibn Qurra begins by presenting twenty-one lemmas, 
eleven of which are arithmetic. These arithmetical lemmas pertained to the 
summation of many arithmetical progressions. Next, by using the arithme-
tic lemmas, he proves four lemmas on the sequencing of segments, on 
which he draws to study the requisite majoration. Starting from these lem-
mas, Thābit ibn Qurra took up to calculate the area of a parabolic portion. 

He would follow this arithmetically based procedure when calculating 
the volume of the paraboloid of revolution. Later, Ibn al-Haytham would 
use it to determine the volume of the parabaloid generated by the rotation 
of a parabola about its ordinate.13 He too begins with arithmetic lemmas in 
which he calculates the sum of the progressions of integer powers, that is 

the sums ki

k =1

n

∑  for i = 1, 2, 3, 4; and he reaches a general rule thanks to a 

slightly archaic complete induction. He goes on to prove the following 
double inequality.  
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But al-Ḥasan ibn Mūsā and Thābit ibn Qurra draw on transformations 

in the demonstration of other areas of different species of plane sections of 
a right cylinder and an oblique cylinder, the area of an ellipse and the area 
of elliptical segments.  

In this undertaking, the mathematicians draw mainly upon orthogonal 
affinities, homothesis, and the composition of these transformations; and 
they show that this composition preserves the areas.  

This approach based on point-wise transformations will be followed by 
the successors of the Banū Mūsā and of Thābit ibn Qurra, who will try to 
reduce the number of lemmas. Thus Ibrāhīm ibn Sinān (909–946) in a brief 
treatise takes up the measure of a parabola.14 Ibn Sinān’s central idea, 

 
13 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-Haytham, 

London, al-Furqān, 1993; English translation: Ibn al-Haytham and Analytical Mathema-
tics. A History of Arabic Sciences and Mathematics, vol. 2, Culture and Civilization in 
the Middle East, London, Centre for Arab Unity Studies, Routledge, 2012. 

14 See edition, translation and commentary in Les Mathématiques infinitésimales, 
vol. I. 
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which he insisted on proving first, is the following: the affine transfor-
mation leaves the proportionality of the areas invariant. He then needs only 
two lemmas of a single proposition to complete his study.15  

 
From the middle of the 9th century and throughout the 10th century, 

point-wise transformations and continuous movement were among the 
main foundational elements of the various chapters of geometry. Failing to 
study these developments will ensure that one will understand nothing 
about the constitutive acts of these chapters and about the development of 
geometry in this era. The presence and ever-more-frequent intervention of 
these concepts could not help but force new questions on mathematicians 
and face them with new tasks. How ought one legitimate the role of the one 
or the other? How could one allow the notion of movement in both state-
ments and demonstrations when such a notion had never been defined? 
These two related questions raised a third of equal importance: If hence-
forth one focuses on the relations among figures, their transformations and 
their movements, is it not necessary to rethink the concepts of place and 
space? It is indeed impossible to leave aside this question of place; and it is 
equally impossible to retain the Aristotelian topos of place-envelope. These 
questions first emerge at the end of the 10th century, as some works of 
al-Sijzī attest, later becoming sources of reflection and intervention in Ibn 
al-Haytham. Let us pause very briefly to consider only the question of 
continuous movement.  

 
To banish de jure the consideration of movement of the elements of 

geometry: such was the attitude of the Platonic geometers, dictated by the 
Theory of Forms. It was also the attitude of Aristotelian geometers on 
account of their doctrine of abstraction. But might it not be that the real 
reason for this attitude was less their ontological commitments than their 
very modest need for the notion of movement in a geometry that focused 
essentially on the study of figures? Even when this need is felt ever so 
slightly, it is not rare to find that, although avoided de jure, movement is 
slipped back in surreptiously or unintentionally. Is this not in fact Euclid’s 
position in the Elements? He avoids movement, but introduces it in 
disguise when he resorts to superposition. Indeed the latter cannot occur 
without a displacement, even if the latter is the effect of an intellectual 
vision. We know moreover that, when he defines the sphere, Euclid opens 
the door to movement in spite of himself, as it were. Nevertheless, the 
injunction against movement remained in force for a long time. Recall that 

 
15 See below, ‘The Archimedeans and problems with infinitesimals’, pp. 500 ff.  
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al-Khayyām criticized Ibn al-Haytham’s use of movement when the latter 
attempted to prove the fifth postulate.16 

It is another matter altogether to resort to movement de facto without 
worrying about the legitimacy of using it. To keep silent about the issue of 
legitimacy is not to contradict the preceding opinion: hence the success of 
this practical – if not pragmatic – use of movement and of transformations 
by both the ancient geometers and those of the 9th and 10th centuries. In any 
event, this is the dominant position among the ancient geometers who 
focused on curves, whether transcendental or algebraic. Later, this position 
will also be that of Archimedes in On Conoids and Spheroids as well as On 
Spirals; that of Apollonius in the Conics, etc. This usage became even 
more intense during the 9th and 10th centuries. 

It is, however, something else again to introduce movement into the 
primitive terms of geometry, a step that betrays a positive attitude towards 
movement and its role in definitions and demonstrations. But such an 
approach demands that one rearrange the concepts of geometry (at least 
some of them), that one rethink them in terms of movement, and that one 
forge anew the concept of geometrical ‘place’. Now, a reworking of this 
sort evidently requires new foundations, another discipline, and a different 
method. To my knowledge, Ibn al-Haytham was the first to have attempted 
such a reworking by conceiving of a discipline of ‘knowns’, by elaborating 
an ars analytica (analytical art), and by reformulating the notion of 
‘geometrical place’.17 To encounter similar attempts after him, one must 
wait until the second half of the 17th century, and especially the analysis 
situs of Leibniz.  

 
Other foundational acts take place in other geometrical disciplines: the 

combination of spherical geometry and of trigonometry to get rid of the 
theorem of Menelaus, for example. Yet others occur even later: the inven-
tion of symbolism by Descartes, the introduction of imaginary numbers, 
exact representation. It is also the case for many other branches of mathe-
matics: decimal arithmetic, the study of the classification of mathematical 
propositions (Ibn Sinān, al-Samawʾal), the theme of analysis and synthesis, 
and more generally the philosophy of mathematics. In a word, in all of 

 
16 R. Rashed and B. Vahabzadeh, Al-Khayyām mathématicien, Paris, Librairie 

A. Blanchard, 1999; English translation: Omar Khayyam. The Mathematician, Persian 
Heritage Series no. 40, New York, Bibliotheca Persica Press, 2000. 

17 See R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV: 
Méthodes géométriques, transformations ponctuelles et philosophie des mathématiques, 
London, al-Furqān, 2002. 
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these chapters one can detect the main founding acts of classical mathe-
matics. For other founding acts to take place, one must wait for the Italian 
algebraic school of the 16th century, the Géométrie of Descartes, the 
Diophantine analysis of Fermat, as well as the infinitesimal geometry of the 
17th century. The latter, along with those identified above, mark the 
beginnings of modern mathematics and thus participate in the genesis of 
the new rationality.  
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ALGEBRA AND ITS UNIFYING ROLE 
 
 
 

The second half of the 7th century witnessed the constitution of the 
Islamic empire; the 8th century, its institutional and cultural consolidation. 
Throughout this century, many disciplines emerged that were directly tied 
to the new society and its ideology, with numerous attempts to found and to 
develop hermeneutic, Quranic, linguistic, juridical, historical, and theol-
ogical disciplines. To gauge the breadth of this unprecedented intellectual 
movement, one need only think of the schools of Kūfā and Baṣra during the 
second half of the 8th century. One cannot overemphasize the importance of 
the research that developed at that time in these disciplines. It made pos-
sible the creation of the means necessary for the acquisition of other 
sciences, notably for the reception and the integration of the mathematical 
sciences and of the philosophical disciplines, for example. It also created 
the demand for them and molded their context. This same research, which 
was pursued, was amplified, and branched out in the 9th century, led to two 
fundamental epistemic results: a new classification of the sciences and a 
new conception of the encyclopedia of knowledge. Each of these, evid-
enced first in the domain of scientific research itself, would also be 
reflected in the awareness that the philosophers had of them. To appreciate 
this fact, one need only read carefully al-Fārābī’s Enumeration of the 
Sciences, for example. Algebra, which was constituted at the beginning of 
the 9th century, played a leading role both in this new classification and in 
the conception of the new encyclopedia. But the event of algebra’s birth 
itself around 820 cannot be understood without the light provided by the 
intellectual context of the 8th century, and without the demand induced by 
research into the disciplines mentioned above: indeed it was this research 
that gave algebra its domains of application, and effectively its social justi-
fication, as it were.  

To recount this 8th-century intellectual – some might say epistem-
ological – context would require a thick book and, to avoid being arbitrary, 
a wide range of competences. For now, let us do no more than note a few 
characteristics derived from only two examples. We borrow the first from 
the founder of Arabic prosody and lexicography, al-Khalīl ibn Aḥmad, and 
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his successors. Ibn Aḥmad elaborated the elements of combinatory analysis 
necessary to found prosody and to establish the first Arabic dictionary. His 
method consists in elaborating a priori all possible combinations. Thus, in 
lexicography, the part that is phonetically realised in accordance with the 
rules of phonology he elaborated constitutes the real language. But this 
approach, which we have treated elsewhere,1 was itself possible only 
thanks to a positive, theologically neutral, conception of language and a 
new conception of the linguistic object. The body of the language includes 
both the ‘divine language’ (the Quran), and the language of the ‘pagans’, 
which the Arabs spoke before Islam, and which we know thanks to poetry 
and to ethnolinguistic study, which were both thriving at the time. Even 
more importantly, however, the new linguistic object is a combination of 
phonemes independent of all phonetic material. Resulting from this formal 
association are possible words – that is, words with neither phonetic nor 
semantic value. 

Thus, in this discipline, as in prosody and other activities of the time, 
the arrangements and combinations of elements devoid of signification 
produced certain knowledge by themselves. In the intellectual context of 
the 8th century, then, such a concept of the object of knowledge was admis-
sible, and the algebraists adapted themselves perfectly to it. After all, al-
Khalīl himself was a mathematician and wrote a book on computation, 
which has not survived. But the approach of al-Khalīl reflects yet another 
characteristic of the intellectual landscape of his day: there are no air-tight 
boundaries between science and art, not only in the respective practice of 
each, but especially from the theoretical point of view. A particular science 
– e.g., lexicography – has an end beyond itself, which does not prevent it 
from being apodictic. It clearly aims to rationalize a practice without, 
however, ceasing to be a theory. In turn, an art can be conceptualized as the 
technical means of solving a theoretical problem: the composition of the 
language, to stay with our lexicographic example. The algebraists adapt 
themselves to this type of relationship as well.  

This example borrowed from the linguists shows at the very least that 
on the eve of Algebra’s birth, concepts both of apodictic knowledge and of 
its object had already been elaborated which perfectly suited the algebra-
ists. From this point of view, the intellectual context of the 8th century 
favored the advent of algebra and made its integration into the midst of the 
disciplines of the time as natural as it was easy.  

 
1 R. Rashed, The Development of Arabic Mathematics: Between Arithmetic and 

Algebra, Boston Studies in Philosophy of Science, vol. 156, Dordrecht, Kluwer, 1994, 
pp. 253 ff. 
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The second example shows us that, by providing domains for the appli-
cation of algebra, the scholars of the 8th century participated in the con-
struction of one of its chapters. Likewise for jurisprudence, which in this 
same period witnesses the birth of three main schools: Abū Ḥanīfa (died in 
767), founder of the school that carries his name, and his student Abū 
Yūsuf (died in 798); Mālik ibn Anas, the head of the school of Medina 
(died in 795); and finally al-Shāfiʿī, the founder of the third school, died in 
820. These eminent jurists and their students also wrote on legal theory; it 
is in this respect that their successors compared them to Aristotle in logic. 
What interests us in particular here is the development in these schools 
during the 8th century of works in civil law, notably pertinent to wills and to 
inheritances according to the edicts of the Quran. These rules were often 
very complex and, to be exact, they required the invention of a genuine cal-
culus. From the outset, this calculus was of an algebraic type. The student 
of Abū Ḥanīfa and of Mālik ibn Anas, Muḥammad ibn Ḥasan al-Shaybānī 
(749–803) himself composed a work called Ḥisāb al-waṣāya (Calculation 
of Wills). We shall see below that an entire chapter, constituting five-
twelfths of the book of al-Khwārizmī, is developed precisely to this type of 
calculation. As it develops, this chapter will lead to an algebraic discipline, 
under the same title or entitled, ḥisāb al-farāʾiḍ (Calculation of Obliga-
tions). It will be taught as a field of research for algebraists and jurists after 
the creation of schools of law such as the Niẓāmiyya. 

 
 

1. THE BEGINNING OF ALGEBRA: AL-KHWĀRIZMĪ 
 
It is in this context that Muḥammad ibn Mūsā al-Khwārizmī writes a 

book entitled Kitāb al-jabr wa-al-muqābala (Book of Algebra and al-
Muqābala).2 The appearance of this work, under the reign of Caliph al-
Maʾmūn (between 813 and 833), constitutes a turning point in the history 
of mathematics. For the first time, the term ‘algebra’ appears in a title to 
designate a distinct discipline with its own technical vocabulary.  

The term al-jabr (algebra) is indeed an Arabic term, a name for the 
action of the verb (a maṣdar, according to the grammarians), the root of 
which has the general meaning of rectifying or correcting something using 
some form of constraint, such as setting a broken bone, for example. It is 
thus an ordinary-language term that can take on multiple meanings. It was 

 
2 R. Rashed, Al-Khwārizmī: Le commencement de l’algèbre, Paris, Librairie A. 

Blanchard, 2007; English transl. Al-Khwārizmī: The Beginnings of Algebra, History of 
Science and Philosophy in Classical Islam, London, Saqi Books, 2009. 



108 PART  I:  ALGEBRA 

devoid of technical meaning before al-Khwārizmī for the first time gave it 
a two-fold technical signification. When associated with the word al-
muqābala, it designates both a discipline and an operation. The successors 
of al-Khwārizmī will quickly give pride of place to the first word, 
‘algebra’, to name the discipline, and derive from this single word the name 
of the professional, ‘algebraist’. This usage already appears in Thābit ibn 
Qurra (826–901). But this word also designates an operation: that of 
‘restoring’ an equation, that is, adding to its two members the subtracted 
terms. For example, in 

    x2 + c – bx = d  where c > d, 
 

the operation ‘algebra’ consists in adding bx to each side,  

 
    x2 + c = bx + d, 
 

and the operation al-muqābala, that is, ‘opposition’ or ‘reduction’ amounts 
to 

    x2 + (c – d) = bx. 
 

The point of the two related operations is to bring the equation back to 
one of the canonical types that al-Khwārizmī defined a priori.  

Thus, between 813 and 833, this Baghdad mathematician and astrono-
mer, a distinguished member of the ‘House of Wisdom’, would write a 
book with this technical terminology in the title. The event was crucial, and 
was recognized as such by both ancient and modern historians. The math-
ematics community of the time and of subsequent centuries did not miss its 
importance either. Thus Abū Kāmil (c. 830–c. 900) wrote about al-
Khwārizmī:  

He who first composed a book of algebra and al-muqābala; he who initiated 
it and invented all the foundations found in it.3 

The same Abū Kāmil wrote another book, no longer extant, but cited 
by the biobibliographer Ḥajjī Khalīfa:  

I established in my second book (al-waṣāya bi-al-jabr) the proof of 
Muḥammad ibn Mūsā al-Khwārizmī’s authority and priority in algebra and 
al-muqābala, and I answered what that rash fellow, Ibn Barza, attributes to 
ʿAbd al-Ḥāmid, whom he mentions as his grandfather.4 

 
3 Abū Kāmil, ms. Istanbul, Beyazit Library, Kara Mustafa, 379, fol. 2r; see 

R. Rashed, Abū Kāmil: Algèbre et analyse diophantienne, Scientia Graeco-Arabica, vol. 
9, Berlin, Walter De Gruyter, 2012, p. 245, 2–3. 

4 Ḥajjī Khalīfa, Kashf al-ẓunūn, ed. Yatkaya, Istanbul, 1943, vol. 2, pp. 1407–8. 
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One could cite many more testimonials of this sort. Sinān ibn al-Fatḥ, 
in the introduction of his Opuscule, mentions only al-Khwārizmī and cred-
its him with the algebra: ‘Muḥammad ibn Mūsā al-Khwārizmī composed a 
book that he called algebra and al-muqābala’. 

This book of al-Khwārizmī remained a constant source of inspiration 
and an object of commentaries by mathematicians, not only in Arabic and 
Persian, but also in Latin and the languages of Western Europe. But this 
event reveals a paradox. Contrasting starkly with the novelty of al-
Khwārizmī’s book in terms of conception, vocabulary, and organization is 
the simplicity of the mathematical techniques he deploys, when they are 
compared to the famous mathematical writings of Euclid and Diophantus, 
for example. But this technical simplicity is precisely a function of the new 
mathematical conception of al-Khwārizmī. To the superficial observer, 
most of al-Khwārizmī’s ideas are found in one or the other of his predeces-
sors. His book thus appears to be a worthy work, to be sure, but not distin-
guished by its novelty. Although one element of his project occurs 
twenty-five centuries earlier among the Babylonians, another in Euclid’s 
Elements, and a third in Diophantus’s Arithmetic, no work before al-
Khwārizmī’s reconstituted these elements and organized them in this spe-
cific way in order to create a discipline that no one had ever conceived. But 
what are these elements? and what is this organization? Al-Khwārizmī’s 
goal is clear and unprecedented: to elaborate a theory of equations soluble 
by radicals, to which one can indifferently reduce both arithmetic and 
geometrical problems, and therefore to be able to use them in calculation, 
commercial transactions, inheritances, land surveying, etc. The new disci-
pline is deliberately an applied one, as al-Khwārizmī states in his introduc-
tion. The domain of application may include problems in arithmetic as well 
as geometry, and the book is organized with this intention. 

In the first part of his book, al-Khwārizmī begins by defining the primi-
tive terms of this theory, which, because of the requirement of solution by 
radicals and because of his competence in this domain, only concerns 
equations of the first two degrees. These definitions pertain to the unknown 
(designated indifferently by radical or by thing/cosa), the square of the 
unknown, rational positive numbers, the laws of arithmetic ±, 
×/÷, √, equality. The main concepts that al-Khwārizmī introduces next are 
the equations of the first and second degrees, the binomials and trinomials 
associated with them, the normal form, algorithmic solutions, and the 
demonstration of the solution formula. In al-Khwārizmī’s book, the con-
cept of equation emerges to designate an infinite class of problems, and 
not, as was the case for the Babylonians for example, in the midst of solv-
ing this or that specific problem. Conversely, the equations themselves are 
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presented not in the midst of solutions to problems, as the Babylonians or 
Diophantus had done, but at the outset, beginning from primitive terms, the 
combinations of which must yield all possible forms. Thus, once al-
Khwārizmī has introduced the primitive terms, he immediately gives the 
following six types: 

     ax2 = bx,  
     ax2 = c,  
     bx = c,  
     ax2 + bx = c,  
     ax2 + c = bx,  
     ax2 = bx + c. 

He then introduces the concept of normal form, and requires that each 
of the preceding equations be reduced to the normal form corresponding to 
it. From this, there follows in particular, for trinomial equations, 

(1)  x2 + px = q,    x2 = px + q,    x2 + q = px. 

Al-Khwārizmī then moves on to the determination of algorithmic for-
mulas of the solutions. He then treats each case, and obtains formulas 
equivalent to the following expressions: 
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and in this last case, he specifies: 

– if p
2

⎛
⎝
⎜

⎞
⎠
⎟

2

= q , ‘then the root of the square [māl] is equal to half of the 

number of the roots, exactly, without excess or shortfall’;5 

– if p
2

⎛
⎝
⎜

⎞
⎠
⎟

2

< q , ‘then the problem is impossible.6 

Al-Khwārizmī demonstrates also the different formulas, not algebrai-
cally but by using the notion of equality of areas. He was probably inspired 
by his very recent knowledge of Euclid’s Elements, translated by his 

 
5 Al-Jabr wa-al-muqābala, ed. R. Rashed in Al-Khwārizmī: Le commencement de 

l’algèbre, p. 107, 3–4; English transl., p. 106. 
6 Ibid., p. 107, 2; English transl., p. 106. 
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colleague in the House of Wisdom, al-Ḥajjāj ibn Maṭar. Al-Khwārizmī pre-
sents each of these demonstrations as the ‘cause’ (ʿilla) of the solution. So 
al-Khwārizmī not only requires that each case be demonstrated, but he 
sometimes proposes two demonstrations for one and the same type of 
equation. Such a requirement highlights beautifully how far al-Khwārizmī 
has come: it separates him not only from the Babylonians, to be sure, but 
also, on account of its systematic aspect, from Diophantus.  

For the equation x2 + px = q, for example, he takes two line segments 
AB = AC = x and next takes CD = BE = p/2. If the sum of the areas ABMC, 
BENM, DCMP is equal to q, then the area of the square AEOD is equal to 
(p/2)2 + q, whence7 

x =
p
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⎞ 
⎠ 

2

+ q
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⎣ ⎢ 
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−

p

2
. 
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Fig. 10 
 

With al-Khwārizmī, the concepts of the new discipline – namely ‘the 
thing (al-shayʾ)’ or ‘cosa’, the unknown – do not designate a specific 
entity, but an object that can be indifferently numerical or geometrical; 
conversely, the algorithms of the solution must themselves be an object of 
demonstration. This is where the main elements of al-Khwārizmī’s contri-
butions are located. From now on, every problem treated in algebra, 
whether it be arithmetical or geometrical, must, according to him, be 
reduced to an equation with one variable and a rational positive coefficient 
of the second degree at least. Algebraic operations (transposition and 
reduction) are then applied so that the equation is written in normal form, 
which makes possible the idea of solution as a simple decision procedure, 
an algorithm for each class of problems. The formula of the solution is then 
justified mathematically with the help of a proto-geometrical demonstra-
tion, so that al-Khwārizmī can then write that everything pertinent to alge-

 
7 Ibid., pp. 100–4. 
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bra ‘necessarily leads you to one of the six procedures that I described in 
the introduction of my book’.8 

Next, al-Khwārizmī turns briefly to several properties associated with 
the application of the elementary laws of arithmetic to the simplest alge-
braic expression. He thus studies products of the type 

   (a ± bx) ( c ± dx)  where a, b, c, d ∈ Q+. 

Rudimentary though it may seem, this inquiry nevertheless represents 
the first effort devoted to algebraic calculation as such, for the elements of 
this calculation become the object of relatively autonomous chapters. In the 
following chapters, al-Khwārizmī goes on to apply the theory he has elab-
orated in order to solve numerical and geometrical problems, before finally 
treating problems of inheritance by algebraic means.  

Thus algebra presents itself as a type of arithmetic, an arithmetic of 
unknowns, as some of al-Khwārizmī’s successors will call it. This arith-
metic is more general than ‘logistics’ (since, thanks to its concepts, it 
makes possible a more rigorous solution of problems in the latter), but also 
more general than a metrical geometry. The new discipline is in fact a the-
ory of linear and quadratic equations with a single unknown and soluble by 
radicals, and a theory of algebraic calculation on related expressions, with 
as yet no concept of polynomial. Finally, note that this new discipline was 
constituted by drawing not at all on symbolism, but only on terms from 
natural language. It was nevertheless well understood that the combined 
terms – the ‘thing/cosa’ and its square – are conceived without any specific 
content and in effect function as symbols. One early reader, an anonymous 
lawyer ignorant of symbolism, conceived a combinatorics of legal judg-
ments. He then represented each of them by one letter of the alphabet:  

We designate the examples (the judgments) by letters devoid of signification 
such that they indicate by themselves, and not by reason of some existential 
matter. They are, moreover, concise and analogous to the ‘things’ and the 
squares (māl) that calculators use to determine unknowns.9 

 

 
8 Ibid., p. 121, 7–8; English transl., p. 120. 
9 Ms. Florence, Laurenziana, Or. 428, fol. 3v:  
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2. AL-KHWĀRIZMĪ’S SUCCESSORS: GEOMETRICAL INTERPRETATION AND 
DEVELOPMENT OF ALGEBRAIC CALCULATION 

 
To grasp better al-Khwārizmī’s idea of the new discipline and of its 

fruitfulness, it is not enough to compare his book to ancient mathematical 
writings; it is also necessary to examine his impact on his contemporaries 
and his successors, the research that he succeeded in stimulating, and the 
traditions that he engendered. Only then will his true historical stature 
become clear. In our opinion, an essential characteristic of his book is that 
it immediately stimulated a current of algebraic research. Al-Nadīm, the 
biobibliographer of the 10th century, already draws up a long list of al-
Khwārizmī’s contemporaries and successors who carried on his research. 
Particularly notable among many others are Ibn Turk, Sind ibn ʿAlī, Abū 
Ḥanīfa al-Daynūrī, al-Ṣaydanānī, Thābit ibn Qurra, Abū Kāmil, Sinān ibn 
al-Fatḥ, al-Ḥubūbī, Abū al-Wafāʾ al-Būzjānī. Although many of their 
writings have disappeared, enough have survived to reconstruct the main 
outlines of this tradition. Given the limited scope of this chapter, however, 
we cannot take up the analysis of each of these contributions. We will try 
only to lift out the main axes of the development of algebra in the wake of 
al-Khwārizmī.  

At the time of al-Khwārizmī and immediately thereafter, one witnesses 
essentially the extension of research that the latter had already pioneered: 
the theory of quadratic equations, algebraic calculation, and the application 
of algebra to problems of inheritance, distribution, etc. The research into 
the theory of equations itself took several routes. The first was the one al-
Khwārizmī himself had already opened up, but now with improvements in 
his proto-geometrical demonstrations. This is the route followed by Ibn 
Turk,10 who without adding anything new, takes up a tighter discussion of 
the proof. More important is the route taken a little later by Thābit ibn 
Qurra. He returns to Euclid’s Elements, both to set the demonstrations of 
al-Khwārizmī on a firmer geometrical footing and to translate second-
degree equations geometrically. Ibn Qurra is, moreover, one of the first to 
draw a clear distinction between algebraic and geometrical methods: he 
tries to prove that both lead to the same result, that is, to a geometric inter-
pretation of algebraic procedures. Ibn Qurra begins by showing that the 
equation x2 + px = q can be solved by means of Proposition II.6 of the 
Elements. At the end of his demonstrations, he writes: ‘this approach 

 
10 Aydin Sayili, Logical Necessities in Mixed Equations by ʿAbd al-Ḥāmid ibn 

Turk and the Algebra of his Time, Ankara, 1962, pp. 145 ff. 
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accords with that of the algebraist (aṣḥāb al-jabr)’.11 He starts over again 
for x2 + q = px and x2 = px + q, drawing on Elements, II.5 and II.6, respec-
tively. In each case, he shows the correspondence with the algebraic solu-
tions and writes: ‘The path for this problem is that for the two preceding 
ones, in that the method of resolution by means of geometry accords with 
the method of resolution by means of algebra’.12  

To our knowledge, Abū Kāmil and Thābit ibn Qurra were the first to 
make al-Khwārizmī consistent with Euclid, and thereby to give a geomet-
rical interpretation of al-Khwārizmī’s algebra and an algebraic interpreta-
tion of the geometry of Elements, Book II. If the historians’ expression ‘the 
geometrical algebra of the Greeks’ makes any sense at all, it is only after 
al-Khwārizmī, with Abū Kāmil and Thābit ibn Qurra. Here is an example 
of Ibn Qurra’s research that is important for both algebra and its history. 
Let’s go back to the example of al-Khwārizmī’s first equation, x2 + px = q. 
Ibn Qurra posits that x2 is equal to a square ABCD. He next considers a unit 
u, which is a unit of length if the unknown is a geometrical magnitude, but 
equal to 1 if it is a number. He posits that BE = p · u. Clearly AB = x · u. 
Ibn Qurra then proceeds by means of the following calculation. One has 
AB · BE = px = DE, therefore CE = x2 + px = q, a known number. The 
product of EA and AB is known, and the segment BE is known; the 
problem thus reduces to a geometrical problem: 

 

The segment BE is known; one adds AB to it, and the 
product of EA and AB is known. But Proposition 6 of 
Book II of the Elements shows that, if one divides the 
segment BE into two halves at point F, the product of EA 
and AB plus the square of BF is equal to the square of AF. 
But the product EA and AB is known and the square of BF 
is known; the square of AF is thus known and AF is 
known. If one subtracts from it BF, which is known, the 
remainder AB, which is the root, is known.13 

A

B

C

D

E

F

 
Fig. 11 

Ibn Qurra then establishes the correspondence between the method of 
the algebraists and that of the geometers. He writes: 

 
11 Fī taṣḥīḥ masāʾil al-jabr bi-al-barāhīn al-handasiyya, ed. R. Rashed, ‘Résolu-

tion géométrique des équations du second degré’, pp. 153–69, in Thābit ibn Qurra. 
Science and Philosophy in Ninth-Century Baghdad, Scientia Graeco-Arabica, vol. 4, 
Berlin, Walter de Gruyter, 2009, at p. 163, 13. 

12 Ibid., p. 169, 3–4. 
13 Ibid., p. 163, 3–11. 
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This procedure agrees with the algebraists’ procedure for solving this prob-
lem. Indeed when the latter (the algebraists) take half of the number of the 

roots 
p

2
⎛ 
⎝ 

⎞ 
⎠ , it is as when we take half of segment BE; when they multiply it 

by itself 
p

2
⎛ 
⎝ 

⎞ 
⎠ 

2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ , it is as when we take the square of half the segment BE; 

when they add the number to the product, it is as when we add the product of 
EA and AB to obtain from all of this the square of the sum of AB and of half 
the segment <BE>; when they take the root of the sum, it is as when we say 
that the sum of AB and of half the segment <BE> is known, given that the 
sum is a known square; when they subtract half from the number of the 
roots, it is as when we subtract half of BE. They obtain the remainder, which 
is the size of the root, and when they subtract from this half the size of the 
root, it is as when we subtract the segment BF to obtain the remainder, just 
as we obtained AB.14 

 If we quoted this text despite its length, it is to show that that Ibn 
Qurra’s double interpretation – geometric for al-Khwārizmī, algebraic for 
Euclid – was both intentional and rigorous.  

Mathematicians will follow an analogous route to establish a geomet-
rical theory of equations, but they will do so by appealing to the Euclidean 
procedure of the application of areas, that is, to Book VI of the Elements. 
One of them writes:  

It has been shown that the procedure that led to the determination of the 
sides of unknown squares in each of the three trinomial equations is the pro-
cedure presented by Euclid at the end of Book VI of the Elements, and which 
consists in applying to a given straight line a parallelogram that exceeds the 
whole parallelogram, or falls short of it, by a square. Indeed, the side of the 
exceeding square is the side of the unknown square in the first and second 
trinomials [x2 + q = px, x2 + px = q]; and in the third trinomial, it is the sum 
of the straight line to which the parallelogram is applied and of the side of 
the exceeding square.15 

As we shall see, however, Ibn Qurra’s geometrical translation of al-
Khwārizmī’s equations turns out to be particularly important for the 
development of the theory of algebraic equations. At almost the same time, 
another slightly different translation takes place that will also be funda-
mental for the development of the same theory: the translation of geomet-
rical problems into algebraic terms. Indeed al-Māhānī, a contemporary of 
Ibn Qurra’s, begins to translate into algebraic equations not only some 

 
14 Ibid., pp. 163, 13–165, 3. 
15 Anonymous manuscript no. 5325 Āstān Quds, Meshhed, fol. 24r–v, falsely 

attributed to Abū Kāmil, copied in 581/1185. 
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biquadratic problems from Book X of the Elements, but also a solid prob-
lem – that given in Archimedes’ Sphere and Cylinder – into a cubic equa-
tion (see below).  

Another direction in the development of the theory of equations was 
also pursued at the time, namely, research on the general form of the 
quadratic equations 

 
  ax2n + xn = c, ax2n + c = bxn, ax2n = bxn + c, 
 

as one encounters it in Abū Kāmil and Sinān ibn al-Fatḥ, among others.  
Furthermore, after al-Khwārizmī, one sees an expansion of algebraic 

calculation. This is perhaps both the main research theme and the most 
widely shared among the algebraists who followed him. They began by 
extending the very terms of algebra to the 6th and 8th powers of the un-
known, as one finds, respectively, in Sinān ibn al-Fatḥ and in Abū Kāmil. 
Sinān ibn al-Fatḥ, moreover, defines these powers multiplicatively,16 in 
contrast to Abū Kāmil, who provides an additive definition. But it is the 
algebraic work of the latter that leaves its mark on both the epoch and the 
history of algebra. Beyond the expansion of algebraic calculation, he inte-
grates into his book a new chapter of algebra: indeterminate rational analy-
sis. After having taken up the theory of equations with demonstrations 
more solid than those of his predecessor, he studies in much greater depth 
and extent the arithmetical operations on binomials and trinomials, in each 
case demonstrating the result he obtained. He announces and justifies the 
sign rule, establishes the rules for calculation with fractions, before moving 
on to systems of linear equations with several unknowns and to equations 
with irrational coefficients, such as  
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Abū Kāmil integrates into his algebra auxiliary numerical methods, 

some of which purportedly appeared in a lost book of al-Khwārizmī, such 
as 

k
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16 See R. Rashed, The Development of Arabic Mathematics, p. 20, n. 8. 
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Next, Abū Kāmil studies numerous problems that are reducible to 
second-degree equations. 

We thus notice that the research of al-Khwārizmī’s successors, and first 
and foremost of Abū Kāmil, contributed both the theory of equations and to 
the extension of algebraic calculation to the field of rational numbers, and 
to quadratic irrational numbers. Abū Kāmil’s research on indeterminate 
analysis made a considerable impact on the development of this discipline 
but also gave it a new meaning and a new status. Originating in algebra, 
this analysis from now on constitutes a chapter in every treatise that seeks 
to cover the discipline.  

 
 

3. THE ARITHMETIZATION OF ALGEBRA: AL-KARAJĪ  
AND HIS SUCCESSORS 

 
We will understand nothing about the history of algebra if we do not 

emphasize the contributions of two currents of research that developed 
during the period just considered. The first focuses on the study of irra-
tional quantities, whether the result of reading Book X of the Elements or 
in some sense independently. Among the many other mathematicians who 
took part in this research, one can name al-Māhānī, Sulaymān ibn ʿIṣma, 
al-Khāzin, al-Ahwāzī, Yūḥannā ibn Yūsuf, al-Hāshimī. It goes without 
saying that we cannot review these various contributions here. We merely 
want to emphasize that in this work, they actively developed calculation on 
irrational quantities and sometimes even began to read parts of Book X of 
Euclid’s Elements in light of al-Khwārizmī’s Algebra. To take only one 
example, consider al-Māhānī who in the 9th century sought the square root 
of five apotomes. Thus, to extract the square root of the first apotome, 
al-Māhānī proposes that ‘we proceed by the method of algebra and al-
muqābala’,17 that is, to posit a = x + y and b = 4 xy, and to obtain the equa-
tion x2 + b/4 = ax. One then determines the largest positive root x0, one 
deduces y0, and one obtains 

a − b = x0 − y0 . 

 
Recall that, in the language of Book X of the Elements, a + √b is the 

first binomial, with a and b rational, a > √b, √b is irrational and a2 − b
a

 is 

rational, and the conjugate straight line a – √b is the first apotome.  

 
17 Tafsīr al-maqāla al-ʿāshira min kitāb Uqlīdis, ms. Paris, BN, 2457, fol. 182r. 
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Al-Māhānī starts over again in this way for the next four apotomes; for 
the second apotome (√b – a), for example, with b = 45 and a = 5, one 
obtains the equation  

x4 +
625

16
=

65

2
x2 . 

 
For these apotomes, as for the four that remain, al-Māhānī applies the 

same method to reduce the problem to one of the equations of al-
Khwārizmī. Thus consider an apotome A, the square root of which one 
seeks to extract. Apotome A can be written, A = a1 – a2 with a1, a2 > 0, a1 
and a2 incommensurable in length but commensurable in square, a1 ≥ a2. 
Al-Māhānī writes √A in the form of an apotome. Let x and y such that x + y 

= a1 and xy =
a2

2
⎛ 
⎝ 

⎞ 
⎠ 

2

; x and y are chosen such that √A = √y – √x. 

One has y = a1 – x, xy = x a1 − x( ) a2

2
⎛ 
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⎞ 
⎠ 

2

, whence 

 

x =
a1 − a1

2 − a2
2

2
 

         assuming y > x 

y =
a1 + a1

2 − a2
2

2
 

and √A = √y – √x. 
 
One verifies that A = (√y – √x)2 = a1 – a2. 
Now, these mathematicians have not only extended algebraic calcula-

tion to irrational quantities (algebraic extensions of Q), but they also made 
it possible to confirm the generality of the algebraic tool.  

The second current of research was stimulated by the translation of 
Diophantus’s Arithmetic into Arabic, and notably by an algebraic reading 
of it. Indeed, around 870, Ibn Lūqā translated seven books of Diophantus’s 
Arithmetic, significantly with the title The Art of Algebra.18 The translator 
drew upon al-Khwārizmī’s language to render the Greek of Diophantus, 
thereby inflecting the content of the book towards the new discipline. Now, 
even if this Arithmetic is not an algebraic work in the sense of al-
Khwārizmī, it nevertheless contains techniques of algebraic calculation that 
are powerful for the era: substitutions, eliminations, changes of variables, 
etc. It became the object of commentaries by mathematicians such as Ibn 
Lūqā, who translated the work in the 9th century, and Abū al-Wafāʾ al-

 
18 R. Rashed, L’Art de l’Algèbre de Diophante, Cairo, National Library, 1975. 
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Būzjānī, a century later, but these texts are unfortunately lost. We know 
nevertheless, that al-Būzjānī wanted to demonstrate the Diophantine solu-
tions. This same Abū al-Wafāʾ, in a text that has survived, proves the for-
mula of the binomial, which is used often in the Arithmetic, for n = 2, 3.19 

 However that may be, this progress of algebraic calculation – whether 
by its extension to other domains or by the sheer mass of technical results it 
obtained – led to the renewal of the discipline itself. A century and a half 
after al-Khwārizmī, the Baghdad mathematician al-Karajī conceived 
another research project: to apply arithmetic to algebra, that is, to study 
systematically the application of the laws of arithmetic and of some of its 
algorithms to algebraic expressions and to polynomials in particular. It is 
precisely this calculation on algebraic expressions of the form  

 

     f (x) = ak
k=−m

n

∑ xk    m, n ∈ Z+ 

 
which became the main object of algebra. To be sure, the theory of alge-
braic equations is still present, but it occupies only a modest place among 
the concerns of the algebraists. One can therefore understand that books of 
algebra undergo modification not only in their content, but also in their 
organization. 

Al-Karajī devotes several treatises to this new project, notably al-
Fakhrī and al-Badīʿ. These books will be studied anew, developed, and 
commented upon by mathematicians until the 17th century. In other words, 
in the research on arithmetic algebra, the work of al-Karajī occupies a cen-
tral place for centuries, whereas the book of al-Khwārizmī becomes a his-
torically important exposition, on which only mathematicians of the second 
tier will comment. Without getting into the history of six centuries of alge-
bra here, let us illustrate the impact of al-Karajī’s work by turning to one of 
his 12th-century successors. Al-Samawʾal (d. 1174) integrates into his alge-
bra, al-Bāhir, the main writings of al-Karajī, and notably the two works 
cited above. He begins by defining very generally the concept of algebraic 
power and, thanks to the definition x0 = 1, he states the rule equivalent to 
xmxn = xm+n, where m, n ∈ Z.  

Here is what al-Samawʾal writes, after having noted in a table the 
exponents on one side and the other of x0:  

If the two powers are on one side and the other of unity, starting from one of 
them we count in the direction of unity the number of elements in the table 

 
19 Fī jamʿ aḍlāʿ al-murabbaʿāt wa-al-mukaʿʿabāt wa-akhdh tafāḍulahā, ms. 

Meshhed, Āstān Quds 5521. 
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that separate the other power from unity, and the number is on the side of 
unity. If the two powers are on the same side of unity, we count in the direc-
tion opposite to unity.20 

There follows his study of the arithmetic operation on monomials and 
polynomials, notably on the divisibility of polynomials as well as the 
approximation of fractions by elements of the ring of polynomials. One 
has, for example,  

 
f (x)

g(x)
=

20x2 + 30x

6x2 +12
≈

10

3
+

5

x
−

20

3x2 −
10

x3 +
40

3x4 +
20

x5 −
80

3x6 −
40

x7 , 

 
where al-Samawʾal obtains a kind of limited development of f(x)/g(x), 
which works only for a sufficiently large x. 

Next one encounters the extraction of the square root of a polynomial 
with rational coefficients. To all of these calculations on polynomials, al-
Karajī had devoted a treatise, now lost but fortunately cited by al-
Samawʾal, in which he devotes himself to establishing the formula of the 
binomial expansion and the table of its coefficients (see the image of the 
arithmetic triangle of al-Karajī, p. 147 below): 

 

    
a + b( )n

=
n

k

⎛

⎝
⎜

⎞

⎠
⎟

k=0

n

∑  an−kbk   with n = 1, 2, 3… 

 
It is when he demonstrates this formula that one sees in archaic form 

the complete finite induction as a procedure of mathematical proof. Among 
the auxiliary means of calculation, al-Samawʾal gives, following Abū 
Kāmil and al-Karajī, the sums of the different numerical progressions, 
along with a demonstration of them: 

 

k
k=1

n

∑ ,     k2

k=1

n

∑ ,    k
k=1

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

,    k
k=1

n

∑ (k +1), ... 

 
Next comes the answer to the following question: How can multiplica-

tion, division, addition, subtraction and the extraction of roots be used for 
irrational quantities?’21 The answer to this question led al-Karajī and his 
successors to read Book X of the Elements algebraically (deliberately so), 

 
20 Al-Bāhir en Algèbre d’as-Samawʾal, edition, notes and introduction by 

S. Ahmad and R. Rashed, Damascus, 1972, p. 19. 
21 Ibid., p. 37. 
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to extend to infinity the monomials and binomials presented in this book, 
and to propose rules of calculation, among which those of al-Māhānī are 
explicitly formulated: 

x
1
n

⎛

⎝
⎜

⎞

⎠
⎟

1
m

 = x
1
m

⎛

⎝
⎜

⎞

⎠
⎟

1
n

  and x
1
m = xn( )

1
mn  

 
along with others like the following: 

x
1
m ± y

1
m

⎛

⎝
⎜

⎞

⎠
⎟ = y x

y

⎛

⎝
⎜

⎞

⎠
⎟

1
m

±1
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

m⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
m

. 

 
One also finds an important chapter on rational Diophantine analysis, 

and another on the solution of systems of linear equations with several 
unknowns. Al-Samawʾal gives a system of 210 linear equations with 10 
unknowns.  

With al-Karajī’s work begins the constitution of a new current of 
research in algebra, a tradition recognizable by the content and organization 
of each of its works. The latter ‘are almost innumerable’, to reuse Ibn al-
Bannāʾ’s expression in the 13th and 14th centuries.22 By way of example, 
one finds among their authors the teachers of al-Samawʾal (al-Shahrazūrī, 
Ibn Abī Turāb, Ibn al-Khashshāb), al-Samawʾal himself, Ibn al-Khawwām, 
al-Tanūkhī, Kamāl al-Dīn al-Fārisī, Ibn al-Bannāʾ, and, much later, al-
Kāshī, al-Yazdī, etc. 

In this stream, the chapter on the theory of algebraic equations proper 
made some progress, without, however, being central. Like his predeces-
sors, al-Karajī himself considered quadratic equations. Some of his succes-
sors, however, tried to study the solution of cubic and fourth-degree 
equations. Thus, al-Sulamī in the 12th century tackled the cubic equation to 
find a solution by means of radicals,23 bearing witness to the interest that 
the mathematicians of his day took in this problem. At the time, he himself 
considered two types as possible: 

 
x3 + ax2 + bx = c  and  x3 + bx = ax2 + c. 

 

 
22 Kitāb fī al-jabr wa-al-muqābala, ms. Cairo, Dār al-Kutub, Riyāḍa 1, Muṣṭafā 

Fāḍil, 40, fol. 1. 
23 Al-muqaddima al-kāfiya fī ḥisāb al-jabr wa-al-muqābala, Collection Paul Sbāṭ, 

no. 5, fols 92v–93r. 
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He nevertheless required that a2 = 3b. Al-Sulamī himself put it this 
way: ‘This type (the first) has two conditions: one is proportionality and the 
other is that the third of the number of squares ( x2 ) be equal to the square 
root of the number of things (= unknowns). If these two conditions are met, 
then it can be solved’. As he explains next, by ‘proportionality’, he means 

that 
1

x
=

x

x2 =
x2

x3 …; whereas the second condition is the one given above. 

For the second type, he adds one more condition: ‘The things 
[= unknowns] must be with the cube’; when the things or unknowns are in 
the same member as the squares, he mentions that there is as yet no known 
method. Next, he gives a real, positive root for each equation.  

x =
a3

27
+ c

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1
3

−
a

3
 and x = c −

a3

27

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1
3

+
a

3
. 

 
We can reconstruct al-Sulamī’s procedure as follows: using an affine 

transformation, he reduces the equation to its normal form; but instead of 
finding the discriminant, he zeroes the coefficient of the first power of the 
unknown, in order to reduce the problem to that of extracting the cubic 
root. For the first equation, for example, one takes the affine transformation 

  
x � y −

a

3
 and rewrites the equation as  

y3 + py – q = 0 

with  

p = b – 
a2

3
 and q = c +

a3

27
+ b

a

3
–

a3

9

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ; 

given b = 
a2

3
, one gets  

y3 = c +
a3

27
, 

and therefore y, and then x. 

For the second equation, he takes the transformation 
  
x � y +

a

3
. Finally, 

he considers the equation  

x3 = ax2 + bx + c 
 

and recalls that he cannot solve it by means of the transformation 

  
x � y +

a

3
. In this case, he obtains a negative number, that is, b = −

a2

3
, 

which he cannot allow.  
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Al-Sulamī continues with a 4th-degree equation. Here he naturally tries 
to find the change of variable that reduces it to a quadratic equation, that is, 
by forming the beginning of a square.  

Thus, for the equation  

x4 + ax3 + bx2 + cx = d, 
 

with a = 2, b = 6, c = 5, and d = 66, he finds the solution x = 2. 
Al-Sulamī’s method is the following: in effect, he posits a = 2 and b – 

1 = c, that is, b = 6 and c = 5, and also b ≥ 1. 
Rewritten, the equation reads 
 

(x2 + x)2 + (b – 1)(x2 + x) = d. 
 
By positing 

x2 + x = y, 
 

one has 
y2 + (b – 1)y = d, 

 
a second-degree equation with a positive root y1.  

Next, one solves x2 + x = y1, which also has a positive root.  
If one takes b = 1 and c = 0, the equation is written as 
 

(x2 + x)2 = d 
 
and the equation 

x2 + x = √d 
 

has a positive root. 
Likewise, if b = 0, one has c = –1; the equation is rewritten as  
 

(x2 + x)2 = x2 + x + d, 

whence 
y2 = y + d 

 
and for every d, one has y1 and one can solve x2 + x = y1. 

If a ≠ 2, one applies the method once again. The equation is rewritten 
 

x4 + ax3 +
a2

4
x2 + x2 + x 2 b −

a2

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + cx = d , 
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whence 

x2 +
a

2
x

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

+ b −
a2

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ x2 +

a

2
x

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = d . 

 
After positing 

x2 +
a

2
x

⎛ 
⎝ 

⎞ 
⎠ = y , 

one has 

y2 + b −
a2

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ y = d , 

 
an equation with a positive root; next, one solves  
 

x2 +
a

2
x

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ y1 , 

 
another equation with a positive root. 

In short, whatever the positive number a may be, if b and c are positive 

and meet the condition b −
a2

4
= 2

c

a
, then one can solve the original equation 

by positing  

y = x2 +
a

2
x . 

 
In every case, the equation will have a positive root. 
 
Although credited to the 14th-century Italian mathematician Master 

Dardi of Pisa,24 such attempts are frequent in the algebraic tradition of al-
Karajī (10th–11th century). For example, take the case of the mathematician 
Ibn al-Bannāʾ, who claims, that for equations that ‘are reduced to other 
degrees (= other than the second), one cannot resolve them by means of 
algebra except for “cubes are equal to a number”’.25 Although he implicitly 
recognizes here the difficulty of solving by means of radicals all cubic 
equations except x3 = a, he nevertheless takes up the equation  

 
(*)   x4 + 2x3 = x + 30, 
 

which he solves as follows: one rewrites the equation as 

 
24 See W. van Egmond, ‘The Algebra of Master Dardi of Pisa’, Historia 

Mathematica, 10, 1983, pp. 399–421. 
25 Kitāb fī al-jabr wa-al-muqābala, fol. 26v. 
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x4 + 2x3 + x2 = x2 + x + 30, 
 

which is rewritten again 
(x2 + x)2 = x2 + x + 30; 

 
positing that y = x2 + x, one has  

y2 = y + 30. 
 
By solving this equation, one obtains y = 6. One then solves x2 + x = 6, 

and finds x = 2 as the solution of (*) above. 
It is still too early to know precisely what contribution the mathemati-

cians in this tradition made to the solution of third- and fourth-degree 
equations; these pieces of evidence nevertheless show that, contrary to 
what has been believed to date, some of them tried to go beyond al-Karajī.  

 
 

4. THE GEOMETRIZATION OF ALGEBRA: AL-KHAYYĀM (1048–1131)  
 
The algebraist arithmeticians were committed to the solution by radi-

cals and wanted to justify the algorithm of the solution. Sometimes it even 
happened that the same mathematician – Abū Kāmil for example – offered 
two justifications, one geometrical, the other algebraic. For the cubic equa-
tion, not only were the solutions by radicals missing, but also the justifica-
tion for the algorithm of solution, because the solution was not constructi-
ble by means of a straight edge and compass. The mathematicians from this 
tradition were fully conscious of this fact. As one of them wrote well 
before 1185:  

Since the unknown that one wants to determine and to know in each of these 
polynomials is the side of the cube mentioned in each, and since the analysis 
leads one to apply a known rectangular parallelepiped to a line segment that 
is known and exceeds or falls short of the whole parallelepiped by a cube; 
and one can perform the synthesis of this only by means of conic sections.26 

 
26 Ms. Meshhed, Āstān Quds, no. 5325, fol. 25. 
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Box 1 

Here is how al-Khayyām himself recounts this history in his famous algebra 
treatise:  

 ‘As for the Ancients, no statement about these <premises> has come down to us 
from them: maybe they did not, after a study and an examination, understand them; or 
they were not compelled by their research to examine them; or what they have said 
about them has not been translated into our tongue.  

And as to the moderns, it is to al-Māhānī, from among them, that the resolution of 
the premise which Archimedes had taken for granted in the fourth proposition of the 
second Book of his work On the Sphere and the Cylinder suggested itself by means of 
Algebra. Thus he ended up with an equation between cubes, squares and numbers. 
However, its solution did not occur to him after he had thought it over for a long time. 

Hence he settled the matter by asserting that it was impossible. Until Abū Jaʿfar 
al-Khāzin appeared and solved it by means of conic sections. And after him, many 
geometricians needed several species thereof. Thus some of them solved some. But 
none of them has said anything substantial about the enumeration of their species, and 
about the study of the forms of each species thereof and their demonstration: except for 
two species which I shall mention. 

And I always aspired intensely – and I still do – to investigate all their species, and 
to distinguish by means of demonstrations what is possible from what is impossible 
with respect to the forms of every species; for I knew that they were very urgently 
needed in the difficulties of the problems. 

But I was not in a position to devote myself exclusively to the study of this good 
nor to meditate on it assiduously, because of my being detained from it by that part of 
the vicissitudes of fate which had befallen me. For we have been affected by the grad-
ual disappearance of men of science, except for a group, small in number, great in 
afflictions, whose concern is to seize the opportunities of fate in order to devote them-
selves in the meantime to the achievement and the ascertainment of a science.’27 
 
Box 2  

‘The ancient mathematicians who did not speak our language drew attention to 
none of this, or else nothing either came down to us or was translated into our lan-
guage. And among the moderns who do speak our language, the first who needed a 
trinomial species of these fourteen species is al-Māhānī the geometer. He solved the 
lemma that Archimedes used, having considered it as admitted, in Proposition 4 of the 
second book of his work On the Sphere and the Cylinder. This is what I will present. 

Archimedes said: the two straight lines AB and BC have a known magnitude and 
are in the extension one of the other; and the ratio of BC to CE is known. Thus CE is 
known, as is demonstrated in the Data. Then he said: let us posit that the ratio of CD to 
CE is equal to the square of AB to the square of AD. 

 
27 R. Rashed and B. Vahabzadeh, Omar Khayyām: the Mathematician, Persian 

Heritage Series no. 40, New York, Bibliotheca Persica Press, 2000, pp. 111–12; Arabic 
text in Al-Khayyām mathématicien, Paris, Librairie Blanchard, 1999, pp. 116–18.  
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ABC DE
 

He did not say how to know this, since one necessarily needs conic sections. And, 
apart from this, he did not introduce anything in this book that was based on <conic> 
sections. He also considered this as admitted. The fourth proposition concerns the 
division of a sphere by a plane in a given ratio. But al-Māhānī used the terms of the 
algebraists in order to make things easier; since analysis led to numbers, to squares and 
to cubes in an equation, and since he could not solve it by means of conic sections, he 
settled the matter by saying that is impossible. The solution of one of these species thus 
remained concealed from this eminent man, despite his eminence and his supremacy in 
this art until Abū Jaʿfar al-Khāzin appeared and took advantage of a method that he 
presented in a treatise; whereas Abū Naṣr ibn ʿIrāq, a protégé of the Prince of the 
Believers from the land of Khwārizm, solved the lemma that Archimedes had used to 
determine the side of the heptagon in the circle, and that is based on the square that 
evinces the cited property. He used the terms of the algebraists. 

The analysis led to “a cube plus some squares are equal to a number”, which he 
solved by means of <conic> sections. By my life, this man belongs to a superior class 
in mathematics. This is the problem that left powerless Abū Sahl al-Qūhī, Abū al-
Wafāʾ al-Būzjānī, Abū Ḥāmid al-Ṣāghānī, and a group of their colleagues, who were 
all devoted his Lordship ʿAḍud al-Dawla, in the City of Peace. This problem, as I was 
saying, is the following: If you divide 10 into 2 parts, the sum of their squares plus the 
quotient of the greater by the lesser is 72. The analysis led to squares equal to a cube 
plus some roots and a number. For a long time, these eminent men remained perplexed 
by this problem until Abū al-Jūd solved it. They deposited it in the library of the 
Samanid kings. There are thus three species, two trinomials and one quadrinomial, 
compound equations. Our eminent predecessors solved the only binomial equation, 
namely “the cube is equal to a number”. We have received nothing from them about 
the ten remaining <equations>, and nothing as detailed as this. If time gives me leave, 
and if success follows me, I will record these fourteen species with all of their branches 
and sections by distinguishing the possible cases from the impossible ones (for some of 
these species require certain conditions in order to be valid) in a treatise that will 
contain several preliminary lemmas of great utility for the principles of this art.’28 
 

Now this appeal to conic sections, which was explicitly intended to 
solve cubic equations, quickly followed the first algebraic translations of 
solid problems. We mentioned al-Māhānī and the lemma of Archimedes 
(see Box 1) in the 9th century. The other problems, such as the trisection of 
the angle, the two means, and the regular heptagon among others, would 
also soon be translated into algebraic terms. Conversely, however, faced 
with the difficulty mentioned earlier and with the added one of solving the 
cubic equation by radicals, mathematicians such as al-Khāzin, Ibn ʿIrāq, 
Abū al-Jūd ibn al-Layth, al-Shannī and others, were led to translate this 
equation into the language of geometry (see Box 2). They were thus in a 

 
28 Risāla fī qismat rubʿ al-dāʾira, in Al-Khayyām mathématicien, pp. 254–6. 
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position to apply to the study of this equation a technique that was then 
commonly used to examine solid problems, that is, the intersection of conic 
curves. Precisely herein lies the main reason for geometrizing the theory of 
algebraic equations. In this instance, contrary to Thābit ibn Qurra, one 
seeks not to translate geometrically the algebraic equations in order to find 
the geometrical equivalent of an algebraic solution that has already been 
discovered, but to determine, by means of geometry, the positive roots of 
the equation that one could not otherwise obtain. The attempts of al-
Khāzin, al-Qūhī, Ibn al-Layth, al-Shannī, al-Bīrūnī, and others are so many 
partial contributions, until al-Khayyām’s conception of the project, namely, 
the elaboration of a geometrical theory of equations with a degree less than 
or equal to 3. Al-Khayyām (1048–1131) intends first to go beyond 
fragmentary research, that is, research tied to this or that specific form of 
the cubic equation, in order to elaborate a general theory of equations, and 
to propose at the same time a new method of composition. He then studies 
all types of third-degree equations, which he classifies formally according 
to the distribution of the constants, from the first degree, the second degree, 
and the third degree, among the two members of the equation. For each of 
these types, al-Khayyām finds a construction with a positive root by means 
of the intersection of two conics.  

For example, to solve the equation ‘a cube plus a number are equal to 
squares’, that is  

x3 + c = ax2. 
 
It follows that a > x. Let AC = a. Let H be a segment such that H3 = c. 

Three cases thus present themselves: H = AC, H > AC and H < AC. 
Al-Khayyām begins by examining these cases. 
 
• If H = AC, the problem is impossible. 
Three cases present themselves again according to whether the solution 

x0 is equal to, greater than, or less than H.  

For x0 = H, ax0
2 = H 3 = c , which is impossible. 

For x0 < H, ax0
2 < c , whence ax0

2 < c < x0
3 + c , which is absurd. 

For x0 > H, x0
3 > ax0

2 , which is also absurd. 
• If H > AC, the problem is a fortiori impossible. 
For x0 = H, x0 > a and x0

3 > ax0
2 , which is impossible. 

For x0 < H, ax0
2 < H 3 = c , since H > a, which is also impossible. 

For x0 > H, x0
3 > ax0

2 , since H > a, which is impossible. 
One thus has the necessary condition H < AC, that is, c < a3. 
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Since H < AC, take a point B on AC such that BC = H, and let us 
examine three cases of the figure, namely (1) BC = AB, (2) BC > AB and 
(3) BC < AB. 

First case of figure: BC = AB ⇔ c
1
3 = a

2
. 

AB
C

DE

G

H

I

 
Fig. 12 

 
Complete the square DC and trace the hyperbola H that passes 

through D and admits AC and CE as asymptotes. Trace also the parabola P 
with summit A, axis AC and latus rectum BC. The parabola P  passes 
through D, for 

DB2 = AB · BC, 

which is the equation of the parabola, therefore H and P intersect at D. 
But P cuts H at another point, as al-Khayyām notices but without justi-
fying it.  

Second case of figure: BC > AB ⇔ c
1
3 > a

2
. 

AB
C

DE

G

H

I
K

L

 
Fig. 13 
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Let us complete the square DC; let us trace the hyperbola H passing 
through D, and the parabola P.  Point D is exterior to the parabola for 

 
DB2 > AB · BC. 

 
If P  and H   intersect or are tangent at a point D1 ≠ D, the projection 

of D1 onto AC is necessarily between A and B, and the problem is possible; 
otherwise, it is not. For the demonstration of this conclusion, see the 
commentary. 

 

Third case of figure: BC < AB ⇔ c
1
3 < a

2
. 

H

ABC

DE

G

I
K

 

Fig. 14 

 
In this case, point D is interior to parabola P ; H and P therefore 

intersect in two points.  
In all these cases of figure, let I be one of the two intersections of H 

and of P.  Let G be the projection of I onto CA in Fig. 13. One has (IC) = 
(DC), according to the equation of H.  Therefore 

 
GC

BC
=

BC

IG
. 

 
But I ∈ P,  whence IG2 = AG · BC. Therefore 
 

BC

IG
=

IG

GA
, 

 
therefore 
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GC

BC
=

BC

IG
=

IG

GA
, 

 
whence 

GC2

BC2 =
BC

GA
, 

 
whence 

c = BC3 = GC2 · GA, 
 

therefore 
c + GC3 = GC2 (GA + GC) = GC2 · CA = a · GC2, 

 
therefore GC is the solution. 

 
One proceeds in the same way for the two other cases of figure.  

For the third case of figure c
1
3 < a

2

⎛

⎝
⎜

⎞

⎠
⎟ , two distinct solutions correspond 

to two points of intersection of H and P. 
Let us comment on the text of al-Khayyām. We have noted that al-

Khayyām demonstrates that if c
1
3 ≤ a

2
, the problem is always possible. The 

case a
2

< c
1
3 < a  thus warrants discussion. Let us consider the first two cases, 

that is, c
1
3 ≥ a

2
. In each case, al-Khayyām has shown that the problem is 

impossible. In the third case, that is, when a > c
1
3 , he has shown that there 

are three cases of figure, according to whether c
1
3  is equal to, greater than, 

or less than 
a

2
. 

For the choice of two curves, one reduces the equation to the propor-
tion: 

CG2

BC2 =
BC

GA
. 

 
One introduces GI perpendicular to BC such that  

 
CG

BC
=

BC

GI
, 

 
so that 



132 PART  I:  ALGEBRA 

CG2

BC2 =
CG

GI
 

and the equation becomes 
 

CG

GI
=

BC

GA
 or 

CG

BC
=

GI

GA
 or again 

BC

GI
=

GI

GA
. 

 
The point I such that CG · GI = BC2 and GI2 = BC · GA lies at the inter-

section of hyperbola H   with parabola P. 
Note, moreover, that this choice of curve is identical to that of the 

equation x3 + ax2 = c, which al-Khayyām had studied earlier. The only dif-
ference that accounts for the change in the sign of the coefficients, is that 
the concavity of the hyperbola is turned in the other direction.  

 
In other words, consider the system of axes (CA, CE), that is (Ox, Oy), 

and let the point D (c
1
3 ,c

1
3 ) be given. This equation is rewritten as 

 

c
1
3 a − x( ) = c

4
3

x2
, 

 
since zero is not a solution.  

Let us posit 

     y = c
2
3

x
,    equation of H  

 

    y2 = c
1
3 a − x( ) ,    equation of P. 

 

1) If c
1
3 = a

2
, then D ∈ P since c

2
3 = c

1
3 a − c

1
3

⎛

⎝
⎜

⎞

⎠
⎟ . Al-Khayyām then claims 

that P and H intersect at another point I (x, y). The problem has two 

solutions. To obtain the second solution, one knows that if c
1
3 = a

2
, x1 = c

1
3  is 

a solution. In this case, the second root is equal to x2 = c
1
3

2
1+ 5( ) . 

 

2) If c
1
3 > a

2
, the point D is exterior to P,  since c

2
3 > c

1
3 a − c

1
3

⎛

⎝
⎜

⎞

⎠
⎟ . 
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If therefore H  and P   have in common two points of intersection or if 
they are tangent at one point, their abscissas necessarily verify  

 

c
1
3 < x < a , 

 
and the problem has one solution; if the two curves are tangent, two solu-
tions if they intersect in two points; and no solutions if they do not inter-
sect. The abscissas of these two points of intersection are on the same side 

of BC = c
1
3 ; let us demonstrate that they are larger. The polynomial x3 – ax2 

+ c reaches a minimum for x =
2a

3
 and its value is 

27c − 4a3

27
; the condition 

of existence of the roots is therefore c
1
3 ≤ a 43

3
. 

Note that the ordinates y1, y2 of the abscissa points x =
2a

3
 on the hyper-

bola and the parabola, respectively, are determined by y1 = 3c
2
3

2a
 and 

y2
2 = ac

1
3

3
; the condition c

1
3 ≤ a 43

3
 means that y1 ≤ y2, that is, that the point of 

the hyperbola is interior to the parabola. The value 
2a

3
 occurs between the 

two roots of the equation and one must verify that c
1
3 < 2a

3
, namely 

27c < 8a3, a consequence of the condition of possibility. 
 

3) If c
1
3 < a

2
, then H  and P  necessarily intersect in two points and the 

problem has two solutions. Indeed, given I (x0, y0) ∈ P ∩ H,  one has 

x0

c
1
3

= c
1
3

y0

=
y0

a − x0

, 

whence 
c = x0

2 a − x0( ). 
 

Finally, let us remark that if it is easy to obtain the condition c
1
3  < a by 

comparison with the respective ‘weights’ of the monomials of equation 

(x3 < ax2 ⇒ x < a, and c < ax2 < a3 ⇒ c
1
3  < a), it is more difficult to obtain 
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the condition c
1
3  < x < a without geometrical considerations about the 

asymptotic behaviors of curves. Since CE is an asymptote to H, all the 
points of the latter have their abscissas to the right of C. But by construc-
tion, the points of P have their abscissas to the left of A. It is therefore the 
case that every point belonging to the intersection of H and P   belong to 
the projection between C and A, whence 0 < x < a. From the convexity of 
H and the concavity of P, one concludes that they cannot intersect to the 

left of D. If therefore (x, y) is a point of intersection, one has c
1
3  < x; 

whence the condition c
1
3  < x < a; it was perhaps in some equivalent fashion 

that al-Khayyām found this inequality. 
Finally this seminal discussion of al-Khayyām the algebraist, that is the 

conditions he found, represents a step on the road that would establish the 
existence of the positive root. It is therefore not a matter of finding neces-
sary and sufficient conditions. To complete them, al-Khayyām’s successor, 
Sharaf al-Dīn al-Ṭūsī,29 took another road by determining first the maxi-
mum of the expression x2(a – x). 
 

To elaborate this new theory, al-Khayyām was forced better to con-
ceive and to formulate the new relations between geometry and algebra. 
Recall in this regard that the fundamental concept al-Khayyām introduced 
is that of the unit of measure: suitably defined in relation to that of dimen-
sion, it makes possible the application of geometry to algebra. This appli-
cation now leads al-Khayyām in two directions that may at first glance 
seem contradictory. Whereas algebra is now identified with the theory of 
algebraic equations, al-Khayyām seems from now on to transcend, how-
ever timidly, the gap between algebra and geometry. The theory of equa-
tions is more than ever before the meeting ground of algebra and geometry, 
and increasingly of analytical reasoning and methods. The concrete trans-
lation of this situation is the appearance of treatises fully devoted to the 
theory of equations, such as that of al-Khayyām, as a matter of fact. Indeed, 
in contrast to the algebraist arithmeticians, al-Khayyām leaves out of his 
treatise the chapters devoted to polynomials, to the arithmetic of polynomi-
als, to the study of algebraic irrationals, etc. He shapes on the contrary a 
new model of composition: he begins with a discussion of the concept of 
algebraic quantity in order to define the concept of unit of measure; he then 

 
29 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques. Algèbre et géométrie 

au XIIe siècle, Collection Sciences et philosophie arabes – textes et études, 2 vols, Paris, 
Les Belles Lettres, 1986, vol. I. 
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moves on to the necessary lemmas as well as to a formal classification of 
equations as a function of the number of terms, and finally to examine, in 
order of increasing difficulty, the binomial equations of the second degree, 
the binomial equations of the third degree, the trinomial equations of the 
second degree, the trinomial equations of the third degree, and finally, the 
equations that contain the inverse of the unknown. In his treatise, al-
Khayyām attains two remarkable results, which historians usually attribute 
to Descartes: on the one hand, a general solution of all third-degree equa-
tions by means of the intersection of two conics; on the other, a geometrical 
calculus made possible by the choice of a unit of length, while remaining, 
contrary to Descartes, faithful to the rule of homogeneity. 

Al-Khayyām does not stop here, however. He also attempts to give an 
approximate numerical solution to the cubic equation. Thus, in a treatise 
called Risāla fī qismat rubʿ al-dāʾira (On the Division of the Quadrant of a 
Circle),30 in which he announces his new project on the theory of equa-
tions, he reaches an approximate numerical solution by means of trigono-
metric tables.  

 
 

5. THE TRANSFORMATION OF THE THEORY OF ALGEBRAIC EQUATIONS: 
SHARAF AL-DĪN AL-ṬŪSĪ 

 
Until very recently, people believed that the contribution of mathemati-

cians of the time to the theory of algebraic equations was limited to al-
Khayyām and his work. This is not so. Not only did the work of al-
Khayyām inaugurate a genuine tradition, but what is more, the latter was 
profoundly transformed scarcely a half century after his death. 

According to historical testimony, the student of al-Khayyām, Sharaf 
al-Dīn al-Masʿūdī,31 composed a book that treats the theory of equations 
and the solution of cubic equations. But if this book was once written, it 
certainly never reached us. Two generations after al-Khayyām, we 
encounter one of the most important works in this current: the treatise by 
Sharaf al-Dīn al-Ṭūsī on The Equations.32 Now by comparison with al-
Khayyām’s treatise, that of al-Ṭūsī (c. 1170) introduces very important 
innovations. Unlike his predecessor’s, al-Ṭūsī’s procedure is no longer 
global and algebraic, but local and analytical. This change, which is of 

 
30 See our edition, translation, and commentary in Rashed and Vahabzadeh, Al-

Khayyām mathématicien, Partie I; English transl., pp. 97 ff. 
31 R. Rashed, ‘Résolution des équations numériques et algèbre: Sharaf al-Dīn al-

Ṭūsī – Viète’, Archive for History of Exact Sciences, 12.3, 1974, pp. 244–90. 
32 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques. 
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peculiar importance in the history of classical mathematics, deserves a 
longer examination.  

The treatise of al-Ṭūsī opens with a study of two conical curves, which 
he will later use: the parabola and the hyperbola; adding to them the circle, 
assumed as known, exhausts all the curves to which he will appeal. Indeed 
al-Ṭūsī seems to assume that his reader is familiar with the equation of the 
circle, obtained from the power of a point in relation to the latter, and he 
uses this preliminary part to establish this equation of the parabola, and the 
equation of the equilateral hyperbola, in relation to two systems of axes. 

Next comes a classification of equations of degree less than or equal to 
three. Contrary to al-Khayyām, al-Ṭūsī chooses a criterion of classification 
that is not intrinsic, but extrinsic. Whereas al-Khayyām, as noted, organizes 
his presentation according to the number of monomials that form the equa-
tion, al-Ṭūsī’s criterion for the succession of equations is the existence of 
positive solutions or the lack thereof; in other words, the equations are 
organized according to whether they admit ‘impossible cases’ or not. It is 
therefore easy to understand that the Treatise is composed of only two 
parts, corresponding to the preceding alternative. In the first part, al-Ṭūsī 
treats the solution of twenty equations; in each case, he proceeds to the 
geometrical construction of the roots, the determination of the discriminant 
only for the quadratic equations, and finally the numerical solution by 
means of the so-called method of Ruffini-Horner. He reserves the applica-
tion of this method for polynomial equations, and no longer only for the 
extraction of the root of a number.  

By now already, we can therefore see the constitutive elements of the 
12th-century theory of equations in the tradition of al-Khayyām: the geo-
metrical construction of roots, the numerical solution of equations, and 
finally the return to solutions by radicals of quadratic equations, rediscov-
ered in this case on the basis of the geometrical construction. In the first 
part, after having studied the second-degree equations and the equation 
x3 = c, al-Ṭūsī examines eight third-degree equations. The first seven all 
have a single positive root. They can have negative roots, which al-Ṭūsī 
does not recognize. To study each of these equations, he chooses two 
second-degree curves or, more precisely, two portions of curves. By means 
of geometrical considerations, he shows that the considered arcs have a 
point of intersection whose abscissa verifies the proposed equation (they 
may have other points of intersection). Except for a few details about 
which he remains silent but which he verifies in the data he chooses, the 
geometrical properties that al-Ṭūsī describes are characteristic properties, 
and consequently lead to the equations of the curves he has used. Thanks to 
his use of the terms ‘interior’ and ‘exterior’, al-Ṭūsī draws on the continu-
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ity of curves and on their convexity. One can translate thus his procedure 
for the equation  

x3 – bx = c  b, c > 0; 
 

he effectively considers the two expressions 

g(x) = x
c

b
+ x

⎛ 
⎝ 

⎞ 
⎠ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

1
2

 and f (x) = x2

b
 

 
and shows that, if there exist α and β such that  

 
(f – g) (α) > 0 and (f – g) (β) < 0,  

 
then there exists γ ∈ ] α, β [ such that (f – g) (γ) = 0.  

 
Upon reading this first part, ones sees that al-Ṭūsī, just like al-

Khayyām, mainly studies the geometrical construction of the positive roots 
of these twenty equations of degree ≤  3, since the remaining ones will be 
reduced with the aid of affine translations to one or the other of these 
equations. In a manner analogous to that of al-Khayyām, he proceeds by 
means of plane geometrical constructions if the equation, reduced as much 
as possible, is of the first or second degree, and by means of constructions 
using two of the three curves mentioned above, if the simplest form of the 
equation is cubic.  

Whereas the first part of the Treatise depends narrowly on al-
Khayyām’s contribution, one nevertheless already sees differences, the 
consequences of which will not appear until the second part. Indeed, for 
each equation he studies, al-Ṭūsī demonstrates the existence of the point of 
intersection of two curves, whereas al-Khayyām truly undertakes this study 
only for the twentieth equation. Also, al-Ṭūsī has introduced several 
notions, which he will use heavily in the second part, such as the affine 
transformations, the distance of a point to a straight line.  

The second part of the Treatise is devoted to five equations that admit, 
according to al-Ṭūsī’s expression, ‘impossible cases’, that is, cases for 
which no positive solution exists. They are the following equations:  

 
(1) x3 + c = ax2 

(2) x3 + c = bx 
(3) x3 + ax2 + c = bx 
(4) x3 + bx + c = ax2 

(5) x3 + c = ax2 + bx. 
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Contrary to al-Khayyām, al-Ṭūsī could not be satisfied with simply 
pointing out these ‘impossible cases’. Indeed, concerned as he was with 
proving the existence of points of intersection and therefore the existence 
of roots, he therefore had to characterize such cases and find the reason 
behind them. It is precisely the intersection of this technical problem with 
the question that followed from it that led al-Ṭūsī to break with the tradi-
tion of al-Khayyām in order to modify his original project. In order to 
understand this profound shift, it is necessary to analyze al-Ṭūsī’s 
procedure.  

Each of the five equations is written in the form f(x) = c; f is a polyno-
mial. To characterize the ‘impossible cases’, al-Ṭūsī studies the intersection 
of the curve representative of y = f(x) with the straight line y = c. For al-
Ṭūsī, this is a portion of the curve, one for which x > 0 and y = f(x) > 0, 
obtain simultaneously, and a portion that may not exist. Thus, in equation 
(1), he sets as a condition 0 < x < a; in equation (2), 0 < x < √b; in (3), he 
gives the condition 0 < x < √ b, which is not sufficient. Al-Ṭūsī is thus 
forced to examine the relations between the existence of solutions and the 
position of the constant c in relation to the maximum of the polynomial 
function. It is at this point that he introduces new concepts, new proce-
dures, and a new language; much more importantly, he defines a new 
object. He thus begins by formulating the concept of the maximum of an 
algebraic expression, which he designates by ‘the greatest number (al-
ʿadad al-aʿẓam)’. Let f(x0) = c0 be the maximum; the latter gives the point 
(x0, c0). Al-Ṭūsī next determines the roots of f(x) = 0, that is, the intersec-
tion of the curve with the axis of the abscissas; finally, from this he 
deduces the upper and lower bounds of the roots f(x) = c. 

For him, then, the entire problem is now to find the value of x that 
gives the maximum of f(x). Al-Ṭūsī then proceeds to the solution of an 
equation, that, even if it is written differently, is none other than f′(x) = 0, 
where f′ is the polynomial, the derivative of f. But before confronting the 
central problem of the derivative, let us note the change and the introduc-
tion of local analysis. Let us begin by recalling al-Ṭūsī’s results. For equa-
tion (1), the derivative admits two roots, 0 and 2a/3, which yield respec-
tively a minimum f(0) = 0 and a maximum f(2a/3) = c0. Conversely, the 
equation f(x) = 0 admits a double root λ1 = 0 and a positive root λ2 = a. Al-
Ṭūsī thus concludes that if c < c0 the equation (1) has two positive roots x1 
and x2 such that λ1 = 0 < x1 < x0 < x2 < λ2 = a. Note that there is a third root, 
x3, which is negative and al-Ṭūsī does not consider. For equations (2), (3) 
and (5), his reasoning is similar. In these three cases, the derivative admits 
two roots with contrary signs. The positive root x0 gives the maximum c0 = 
f(x0) and the equation f(x) = 0 admits three simple roots, one of which is 
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negative, and the others are λ1 = 0 and λ2, whence the preceding conclu-
sion. To illustrate better al-Ṭūsī’s procedure, let us summarize his discus-
sion of equation (1). This equation is rewritten: 

 
c = x2(a – x) = f(x). 

 
Al-Ṭūsī considers three cases: 

• c > 
4a3

27
; the problem is impossible according to al-Ṭūsī  

(it admits a negative root);  

• c = 
4a3

27
; al-Ṭūsī determines the double root x0 = 

2a

3
  

(but does not recognize the negative root); 

• c < 
4a3

27
; al-Ṭūsī determines the two positive roots,  

with 0 < x1 < 
2a

3
 < x2 < a. 

 
He then studies the maximum of f(x); he shows that  
 

(*) f x0( ) =
0<x<a
sup f (x)   with x0 = 

2a

3
, 

 
by proving first 

 
a)  x′ > x0 ⇒ f(x′) < f(x0), 

then 

b)  x″ < x0 ⇒ f(x″ ) < f(x0); 
 

it is from a) and b) that he draws (*) above. 

To find x0 = 
2a

3
, al-Ṭūsī solves f′(x) = 0. He then calculates 

f x0( ) = f
2a

3
⎛ 
⎝ 

⎞ 
⎠ =

4a3

27
, 

which allows him to justify the three cases he considered earlier. He next 
determines the two positive roots x1 and x2. He posits x2 = x0 + y; this affine 
transformation leads him to the equation 
 

y3 + ay2 = k, 



140 PART  I:  ALGEBRA 

with k = c0 – c = 4a3

27
 – c, an equation that he has already solved in the first 

part of the Treatise. He next justifies this affine transformation. He also 
proceeds to the affine transformation x1 = y + a – x2, with y being a positive 
solution of an equation previously solved in the Treatise. Al-Ṭūsī again 
justifies this last affine transformation and finally shows that x1 ≠ x0 and 
x1 ≠ x2. 

A difficulty arises in equation (4), for the maximum f(x0) can be nega-
tive. Al-Ṭūsī then imposes a necessary condition, in order to consider only 
the case in which f(x0) > 0, and proceeds as he has done earlier. The equa-
tion f′(x) = 0 then has two roots x′0 and x0 (x′0 < x0), to which there corre-
spond respectively a negative minimum and a positive maximum. Al-Ṭūsī 
considers only the root x0 and obtains c0 = f(x0).  Moreover the equation 
f(x) = 0 in this case has three roots: 0, λ1 > 0, λ2 > 0, with λ1 < λ2. From 
this, al-Ṭūsī deduces that for c < c0, equation (4) has two positive roots x1 

and x2 such that 
0 < λ1 < x1 < x0 < x2 < λ2.  

 

Box 3 
Let’s take the example of the numerical solution of the equation  x3 = bx + N. 
Al-Ṭūsī writes: ‘To determine the number that is sought, we place the number in 

the table and we count its rows by cubic root, no cubic root, cubic root. We place the 
zeros of the cubic root, we also count <the rows> of the number by root, no root, until 
we arrive at the homonymous root of the last affected place of cubic root. We next 
place the number of the roots, and we count its rows by root, no root. The homony-
mous row of the last affected place of root for this number of roots is the last row of 
the root of the number of roots. The problem has three cases. 

First case: in which the homonymous root of the last affected place of cubic root 
is higher than <the row> of the last part of the number of roots, as when we say: a 
number with the form 3 2 7 6 7 0 3 8 plus nine hundred sixty-three roots equal a cube. 
We count from the homonymous root of the last affected place of cubic root to the last 
row of the number of roots, and we count the same number beginning from the last 
affected place of cubic root in this direction; and where we reach that point, we place 
the last part of the number of roots reduced to a third; one then obtains this figure: 

     3 2 7 6 7 0 3 8.  

      3 2 1 
Since the homonymous root of the last affected place of cubic root is the third 

affected place of root, it is in the row of the tens of thousands, which is higher than the 
last row of the number of roots, which is in <the row> of the hundreds. We count 
starting from the row of the homonymous root of the last affected place of cubic root 
until the hundreds, and we count with this number also from the row of the last 
affected place of cubic root; one reaches the tens of thousands; we place the last part 
of the third of the number of roots in this row and next we place the cubic root that is 
sought, which is three, in place of the last zero. We subtract its cube from what is 
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under it, we multiply it by the rows of the third of the number of roots and we add 
three times the product to the number. We place the square of the sought number par-
allel to it under the number according to this figure:  

      3 
       6 0 5 5 9 3 8  
             3 2 1 
       9 
We subtract a third of the number of roots from the square of the sought number. 

We eliminate the third of the number of roots, and this figure then remains:  
      3 
      6 0 5 5 9 3 8  
      8 9 6 7 9 

We shift the upper line by two rows and the lower line by one row; we place the 
second sought number, two, and we subtract its cube from the number; we multiply it 
by the sought number, we add the product to the lower line, we multiply it by the 
lower line, and we subtract three times each product of the number; we add the square 
of the second sought number to the lower line, we multiply it by the first sought num-
ber, we add the product to the lower line, and we shift the upper line by two rows and 
the lower line by one row. We place another sought number, which is one; we subtract 
its cube from the number, we multiply it by the first sought number and by the second, 
we add the result to the lower line, we multiply it by the lower line, and we subtract 
three times the product of this number. The upper line is then the figure 3 2 1 which is 
the root we sought. 

Second case: in which the last row of the number of roots is higher than the 
homonymous root of the last affected place of cubic root, as when we say: roots in 
number equal to 1 0 2 0 2 1 plus a number of the form 3 2 7 4 2 0 equal a cube. 

We count the number of roots by root, no root, and we add to the number two 
rows by having two zeros precede it; we seek the highest affected place of root corre-
sponding to the number of roots; we then place the zeros of the cubic root; then we 
seek the homonymous cubic root of this affected place of root (the highest). We shift 
the row of the number of roots parallel to this root so that it will be parallel to the 
cubic root homonymous to it. We place the other rows of the number of roots, in 
order; one then has the figure: 

      0 0 3 2 7 4 2 0  
       1 0 2 0 2 1 

for the highest place (affected of root) that corresponds to them is the third, and it is in 
the column of the tens of thousands: its homonym is the third affected place of cubic 
root which is in the <column> of the thousands of thousand. We shift the row of the 
tens of thousands by the number of roots so that it will be parallel to the affected place 
of the third cubic root, and we look for the greatest number such that one can remove 
its square by the number of roots; it is three; we place it in the third affected place of 
cubic root; we multiply it by the rows of the number of roots, we add the product to 
the number and we remove its cube from the number. We reduce the number of roots 
to a third; it will then begin in the row of the hundreds according to this configuration:  

      3 
      3 9 3 3 7 2 0.  

       3 4 0 0 7 
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Next we place the square of the sought number parallel to it under the number; 
one subtracts from it the third of the number of roots and one eliminates the line that is 
the third of the number of roots; we shift the upper line by two rows and the lower line 
by one row and we apply the procedure to the end.’33 

 
This quick recapitulation shows that the presence of the concept of 

derivative is neither fortuitous nor secondary, but on the contrary inten-
tional. Moreover, this is not the first time that one encounters the expres-
sion of the derivative in the Treatise. Al-Ṭūsī had already introduced it to 
build his method for the numerical solution of equations. Indeed, this 
method is organized in the following way: al-Ṭūsī determines the first digit 
of the root as well as its decimal order. The root is then written x = s0 + y, 
with s0 = σ0 10r (r is the decimal order). He next determines the second 
digit by means of the following equation in y: f(s0 + y) = 0; the algorithm 
that is named Ruffini-Horner then serves to determine the different terms 
of the preceding cubic equation in y. The algorithm introduced by al-Ṭūsī is 
used to dispose the calculations for the smallest possible number of multi-
plications, and it is nothing but a slight modification of the algorithm of 
Ruffini-Horner, which he adapts to cubic equations. Al-Ṭūsī then brings 
out as coefficient of y the value f′(s0) of the derivative of f in s0. He obtains 
the highest possible digit of y, that is, the second digit of the sought root, by 
taking the integer part of  

− f s0( )
′f s0( )

; 

 
one can recognize here the method called ‘of Newton’ for the approximate 
solution of equations. After having determined the second digit, which is 
the first of y, one applies the same algorithm to the equation in y, in order 
to find the third digit, and one continues in this fashion until one obtains 
the root, which is an integer in the cases that al-Ṭūsī considers (see Box 3). 
But if it were not an integer, one would find the digits after the decimal 
point for the cases in which the root is not an integer, as attested by the text 
of al-Iṣfahānī in the 18th century.34 

If there is no doubt about the presence of the expression of the deriva-
tive, it remains that al-Ṭūsī does not explain the route by which he reached 
such a concept. To understand better the originality of his procedure, let us 
consider the example of equation (3), which can be rewritten 

 
f(x) = x(b – ax – x2) = c. 

 
33 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques, vol. I, pp. 49–52. 
34 Ibid., vol. I, pp. 118 ff. 
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The fundamental problem is to find the value x = x0 that yields the 
maximum. It is in explaining the passage from equation (3) to two equa-
tions solved earlier by means of affine transformations  

 
x →  y = x – x0  and  x →  y = x0 – x ,   

 
that al-Ṭūsī gives 

 
f(x0 ) – f(x0 + y) = 2x0 (x0 + a)y – (b – x0

2 )y + (3x0 + a)y2 + y3, 
and 

f(x0 ) – f(x0 – y) = (b – x0
2 )y – 2x0 (x0 + a)y + (3x0 + a)y2 – y3. 

 
Al-Ṭūsī had to compare f(x0) to f(x0 + y) and to f(x0 – y) by remarking 

that on ] 0 , λ2 [, the terms 
 

y2 (3x0 + a + y)  and  y2 (3x0 + a – y) 
 

are positive. Next he was able to deduce from the two equalities that  
 
  if b – x0

2  ≥ 2x0 (x0 + a), one has f(x0) > f(x0 + y); 
  if 2x0 (x0 + a) ≥ b – x0

2 , one has f(x0) > f(x0 – y); 
 

and therefore 

  b – x0
2  = 2x0 (x0 + a) ⇒ 

f x0( ) > f x0 + y( )
f x0( ) > f x0 − y( )

⎧
⎨
⎪

⎩⎪
. 

 
In other words, if x0 is the positive root of equation 

 
f′(x) = b – 2ax – 3x2 = 0, 

 
then f(x0) is the maximum of f(x) in the interval considered. Note that the 
two equalities correspond to the Taylor series with 

 

′f x0( ) = b − 2ax0 − 3x0
2,    1

2!
′′f x0( ) = − 3x0 + a( ),    1

3!
′′′f x0( ) = −1. 

 
It would seem that al-Ṭūsī’s procedure consists in ordering f(x0 + y) and 

f(x0 – y) according to the powers of y and to show that the maximum occurs 
when the coefficient of y in this series is 0. The value of x that makes f(x) a 
maximum is thus the positive root of the equation represented by the 



144 PART  I:  ALGEBRA 

equation f′(x) = 0. The virtue of the affine transformations x → x0 ± y, with 
x0 as the root of f′(x) = 0, is to make the y term disappear from the new 
equation. It is probably from this property that al-Ṭūsī discovered the 
derivative equation f′(x) = 0, perhaps in connection with the consideration 
of the curve representing f which he never traces in the Treatise: for a small 
y, the main part of the series of f(x0 ± y) is in y2 and does not change signs 
with y. We have shown that in his search for the maxima and minima of 
polynomials, al-Ṭūsī’s procedure resembles like a sister that of Fermat.35 

We have thus just seen that the theory of equations is no longer only 
this one chapter of algebra, but encompasses a much larger domain. Under 
this theory, the mathematician brings together the geometrical study of 
equations and their numerical solutions. He poses and solves the problem 
of the conditions of possibility of each equation, which leads him to study 
systematically the maximum of a third-degree polynomial by means of a 
derivative equation. During his numerical solution, he not only applies 
certain algorithms in which one once again encounters the concept of 
derivative of a polynomial, but also attempts to justify these algorithms by 
means of a concept of ‘dominant polynomials’. This is clearly very high-
level mathematics for the period; let us say simply that here already one 
touches upon the limits of mathematical research that can be carried out 
without efficacious symbolism. Indeed al-Ṭūsī carries out all of his 
research in natural language, without any symbolism at all, except for a 
certain tabular symbolism, which makes it particularly complicated. A dif-
ficulty of this sort indeed emerges as an obstacle not only to the internal 
progress of the research itself, but also to the transmission of its results. In 
other words, as soon as the mathematician manipulates analytical notions 
like those mentioned above, natural language quickly proves to be inade-
quate to express the concepts and the operations that are applied to them, 
and limits innovation as well as the diffusion of this mathematical 
knowledge. Al-Ṭūsī’s successors very probably faced the same obstacle 
until mathematical notation was truly transformed, beginning with 
Descartes in particular.  

But the example of al-Ṭūsī suffices to show that the theory of equations 
not only was transformed after al-Khayyām, but also continued to diverge 
ever more from the search for solutions by radicals; it thus ended up by 
covering a vast domain that included sectors that will later belong to ana-
lytical geometry or simply to analysis.  

 
 

 
35 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques, vol. I, p. XXVII. 
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6. THE DESTINY OF THE THEORY OF EQUATIONS 
 
But what was the destiny of this theory of cubic equations that al-

Khayyām constituted and that al-Ṭūsī transformed? Future historical 
research alone will be able to give a true answer to this question. But let’s 
not nourish false hopes. To go beyond al-Khayyām and al-Ṭūsī, it was 
necessary to conceive not only an efficacious symbolism – not simple 
abbreviations, as one finds them in al-Qalaṣādī – but especially a new 
mathematical program that would lead beyond conic curves to tackle the 
study of algebraic curves by means of equations. In short, the true 
successors of al-Khayyām and of al-Ṭūsī are Descartes and Fermat.36 This 
insight in no way prevents us from following, in the domain of the history 
of Arabic mathematics, the works from the posterity of al-Khayyām and al-
Ṭūsī. The first successor is al-Ṭūsī’s very own student: Kamāl al-Dīn ibn 
Yūnus, the mathematician of Mosul. He takes up again the most difficult 
equation that al-Khayyām and al-Ṭūsī had examined, the twenty-fifth in 
their classification:  

  (1)  x3 + c = ax2 + bx . 
 
Al-Khayyām37 distinguishes the three cases of c < ab, c = ab, or c > ab 

and in the first case distinguishes the greatest positive root, x2 > a . Sharaf 
al-Dīn al-Ṭūsī, for his part, gives a complete discussion and distinguishes 
the following cases:  

a = b : he shows in this case that the equation 3x2 − 2ax − a3 = 0  has a 
positive root, x0 = a , and he finds c0 = ab , whence c < ab is a necessary 
and sufficient condition for equation (1) to have two positive roots, 

0 < x1 < a < x2 < 2a . For the two other cases, a > b  and a < b , al-Ṭūsī 
discusses in a similar manner the necessary and sufficient conditions for 
the existence of positive roots.  

Ibn Yūnus seems to start with the study of al-Khayyām, in order to 
complete it and to determine the smallest positive root. He proceeds with 
the help of two methods to determine x1 < a . The second corresponds to 
that of al-Khayyām: the intersection of an equilateral hyperbola with a 

 
36 See below, ‘Descartes’s Géométrie and the distinction between geometrical and 

mechanical curves’ and ‘Fermat and algebraic geometry’. 
37 R. Rashed and B. Vahabzadeh, Al-Khayyām mathématicien, pp. 82–4; English 

transl., pp. 81–2. 
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second hyperbola.38 This is therefore research in the wake of al-Khayyām, 
destined to complete this study following the same, or a similar, method.  

Kamāl al-Dīn ibn Yūnus’s student, the astronomer and mathematician 
Athīr al-Dīn al-Abharī (d. 1262), composed an algebraic treatise that has 
reached us in an incomplete state, as the scribe himself testifies. In the sur-
viving part, however, al-Abharī applies to the equation x3 = a  al-Ṭūsī’s 
method of numerical solution, and on the same terms as the latter. He is 
also familiar with the use of affine transformations to reduce one equation 
to another. Thus, even when he discusses the three canonical types of 
second-degree equation, he considers x2 = px + q , recalls that x > p, posits 
that x = y + p and returns to the previously studied equation y2 + py = q .  

Al-Khilāṭī, another algebraist from this era, reminds the reader that al-
Ṭūsī was ‘the master of his master’ and studied cubic equations, but that 
Al-Khilāṭī himself remains faithful to the tradition of al-Karajī.39 Other 
witnesses from the period mention al-Ṭūsī, but nothing that has come down 
to us thus far indicates that any other mathematician picked up on al-Ṭūsī’s 
theory.40  

 
Much later, 18th-century mathematicians in the school of Iṣfahān, such 

as al-Iṣfahānī, give in the treatise mentioned above an interesting method 
for finding the positive root of a cubic equation, one based on the property 
of the fixed point.41  

 
38 Ibid., pp. 83–4. 
39 Nūr al-Dalāla fī ʿilm al-jabr wa al-muqābala, ms. of the University of Teheran, 

no. 4409, fol. 2. 
40 See Shams al-Dīn al-Mārdīnī, Niṣāb al-ḥabr fī ḥisāb al-jabr, ms. Istanbul, 

Feyzullah, no. 1366, fols 13–14. 
41 See the chapter on algorithmic methods, pp. 387 ff. 
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ALGEBRA AND LINGUISTICS 

THE BEGINNINGS OF COMBINATORIAL ANALYSIS 
 

 
 
Around the middle of the 17th century, the study of combinations 

presents itself as a full-blown, independent field of research with its own 
dedicated literature. Recall, for example, the Abrégé des combinaisons 
(Summary of Combinatorics), which Frenicle composed in this period but 
published later.1 Consider also the writings devoted to the calculus of 
probabilities, particularly Pascal’s Opuscule on ‘Combinationes’ 
(Combinatorics),2 and later the second part of Jacques Bernoulli’s Ars 
conjectandi,3 as well as many others. Finally recall the De arte 
combinatoria of Leibniz.4 A quick examination shows that research on 
combinations originates in the brand new calculus of probabilities – first as 
a doctrine of chance, then as a genuine calculus of the probable – in 
arithmetical studies, in studies of the universal language and ‘universal 
characteristic’ (Leibniz’s characteristica universalis), a part of theoretical 
philosophy. It is true that, much more than any other discipline, the 
calculus of probabilities revived research on combinations to suit the needs 
of its own constitution. Yet what one witnesses is a genuine self-conscious 
insight: the object ‘combination’ is itself an object of study, independently 
of the places where it occurs. In this self-consciousness resides the 
autonomy, as it were, of combinatorial analysis. Would it therefore be 
legitimate to date the beginning of this chapter to the middle of the 17th 

century? Certainly one would go badly astray if, prior to this era, one 
merely collected here and there a few combinations carried out by 
 

1 Frenicle, ‘Abrégé des combinaisons’, in Divers ouvrages de mathématiques et de 
physique par Messieurs de l’Académie Royale des Sciences, Paris, Imprimerie Royale, 
1693; also in Mémoires de l’Académie royale des sciences, depuis 1666 jusqu’à 1699, 
vol. V, Paris 1729, pp. 87–125. 

2 Pascal, Œuvres de Blaise Pascal, Collection des Grands Écrivains de la France, 
Paris, 1908, vol. III. 

3 Jacques Bernoulli, Ars conjectandi, Basel, 1713.  
4 Leibniz, ‘Dissertatio de arte combinatoria’, in Die philosophischen Schriften von 

G.W. Leibniz, Hildesheim, Georg Olms, 1965. 
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logicians, linguists, alchemists, etc. On the contrary, one would need to 
find analogous situations from which the calculus of probability is absent, 
that is, in which this chapter, a leading factor in the development of 
combinatorial analysis, has not yet been conceived. Arabic mathematics 
offers us just such a situation, for, as far as we know, no study of the 
calculus of probabilities occurs in this mathematics. After noting this 
exception, however, one observes that linguistic studies, research in algebra 
and also in arithmetic (studies of the compounding of ratios), and some 
writings in theoretical philosophy, led mathematicians up to the domain of 
combinations. Moreover, some mathematicians seem to have devoted 
proper treatises to combinations. We know at least one, Ibrāhīm al-Ḥalabī, 
who in the 16th century wrote a book called Fī istikhrāj ʿiddat al-iḥtimālāt 
al-tarkibiyya min ayy ʿadad kāna (On the Determination of Combinable 
Eventualities Starting from Any Given Number),5 which we had the good 
fortune of finding. 

One last item should be noted: whereas some participate in this 
research on combinations, as we shall see from the 8th century on, neither 
the classifiers of the sciences, nor the biobibliographers, neither ancient nor 
modern, mention them: this is the case of al-Fārābī as well as Ibn al-Akfānī 
several centuries later. A similar silence prevails among historians of 
mathematics and of science: it is only recently – four decades ago – that we 
permitted ourselves to speak of combinatorial analysis in Arabic 
mathematics.6 But neither we nor those who followed us have broached the 
legitimacy of this usage, that is, asked ourselves why this great absence had 
never ceased to be present. The answer to this question will no doubt allow 
us a better understanding of the conditions for the formation of the 
discipline, even though the latter still remained unnamed. 

 
 

1. LINGUISTICS AND COMBINATORICS 
 

From the 8th century on, one name dominates several chapters of 
Arabic linguistics: al-Khalīl ibn Aḥmad (718–786). A mathematician, he is 
the author of a book of arithmetic; a musicologist, he is the founder of 
Arabic phonology, of prosody, of lexicography, to say nothing of his 

 
5 Ms. Istanbul, Hamadiye 873; ed. forthcoming. 
6 R. Rashed, ‘Algebra and linguistics: combinatorial analysis in the Arabic 

science’, in R. Cohen (ed.), The Development of Arabic Mathematics: Between 
Arithmetic and Algebra, Boston Studies in the Philosophy of Science, Boston, Reidel, 
1994, pp. 261–74. 
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contributions to grammar and to other linguistic disciplines. His case is 
exceptional and deserves a large book. Here, we consider only his cont-
ribution to lexicography.  

As far as we know, al-Khalīl was the first to conceive the project of 
composing not merely a lexicon, of Arabic, but a dictionary. It is to this 
project that he devoted Kitāb al-ʿayn, which is the first known dictionary. It 
is possible that al-Khalīl wrote only one part, the remainder being the work 
of his student, al-Layth; it is possible that others also participated. Scholars 
who debate these questions of attribution nevertheless agree that the project 
itself is al-Khalīl’s, that it is he who shaped the means of realizing it, and 
that we are indebted to him for one part of this book. 

Al-Khalīl’s project is both clear and precise: to rationalize the 
empirical practice of lexicographers and to extend it so that a single book 
contains the entire vocabulary of Arabic. It is necessary to find the means 
of enumerating exhaustively the words of the language and in addition to 
establish a bi-univocal correspondence between the set of words and the 
entries of the dictionary. It is in this connection that al-Khalīl elaborates the 
theory that may be encapsulated thus: the language is a phonetically 
realized part of the possible language. The words of the latter are obtained 
by combinations and permutations of letters; the words of the former are 
those of the possible language, verify the rules of phonetic compatibility, 
and are effectively used. The lexicographer thus confronts two tasks at 
once: the first is deliberately and uniquely combinatorial; the second is 
phonological. These are the two main tasks that interest us here, but al-
Khalīl has added to them several others; ethnolinguistics, history, etc.  

Al-Khalīl begins by recalling that the roots of Arabic words are at least 
two-lettered, and at most five-lettered. Indeed if the arrangement r at a time 
of the 28 letters of the alphabet, with 1 < r ≤ 5, gives us the set of roots, and 
therefore of words, of the possible language, the language will be formed 
by only one part of the result, limited by the rules of phonology (that is, the 
compatibility of the roots’ phonemes). To construct a dictionary, one must 
therefore constitute first the possible language in order to extract from it, 
according to preceding rules, all the words of the real language. To 
compose his dictionary, al-Khalīl thus begins by calculating the 
combination without repetition of the letters of the alphabet taken r at a 
time, with r = 2, 3, 4, 5; and then the number of permutations of each group 
of r letters. In other words, he calculates 

An
r = r!

n

r

⎛

⎝
⎜

⎞

⎠
⎟  

n = 28 and 1 ≤ r ≤ 5. 
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At this stage, it is important to discover if, in order to obtain these 
results, al-Khalīl proceeded by simple direct enumeration (that is, empiri-
cally), or if earlier he had elaborated rules for the computation of comb-
inations and permutations. Only on this condition will we be able to judge 
if he contributed to combinatorial analysis. 

 The question is a thorny one, because some of al-Khalīl’s writings are 
lost. Fortunately, there survives the following citation from the later 
linguist, Hamza al-Aṣfahānī (or Iṣfahānī), transmitted to us in the Muzhir of 
the famous linguist al-Suyūṭī:  

Al-Aṣfahānī writes: ‘Al-Khalīl mentioned in his Kitāb al-ʿayn that the 
number of these forms (roots) of the language of the Arabs, those used and 
those neglected in the four categories – two-lettered, three-lettered, four-
lettered, and five-lettered – without repetition, is twelve thousand thousand, 
three hundred thousand, five thousand, four hundred and twelve.7  

Al-Aṣfahānī continues by parsing this number in the following way: 
words that are two-lettered 756; three-lettered 19.656; four-lettered 
491.400; five-lettered 11.793.600; the sum is therefore 12.305.412. This 
citation does not appear in the Kitāb al-ʿayn as it has come down to us. 
Perhaps it appeared in another version, or in another of al-Khalīl’s books, 
now lost. However that may be, this quotation was picked up by his suc-
cessors, such as al-Suyūṭī and it effectively corresponds to the work 
accomplished in this last book.  

The numbers cited above are exact and cannot be obtained by direct 
enumeration. Without the shadow of a doubt, al-Khalīl must have pro-
ceeded by means of a genuine computation. But which one?  

To answer this last question, we appeal to a later author who seems to 
perpetuate an old tradition: Ibn Khaldūn in his Prolegomena. According to 
the latter, to obtain the two-lettered roots, al-Khalīl combines a first letter 
with all those that followed, then the second letter with all those that 
followed, and so on. He then sums the whole ‘by a process known among 
the arithmeticians’.8 In other words, he combines the first letter with the 27 
that follow, then the second letter with the 26 that follow, and so on; 

whence the sum k
k=1

2 7

∑ = 378, ‘which one doubles on account of the inversion 

 
7 Al-Suyūṭī ( ̔Abd al-Raḥmān Jalāl al-Dīn–), al-Muzhir fī ʿulūm al-lugha wa-

anwāʿihā, ed. Muḥammad Aḥmad Jād al-Mawla, ̔Alī Muḥammad al-Bijāwī, 
Muḥammad Abū al-Faḍl Ibrāhīm, Cairo, n.d., vol. I, pp. 74–5. 

8 Ibn Khaldūn, al-Muqaddima, Cairo, n.d., p. 548. 
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of the two-lettered words’, hence 756 words. In short, he effectively 

calculates 2!
28

2

⎛

⎝
⎜

⎞

⎠
⎟ . 

To obtain the triliterals, one uses the same calculation. One considers 
the biliterals, namely (a, b) and one combines with this couple all the 
successive letters; likewise for all the other couples. The total number of 
words will be  

1
2

k
k=1

26

∑ k +1( ) = 3.276  words. 

 
But for every triliteral word, one can obtain six words by permutation, 

for a total of 6 ×  3.276 = 19.656; here, too, he calculates 3!
28

3

⎛

⎝
⎜

⎞

⎠
⎟ . Likewise 

for the quadriliterals: 
1
6

k
k=1

25

∑ k +1( ) k + 2( ) = 20.475; 

 

whence 24 ×  20.475 = 491.400, al-Khalīl’s total, that is, 4!
28

4

⎛

⎝
⎜

⎞

⎠
⎟ . Finally, 

for the quadriliterals: 
1
24

k
k=1

24

∑ k +1( ) k + 2( ) k + 3( ) = 98.280 , 

 

whence 120 ×  98.280 = 11.793.600, that is 5!
28

5

⎛

⎝
⎜

⎞

⎠
⎟ . 

 
The whole problem is to know how al-Khalīl effectively proceeded: by 

combination and permutation? or by calculating sums of integers? and, in 
the latter case, did he know the relations between the two? And if so, one 
must suppose either that he knew how to form the figurate numbers as well 
as the relations among these numbers and the formula of combinations, or 
he knew how to compute the sum of powers of natural integers, for the 
fourth and fifth power. Now such calculation does not occur before Ibn al-
Haytham, at the beginning of the 11th century and in a very different 
mathematical context.  

Ibn Khaldūn’s presentation seems to leave no doubt about the matter: 
despite confusion and errors, he suggests that al-Khalīl had proceeded by 
combinations and permutations. This strong suggestion draws directly on 
the probable sources of Ibn Khaldūn. Indeed the latter seems to have 
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gathered his information from Ibn al-Bannāʾ (d. 1321), notably in his book 
Rafʿ al-ḥijāb.9 In this treatise of arithmetic, Ibn al-Bannāʾ explicitly links 
figurate numbers and the combinations used in lexicography, in the 
tradition of al-Khalīl. He thus sets up for the letters of the alphabet n = 28 
and for 1 < r ≤ 5 

n

r
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = Fk

r

k =1

n −r +1

∑ =
n n − 1( )… n − r +1( )

r !
 

with Fk
r  the kth figurate number of order r. 

During his demonstration by archaic recurrence,10 he uses 
 

n

r

⎛

⎝
⎜

⎞

⎠
⎟ = n − r +1

r

n

r −1

⎛

⎝
⎜

⎞

⎠
⎟  

and knows the rules that, in our notation, we can express thus:  
 

(n) r = n n −1( )… n − r +1( )
n( )n = n!

. 

 
To be sure Ibn al-Bannāʾ does not study figurate numbers with the 

generality that one finds in his contemporary al-Fārisī, but the meaning is 
there for 1 < r ≤ 5. What matters here, however, is the articulation of 
combinatorial formulas based on knowledge of the arithmetic triangle, the 
law of its formulation, and the lexicography of al-Khalīl. There is therefore 
not the slightest doubt about either the combinatorial interpretation of 
formulas, or the manner of obtaining the sum of natural integers presented 
by Ibn al-Bannāʾ and probably borrowed – rather awkwardly – by Ibn 
Khaldūn. 

But Ibn al-Bannāʾ himself seems to belong to a tradition that articulated 
the combination of lexicography and knowledge of the arithmetic triangle. 
Thus Ibn al-Munʿim (d. 1228) also tried to find all the words of the 
language, and not only the roots. After recalling the project of al-Khalīl, he 
wants to extend it to all Arabic words, whose maximum length is no more 
than 10 letters out of an alphabet of 28 letters. He conceives an original 
model:  
 

9 R. Rashed, ‘Nombres amiables, parties aliquotes et nombres figurés aux XIIIe et 
XIVe siècles’, Archive for History of Exact Sciences, 28, 1983, pp. 107–47; English 
transl. in The Development of Arabic Mathematics, pp. 275–319. 

10 R. Rashed, The Development of Arabic Mathematics, pp. 299–303 and 
‘Matériaux pour l’histoire des nombres amiables et de l’analyse combinatoire’, Journal 
for the History of Arabic Science, 6, 1982, pp. 209–78. 
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One has access to ten colors of silk. One wishes to make tassels (sharārīb) 
some of which have only one color, others two colors, yet others three 
colors, and so on, until the last tuft has ten colors; and one would like to 
know the number of each individual type of tuft.11  

Ibn al-Munʿim then gives the arithmetic triangle.  
To return to al-Khalīl, it seems that he had obtained combinatorial 

formulas, at least by induction. Being both a mathematician and a linguist 
of genius, he was no doubt up to the task.  

Note finally that al-Khalīl the lexicographer considers the alphabet of 
28 letters. He omits several phonemes; he does not consider the ‘hamza (ʾ)’ 
to be a letter that enters into combination. Recall that this phoneme had no 
fixed form, and is written alif as in badaʾ, wāw as in yūʾmin, yāʾ as in 
yastanbiʾūnaka, and sometimes without a letter, as in bināʾ. This is why 
linguists such as al-Mubarrad do not consider it a letter. Perhaps for this 
reason, al-Khalīl eliminates it as he is composing his dictionary. But al-
Khalīl the phonologist reintegrates the ‘hamza’; he considers it to be a 
phoneme and thus counts 29 phonemes. Beyond the calculation of 
combinations, we note al-Khalīl also proceeds by permutation. As cited by 
his student al-Layth, al-Khalīl writes in Kitāb al-ʿayn:  

Know that a biliteral word takes two forms, such as qd, dq; šd, dš; and 
triliteral words take six forms that one calls masdūsa, ‘in the form of six’, 
such as ḏrb, ḏbr, brḏ, bḏr, rḏb, rbḏ. The quadriliteral word takes twenty-four 
forms since its letters, which are four, are multiplied by the number of forms 
of the triliteral, which is six; one has twenty-four forms […]. The 
quinqueliteral word takes one hundred twenty forms for its letters, which are 
five, are multiplied by the forms of the quadriliterals, which are twenty-four; 
this makes one hundred twenty forms, of which a small number is used and 
the larger number is neglected.12 

This quotation shows us, on the one hand, how al-Khalīl reasons – this 
is consistent with the preceding interpretation – and, on the other, that he 
knows the two expressions Pn = 1, 2, 3 ... n and Pn = nPn–1. 

The fact that n = 2, 3, 4, 5 takes nothing away from the generality of 
the expression, just as is the case in the 17th century.  

After having obtained the possible language by means of these 
combinations and permutations, al-Khalīl exploits both his phonological 
 

11 Cited in Driss Lamrabet, Introduction à l’histoire des mathématiques maghré-
bines, Rabat, 1994, p. 215. 

12 Al-Khalīl ibn Aḥmad, Kitāb al-ʿayn, ed. Abdullāh Darwish, Cairo, 1967, vol. I, 
p. 66. 
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and his ethnolinguistic knowledge to isolate the real language. Thus, once 
he has distinguished two levels of analysis – signs and significations – and 
once he has reconstituted the possible language solely from the level of 
signs, he moves on to an additional differentiation among sounds: the 
periodic sound (musical) and the irregular sound (aperiodic, that is between 
vowels and consonants). The consonants are then arranged in classes 
according to their points of articulation. Starting with the laryngials and 
ending with the labials, he lists the following:13 

 
1  ʿ ḥ h ḫ ġ 
2  q k 
3  ğ š ḍ  
4  ṣ s z 
5  ṭ t d 
6  ẓ ḏ ṯ 
7  r l n 
8  f b m 
9  ī ū ā  ʾ 

 
For some classes, he distinguishes between voiced and unvoiced 

letters: thus, in the first class, ʿ is voiced whereas ḥ is unvoiced; and in the 
fifth, d is voiced but t is unvoiced. An examination of al-Khalīl’s classif-
ication and of his explanations in the Kitāb al-ʿayn easily shows that, in 
light of modern phonetics, he has correctly approached the distribution of 
sounds into classes according to points of articulation, on the one hand, and 
the opposition of voiced/unvoiced, on the other. The order of the cons-
onants within each class nevertheless remains rather approximate, and the 
students of al-Khalīl, e.g., Sībawayh, will take up his analysis in order to 
improve it.  

In this phonological analysis, al-Khalīl will find the necessary 
conditions for recognizing, among the words of the possible language, 
those that can be real. It so happens that not all of the words that meet the 
conditions of reality are necessarily used. It is at this point that 
ethnolinguistics, knowledge of pre-Islamic literature and of the literature of 
the first century of Islam, the Qurʾan, etc., enter the picture: these linguistic 
treasures allow one to distinguish between words that are utilized and those 
that are neglected (muhmal). Nevertheless, one ought not forget that this 
phonological study allowed al-Khalīl to discover a property of Arabic (and 

 
13 Ibid., p. 65. 
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of Semitic languages more generally) that became essential to his 
lexicographic project. Indeed, he noticed a morphological characteristic of 
Arabic, that is, the importance of roots in the derivation of its vocabulary 
and the relatively small number of its roots. As a group of consonants (and 
consonants only) and as a signified to which a generic signifier is most 
often attached, the root could not emerge as a theoretical unit of analysis 
before the preceding distinctions between meaning and signification, on the 
one hand, and vowel and consonant, on the other. These roots are, 
moreover, limited forms, restricted to the four forms mentioned above: at 
most quinqueliterals, but mostly triliterals. This analysis thus allowed al-
Khalīl to conceive both his project and the means of bringing it to fruition. 
Among the latter, we emphasize the possibility of omitting the half-vowels, 
which would have made the combinatorics much more complex. It also 
gave him the rules of incompatibility between phonemes within the same 
root. We cannot here present in detail these rules of incompatibility. 
Roughly summarized, the first two consonants of the root can belong 
neither to the same class of localization nor (frequently) to neighboring 
classes of localization. The last two consonants of the root fall under the 
same rule but can be similar. The derivation of words from roots occurs by 
means of finite patterns, which are themselves the object of combinatorics. 
These finite patterns and their combinations will be recognized as research 
develops, that is, when Arabic phonology as well as morphology will be 
considered in their own right and not merely as auxiliaries of lexicography. 
This will be the contribution of the students and successors of al-Khalīl.  

The Kitāb al-ʿayn will not only survive al-Khalīl, but also become a 
model for a very long tradition. In short, every Arabic lexicographer is in a 
sense a student of al-Khalīl’s. To be sure, his heirs corrected the errors he 
committed as he collected words from the real language, varied the form of 
the dictionary, and perfected its composition; but the method remains 
essentially the same. To cite only one example from among al-Khalīl’s 
successors, consider Ibn Durayd. Born in 223/834, less than a half-century 
after al-Khalīl, Ibn Durayd was also a member of the school of Baṣra; he 
wrote al-Jamhara, in which he proceeds to calculate nr, for n = 28, the 
number of letters, and 1 < r ≤ 5. He insists on distributing the various 
classes of forms obtained according to whether or not they contain one or 
more defective letters – the wāw, the yāʾ and the hamza, in other words, 
according to a morphological principle. To reinforce the point, let us 
examine his calculation for r = 2. He obtains nr = 784 forms; he removes 
28 of them, that is, the forms consisting of the repetition of one and the 
same letter. There remain 756 = 28 × 27 = An

r . He emphasizes that these 28 
forms are invariant under permutation (qalb). Next, he examines the 
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morphology of all forms and finds 600 = 24 × 25 = A25
2  forms without any 

defective letter; 150 forms, each of which contains a defective letter; then 6 
forms, each of which contains 2 defective letters; and finally 3 forms each 
of which contains a defective letter repeated twice. Ibn Durayd carries out 
the calculation for triliterals, quadriliterals, and quinqueliterals. Like al-
Khalīl and explicitly, he considers this combinatorial study ‘as a kind of 
calculation (bi-ḍarbin min al-ḥisāb)’. He writes: ‘I explain to you what you 
obtain from biliteral, triliteral, quadriliteral, and quinqueliteral forms, if the 
High God wills it, by a kind of clear calculation (ḥisāb)’.14 

One can follow this lexicographic tradition for another millennium, 
through a goodly number of dictionaries such as those of Aḥmad ibn Farīs 
(al-Maqāyīs), Ibn Manẓūr (Lisān al-ʿArab), al-Zabīdī (Taj al-ʿArūs), etc.  

We have just seen that, beginning in the 8th century, lexicographers not 
only undertook combinatorial studies but were in possession of the 

elementary forms of this new chapter: 
n

r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , An

r , Pn, nr, n!, in our notation. 

Since al-Khalīl, they were clearly conscious that these procedures and 
expressions pertained to ‘a kind of ḥisāb (calculation)’. This is the first title 
given to this chapter, which consists of a calculation of combinations. The 
latter gained authoritative recognition on its own, so to speak, when one 
tried first to resolve theoretically this practical problem of composing a 
dictionary. Language then emerges as a privileged domain as much for 
elaborating this new calculation as for exercising it. This phenomenon is in 
a sense associated with the history of elementary combinatorial analysis. 
Indeed, is not language one of the readily available domains in which 
discreteness and finitude are both verified? The letters are discrete objects, 
finite in number. Later, algebraists and number theorists will try precisely 
to return to language to draw from it at once examples, notations, and 
methods in order to illustrate the combinatorics that they will conceive, in 
all likelihood, independently of the linguists. 

Nevertheless, lexicography is not the only discipline, the constitution of 
which required the elaboration of a combinatorics. In prosody, the pro-
cedure is analogous and was that of the very same al-Khalīl. He is also 
credited with one of the first treatises composed in a discipline that was 
constituted as such in this period: namely, cryptography and crypto-
analysis.15 Even if these disciplines are not a part of linguistic research, 

 
14 See al-Suyūṭī, p. 72. 
15 Cf. Tabaqāt al-naḥawiyyīn wa-al-lughawiyyīn of al-Zabīdī, ed. Muḥammad Abū 

al-Faḍl Ibrāhīm, Cairo, 1973. 
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they are intimately tied to it. It is therefore understandable that numerous 
linguists, for many centuries, have written works of cryptography or 
cryptoanalysis. In these disciplines, as in lexicography and prosody, one 
wants to solve a practical problem theoretically: to invent efficacious 
algorithms in order to hide from everyone who does not know them the 
meaning of a text or message. The original name of this discipline is 
therefore al-taʿmiya, from ʿamiya, to go completely blind. In any case, by 
the 9th century at the latest, with al-Kindī, this discipline had not only its 
own name, but also an entire technical vocabulary. Beginning in this 
period, an immense specialized literature will thrive until the middle of the 
13th century; witness the writings of al-Zabīdī, the author of both the 
famous Arabic dictionary and a treatise on the foundations of crypto-
graphy.16 Among the names of famous authors, one encounters ʿAlī ibn 
ʿAdlān (583–661 H./1187–1263), Isḥāq ibn Ibrāhīm ibn Wahb, Ibn 
Ṭabaṭaba (d. 322 H./934), ʿAlī ibn Muḥammad ibn al-Durayhim (712–762 
H./1312–1361), etc.17 As is easy to understand, these authors drew on 
transposition, substitution, and permutation to create some of their algo-
rithms. Although they did not introduce new rules to enrich combinatorics, 
on the one hand, they showed that this tool could be put to use in a domain 
other than lexicography and prosody, and therefore that it did not depend 
on any particular field; on the other hand, they contributed to its diffusion 
among a readership broader than that of the linguists; finally, they 
displayed the truly combinatorial meaning of such expressions as permuta-
tion, transposition, and substitution. 

One could cite many more examples, both tied to and independent of 
the preceding domains, which reveal that both combinatorial knowledge 
and combinatorial practice had diffused among scholars and philosophers. 
Thus, the literary scholar Abū al-Ḥayyān al-Tawḥīdī mentions in his 
Muqabasāt the example of his contemporary, the philosopher Yaḥyā ibn 
ʿAdī, who sought the numbers of the ‘logical division’ according to which 
the figures of the phrase inna al-qāʾim ghayr al-qāʿid, that is, the number 
of configurations obtained from a phrase of 14 letters (the hamza is not a 
letter). This is the model case of a distribution of 14 balls in 2 boxes. Yaḥyā 

 
16 Al-Zabīdī, Tāj al-ʿArūs, ed. ʿAbd al-Satār Aḥmad Farāj, Kuwait, 1965, Introduc-

tion, p. XI. 
17 See M. Mrayātī, Yaḥyā Mīr ʿAlam, Ḥassān al-Ṭayyān, Origins of Arab 

Cryptography and Cryptoanalysis, vol. I: Analysis and Editing of Three Arabic Manus-
cripts: Al-Kindī, Ibn Adlān, Ibn al-Durayhim (in Arabic), Damascus, Arab Academy of 
Damascus publications, 1987 and vol. II. 
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ibn ʿAdī finds exactly 214 = 16 384 =
14

k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k= 0

14

∑ . Al-Bīrūnī confirms this 

testimony in Taḥdīd nihāyāt al-amākin and himself proceeds to a simple 
calculation of combinations to treat the lunar eclipse.18  

Another domain into which combinatorial procedures enter is that in 
which Thābit ibn Qurra (826–901) studies the compound ratios as well as 
the sector figure.19 

 
 

2. ALGEBRAIC CALCULATION AND COMBINATORICS 
 
Engaged in this famous movement of ‘arithmetization of algebra’20 and 

thus of the development of abstract algebraic calculation, mathematicians 
came to conceive of new techniques such as the development of the bino-
mial of any degree. It was while they were elaborating these techniques that 
they were led to the table of binomial coefficients, the rule of its formation, 
and the binomial formula enunciated for integer powers. Indeed al-
Samawʾal tells us that, at the end of the 10th century, al-Karajī not only had 
access to the formulas below (∗∗ and ∗) but had in addition established the 
binomial theorem by complete finite induction.21 

 

∗∗  
n

r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

n −1

r −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

n −1

r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and 

∗   a + b( )n
=

n

r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

r= 0

n

∑ an−rbr  where n is an integer. 

  
 

18 Edward S. Kennedy, A Commentary upon Bīrūnī’s Kitāb Taḥdīd al-Amākin, an 
11th Century Treatise on Mathematical Geography, Beirut, American University of 
Beirut, 1973, pp. 169–70; Arabic edition Kitāb Taḥdīd nihāyāt al-amākin, ed. 
P. Bulgakov, in Revue de l’Institut des manuscrits arabes, Cairo, vol. 6, fasc. 1&2, mai-
nov. 1962, pp. 101–2; English translation by Jamil Ali, The Determination of the 
Coordinates of Cities, Beirut, 1967, pp. 132–3. 

19 See P. Crozet, ‘Thābit ibn Qurra et la composition des rapports’, in R. Rashed 
(ed.), Thābit ibn Qurra. Science and Philosophy in Ninth-Century Baghdad, Scientia 
Graeco-Arabica, vol. 4, Berlin/New York, Walter de Gruyter, 2009, pp. 391–535 and 
H. Bellosta, ‘Le traité de Thābit sur La figure secteur’, ibid., pp. 335–90. 

20 See above, ‘Algebra and its unifying role’. 
21 R. Rashed, The Development of Arabic Mathematics, pp. 62–84 and al-

Samawʾal, al-Bāhir en Algèbre, ed., and commentary by S. Ahmad and R. Rashed, 
Damascus, Presses de l’Université de Damas, 1972. 
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Since the end of the 10th century, the expressions of the form (∗) 
surfaced with a few minor variants throughout books of algebra or ḥisāb.  

It is almost certain that al-Khayyām (1042–1131) had access to them. 
Does he not write the following?  

And the Indians have methods for determining the sides of squares and cubes 
based on a restricted induction, that is, on the knowledge of the squares of 
the nine figures, that is, the square of the unit, of two, of three, and so on  
– and likewise of their product one by the other – I mean the product of 2 
and 3, and so on. And we have written a book to demonstrate the correctness 
of these methods, and the fact that they fulfill the requirements. And we have 
spoken abundantly about the kinds thereof, I mean the determination of the 
sides of the squared-square, of the squared-cube, of the cubed-cube, what-
ever degree it may reach. And no one did it before us. But these demonstra-
tions are only numerical demonstrations based on the arithmetical Books of 
<Euclid’s> Elements. 22 

Later in the 13th century, the same formulas will reappear with very few 
changes. Thus Naṣīr al-Dīn al-Ṭūsī in his Jawāmiʿ al-ḥisāb23 gives 

 

a + b( )n
− an =

n

r

⎛

⎝
⎜

⎞

⎠
⎟

r=1

n

∑ an−rbr . 

 

One finds again the same expression in the 15th century, in al-Kāshī’s 
Key of Arithmetic.  

But these formulas were well known to al-Zanjānī, al-Fārisī (d. 1319), 
Ibn Malik al-Dimashqī, al-Yazdī, and Taqī al-Dīn ibn Maʿrūf, among many 
others. In short, the so-called triangle of Pascal as well as the binomial 
theorem were common knowledge among Arab mathematicians since the 
end of the 10th century. It is moreover not rare to find some rules of per-
mutation in the books of ḥisāb (calculation), placed after their examination 
of the elementary laws of arithmetic and their summary of arithmetic pro-
gressions, but before the study of the extraction of square, cubic, and higher 
roots. To be sure, it is one thing to know this triangle, the rule of its 

 
22 Risāla fī al-jabr wa-al-muqābala, in R. Rashed and B. Vahabzadeh, Al-Khayyām 

mathématicien, Paris, A. Blanchard, 1999, pp. 129, 17–131, 2. English version: Omar 
Khayyām the Mathematician, Persian Heritage Series no. 40, New York, Bibliotheca 
Persica Press, 2000 (without the Arabic texts), pp. 116–17 (emended slightly). 

23 Jawāmiʿ al-ḥisāb bi-al-takht wa-al-turāb (Arithmetic Complete, by Board and 
Dust)’, ed. A. S. Saidan, al-Abhath, XX.2, June 1967, pp. 91–164, at pp. 145–6; and 3, 
Oct. 1967, pp. 213–29. 
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formation, and the binomial theorem as mathematical tools necessary to the 
algebra of polynomials, the extraction of the nth root of an integer, etc. It is 
something else again to conceive of them as elements of a new discipline 
devoted to the partition of a finite set of elements. These tools will belong 
to this discipline when they are interpreted in combinatorial fashion. 
Indeed, it is the explicit implementation of such an interpretation that will 
consecrate the birth of this new discipline. It would nevertheless be far-
fetched to believe that the algebraists had not grasped this interpretation 
rather early on, even if only faintly. Consider for example one of al-
Samawʾal’s studies: he sets himself ten unknowns, x1, …, x10, and seeks a 

system of linear equations with six unknowns; he obtains 
10

6

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
= 210 linear 

equations with 6 unknowns. Next, al-Samawʾal examines the compatibility 
of these equations and, also by combination, finds 5.040 conditions, if one 
carries out all of the replacements. After eliminating the repetitions, there 
remain only 504 for the system to be compatible.  

In this study, al-Samawʾal represents the xi by the number i, which 
nowadays are called indices. Al-Samawʾal’s application of the calculation 
of combinations thus disposes of the claim that these algebraists ignored 
everything about this combinatorial interpretation of the rules that they had 
elicited. We are accordingly convinced that the algebraists had not over-
looked this interpretation, but nothing required them to formulate it expli-
citly. This step will taken shortly, when algebraists engage in new 
arithmetic research, or when they concern themselves with philosophy. It is 
precisely in this diversity of fields of application (algebra, arithmetic 
research, philosophy, linguistics, cryptography, etc.) that combinatorial 
analysis first appears, before the consciousness of the field’s unity emerges, 
not despite, but rather originating in, the diversity of fields of application. It 
is at this point that authors such as al-Ḥalabī will write works completely 
devoted to combinatorial analysis. 

 
 

3. ARITHMETIC RESEARCH AND COMBINATORICS  
 
Starting certainly with Naṣīr al-Dīn al-Ṭūsī (1201–1273) but very 

probably before him, one constantly encounters the combinatorial inter-
pretation of the arithmetic triangle and of the law of its formation, as well 
as the elementary rules of combinatorial analysis (see below). The fact is 
that, throughout this entire century, and most notably in its last years, this 
interpretation is bodily present in arithmetic research. Indeed we have 
shown that, at the end of the 13th century, Kamāl al-Dīn al-Fārisī returns to 
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this interpretation in a memoir on number theory and establishes the usage 
of the arithmetic triangle for numerical orders, that is, that he obtains the 
result for which Pascal ordinarily gets credit.24 Indeed, for figurate numbers 
(see below), al-Fārisī establishes a relation equivalent to  

Fp
q = Fk

q−1

k=1

p

∑ =
p + q −1

q

⎛

⎝
⎜

⎞

⎠
⎟ , 

with Fp
q  the pth figurate number of order q, F1

q = 1 for every q. 
Thus al-Fārisī establishes a relation between the combinations and the 

figurate numbers of any order. From now on, it is thus possible to refer to 
the table of figurate numbers in order to know the number of proper 
divisors of an integer. Here is al-Fārisī’s explanation:  

The method for knowing the proper divisors – binary aliquot parts (two-term 
combinations) or ternary, or others with any given number of sides, on 
condition that they all be prime and all distinct, consists in seeking in the 
series of homonymous sums of the number of times by which one combines 
(ʿadad al-taʾlīf) minus one, the number whose row – that is, the first 
numbers <in the series> of the sums (indices of the columns) – is 
homonymous of the number of sides minus the number of times by which 
one combines. This is the number of combinations.25 

To grasp the meaning of this text, let us suppose that the given integer 
can be decomposed in n distinct prime factors, and that one seeks the 
number of aliquot parts (proper divisors) with m elements, where 0 < m < 
n. One then seeks in the table the element on the (m – 1)th line and in the 
(n – m)th column. One then obtains Fn−m+1

m , which, according to the preceding 

expression, is equal to 
n

m

⎛

⎝
⎜

⎞

⎠
⎟ . 

To demonstrate this proposition, al-Fārisī operates in a fully com-
binatory manner, with successive applications of the arithmetic triangle, the 
different ‘cells’ of which are explicitly interpreted as the combinations of p 
objects taken k at a time. This combinatorial style of al-Fārisī seems to be a 
common trait of the period; more precisely: without this style, he could not 
have established the theorem about the elementary arithmetic functions, 
 

24 See R. Rashed, ‘Matériaux pour l’histoire des nombres amiables et de l’analyse 
combinatoire’, Archive for History of Exact Sciences, 28, 1983, pp. 107–47, and 
‘Nombres amiables, parties aliquotes et nombres figurés aux XIIIe et XIVe siècles’, 
Journal for the History of Arabic Science, 6, 1982, pp. 209–78.  

25 R. Rashed, ‘Matériaux pour l’histoire des nombres amiables et de l’analyse 
combinatoire’, Proposition 17, p. 251. 
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about the number of proper divisors of a number. Indeed, in his calculation 
of the combinations established to determine the number of proper divisors 
of an integer, al-Fārisī again takes up binomial coefficients, but now to give 
them a deliberately combinatorial interpretation. Such an act, one of those 
that founded combinatorial analysis itself, also made it possible for him to 
conceive of figurate numbers in a sense incomparably more general, as far 
as we know, than anything one finds among al-Fārisī’s predecessors and 
contemporaries. 

 

4. PHILOSOPHY AND COMBINATORICS  
 
Linguistics, cryptography, and arithmetic research are not the only 

domains in which one sees combinatorial procedures accompanied by a 
deliberately combinatorial interpretation. Theoretical philosophy played a 
particularly important role in the formation of combinatorial analysis. Well 
before Leibniz and much more effectively than R. Llull, the 13th-century 
mathematician Naṣīr al-Dīn al-Ṭūsī applies the rules and the formulas that 
he himself had used in his Jawāmīʿ al-ḥisāb (Compendium of Calculation) 
in order to make Avicenna’s ontology speak with precise language. In this 
book, as we have said, al-Ṭūsī reproduces the arithmetic triangle and the 
binomial theorem. In the metaphysical treatise entitled, On the 
Demonstration of the Mode of Emanation of Things Infinite <in Number> 
Beginning with a Unique First Principle, al-Ṭūsī wants to solve the 
problem of the emanation of a multiplicity from a first principle. The issue, 
then, is the emanation of Intellects.26 Al-Ṭūsī represents these Intellects by 
the letters of the alphabet, and then applies the combinatorial rules. He 
begins by introducing the following lemma: the number of combinations of 

n elements taken k at a time is equal to 
n

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

n

∑ , k = 1, 2, …, n; and he uses 

the equation 
n

k

⎛

⎝
⎜

⎞

⎠
⎟ =

n

n − k

⎛

⎝
⎜

⎞

⎠
⎟  to calculate this number. He next proceeds to 

calculate the beings derived row by row by means of the expression  

(∗)  
m

k

⎛

⎝
⎜

⎞

⎠
⎟

n

p − k

⎛

⎝
⎜

⎞

⎠
⎟

k=0

m

∑  in which 1 ≤ p ≤ 16, m = 4, n = 12, … 

whose value is the binomial coefficient 
m + n

p

⎛

⎝
⎜

⎞

⎠
⎟ . 

 
26 See the chapter ‘Philosophy of mathematics’ below. 
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Al-Ṭūsī’s contribution will be recalled in the first known treatise on 
combinatorial analysis.  

 
 

5. A TREATISE ON COMBINATORIAL ANALYSIS 
 

Al-Ṭūsī takes the deliberately combinatorial interpretation of the arith-
metic triangle and of the binomial theorem completely for granted, a given 
that expresses in a technical terminology that reappears among his 
successors, al-Fārisī and Ibn al-Bannāʾ, for example. Everything points to 
the fact that, at the time of al-Ṭūsī, and perhaps even before him, the 
formulas that the algebraists established accepted this interpretation when 
one applied them to the various disciplines, including algebra itself. Now 
these formulas, notably the triangle and the theorem, are frequently 
reproduced in the books of ḥisāb and algebra. One finds them in the books 
of Miftāḥ al-ḥisāb (Key of Arithmetic) by al-Kāshī, in the books of Ibn al-
Malik al-Dimashqī (al-Isʿāf al-atamm), in that of Tāqī al-Dīn ibn Maʿrūf 
(Bughyat al-ṭullāb) who borrows examples from linguistics to illustrate 
certain rules, in al-Yazdī (ʿUyūn al-ḥisāb), …  
 

Everything indicates that, with its massive presence and its frequent 
applications, the time had come for combinatorial analysis to become more 
independent, to present itself with a certain autonomy; it was ripe for 
becoming a topic of composition. Exactly when did this happen? We do not 
know precisely. Nevertheless, a philosopher mathematician, Ibrāhīm al-
Ḥalabī, did write a treatise entitled Fī istikhrāj ʿiddat al-iḥtimālāt al-
tarkībiyya min ayy ʿadad kāna (On the Determination of Combinable 
Eventualities Starting with Any Given Number). As far as we now know, 
this is the first treatise entirely and uniquely devoted to combinatorics. In it, 
the rules of the latter no longer appear simply as the rules of algebraic 
calculation. Instead of being simply used in an application that is algebraic, 
linguistic, philosophical, etc., they are now considered in themselves, in a 
book entitled Combinable Eventualities. The generic designation of this 
title refers as much to permutation as to arrangements, combinations, etc., 
in other words, to all of the combinations studied at that time. This treatise 
gives pride of place to the text of al-Ṭūsī, which is developed and 
amplified, and plays the role of the method for determining and 
establishing combinations. 

Let us turn quickly to Ibrāhīm al-Ḥalabī’s treatise. He begins by raising 
questions about the different possible methods of combining ‘eventualities’ 
(al-iḥtimālāt al-tarkībiyya). Al-Ḥalabī’s goal is clear: ‘to determine the 
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number of combinable eventualities for any given number of objects’.27 He 
sidelines the empirical method of enumeration, which offers no general 
rule, despite its effectiveness for simple cases. This method consists in 
enumerating, for a set of three elements (a, b, c) for example, the seven 
‘combinable eventualities’ {a, b, c, ab, ac, bc, abc}. The difficulty is clear 
for a set with n elements.28 The second method,29 offers a general rule, of 
which al-Ḥalabī is proud. It consists of an expression equivalent to u

n
 =  

2un-1 + 1, where u
n
 is the set of ‘combinable eventualities’ with n elements. 

In our language,  

un =
n

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

n

∑  

with 

      
n

k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

n!

k! n − k( )!
         for  1≤ k ≤ n.  

 
This method was perhaps established from the following rule, already 

known since the end of the 10th century:  

n

k

⎛

⎝
⎜

⎞

⎠
⎟ =

n −1

k −1

⎛

⎝
⎜

⎞

⎠
⎟+

n −1

k

⎛

⎝
⎜

⎞

⎠
⎟ . 

By summation, one obtains 
 

un =
n −1

k −1

⎛

⎝
⎜

⎞

⎠
⎟

k=1

n

∑ +
n −1

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

n

∑

=
n −1

   k

⎛

⎝
⎜

⎞

⎠
⎟

k=0

n−1

∑ +
n −1

   k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

n

∑   

= 2un−1 +1

 

 
Al-Ḥalabī also puts aside this method, which requires a complicated 

calculation, that of all u
i
 for 1≤ i ≤ n – 1. To define a better method, al-

Ḥalabī starts with the expression  

n

k
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

n

n − k
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

 
27 Risālat fī istikhrāj ʿiddat al-iḥtimālāt al-tarkībiyya, ms. Istanbul, Süleymaniye, 

Hamidiye 873, fol. 69v. 
28 Ibid., fol. 70r. 
29 Ibid., fols 70r–71v. 
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knowing that 
n

n + r

⎛

⎝
⎜

⎞

⎠
⎟ = 0;   

n

n

⎛

⎝
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⎟ =
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0

⎛

⎝
⎜

⎞

⎠
⎟ =1 . 

He then defines several ‘combinable eventualities’, along with the rules 
of calculation corresponding to them. This is how he obtains:  

 
1) The matter (al-mādda)30 of the eventuality of the kth kind – that is, 

the combinations without repetition given by the preceding formula; 
n

k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 
2) The matter and the form (majmūʿ al-mādda wa-al-ṣūra)31 of the 

eventualities of the kth kind – that is, arrangements without repetition 

An
k = k!

n

k

⎛

⎝
⎜

⎞

⎠
⎟ = n!

n − k( )!
. 

3) The form (al-ṣūra)32 of the eventualities of the kth kind: one need 
only subtract the matter, in 1) above, from the matter and from the form, in 
2) above. 

k !
n
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⎟ −

n

k
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⎟ k!−1( ) . 

 
4) The form of the eventualities, independent of the kind: that is, the 

permutations of n objects, namely 

n! = n (n – 1) … 2 · 1. 

5) The matter, the form, and the repetition of eventualities of the kth 
kind,33 that is, the arrangements with repetition of n objects taken k at a 
time, namely nk. 

Note that the technical lexicon of the language of combinatorial 
analysis on which al-Ḥalabī draws in this treatise is a composite of terms 
already used by al-Ṭūsī (tarkība), of terms that are idiosyncratic with al-
Ḥalabī, such as iḥtimālāt (eventuality), tikrār (repetition), but also of 
borrowings from Aristotelian terminology, such a mādda (matter) and ṣūra 

 
30 Ibid., fol. 71v. 
31 Ibid., fol. 72r. 
32 Ibid., fols 72v–73r. 
33 Ibid., fols 73v–74r. 
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(form). These last two terms force him to introduce problems alien to his 
subject, if not superfluous in this context, and in any case, prejudicial to the 
clarity of his exposition: he wonders, for example, if one can separate 
matter and form. 

After having set out these rules, al-Ḥalabī writes: ‘To determine the 
material eventualities (al-iḥtimālāt al-māddiyya) (that is, the combinations 
without repetition), there is another method that was mentioned to 
determine the Accidental Intellects (al-ʿuqūl al-ʿaraḍiyya).’ It is at this 
point that he integrates the text of al-Ṭūsī, sometimes in words, sometimes 
by developing the calculation. Thus, he traces the arithmetic triangle up to 
12, and adds the elements of the diagonal, which he calls ‘simple 
combinations’ (al-iḥtimālāt al-basīṭa), in order to obtain the number 4.095 
mentioned by al-Ṭūsī. He calls ‘composite combinations’ (al-iḥtimālāt al-
murakkaba)34 the expression 
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⎟⎟  for m = 4, n = 12, 

and shows that the expression above (*) is the sum of the simple 
combinations and the composite combinations. That is, one obtains  
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When one subtracts 1 from both sides, one gets 
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whence, beginning with the equivalence with formula (*),  

 
2m+n = 2m2n. 

 
Al-Ḥalabī moves on to other calculations on the data provided by al-

Ṭūsī, and delves into reflections on his predecessor’s work. These all 

 
34 Ibid., fol. 81r. 
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pertain to combinatorial properties. We are now far from the problem of the 
emanation of multiplicity from the One, of which only a shadowy memory 
remains: already dim in al-Ṭūsī, the ontological content disappears 
completely in this treatise on combinatorial analysis, leaving only the 
methods and results that are necessary or useful for the body of the latter. 
Whereas the ‘axiomatic’ cast of Ibn Sīnā’s doctrine and an inclination 
towards a formal ontology initially gave al-Ṭūsī the hope of finding a 
mathematical solution to this metaphysical problem, this solution found 
itself eventually integrated into mathematical works, independently of the 
metaphysical problem that had once given rise to it. This was possible 
insofar as the entities of the combinatorics may be Intellects or any other 
objects, on the sole condition that they be separate and as numerous as one 
might wish, but always finite. 

 
 

6. ON THE HISTORY OF COMBINATORIAL ANALYSIS 
 
The history of the establishment of combinatorial analysis as an 

autonomous discipline between al-Khalīl in the 8th century and al-Ḥalabī in 
the 16th, presents itself as the history of stripping away objects belonging to 
different domains, removing them from all of their ontological roots, and in 
the end preserving nothing but formal components: a set of any finite and 
discrete elements. As we have seen, it is precisely because of, not despite, 
the multiplicity of these domains that these formal elements could be 
extricated and gain their independence. One can easily understand, 
however, that this multiplicity prevents the early history of combinatorial 
analysis from coinciding with a progressive march that gradually unveils 
the central properties of a specific entity that is given in advance. 
Nevertheless, because of their ontological neutrality and their aspect, the 
letters of the alphabet lend themselves directly to combinatorial study. 
Whatever one might say, the latter did not appear immediately, and as a 
kind of Gestalt apprehension, but only when al-Khalīl wanted to resolve 
theoretically the practical problem of composing a dictionary of Arabic. 
The procedures he invented and the formulas that were very likely 
established probably concerned only the formed words and did not yet have 
this character of generality necessary to the conception of an autonomous 
discipline dedicated to combinations. It nevertheless remains the case that 
al-Khalīl and such successors as Ibn Durayd, who were sensitive to the 
formal character of these procedures and formulas, were able to recognize 
in them ‘a kind of calculation’ (ḍarbun min al-ḥisāb). As an autonomous 
discipline, combinatorial analysis was not yet born, but as a type of 
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calculation, its gestation was already advanced. Among cryptographers, it 
was in the same state. 

At the end of the 10th century, the algebraists (al-Karajī and his 
successors) had for their part established the arithmetic triangle, the rule of 
its formation, and the binomial theorem. But if the mathematicians knew 
that they were manipulating combinatorial procedures, they were, 
according to al-Samawʾal,35 using them only as auxiliary means for the 
abstract algebraic calculation that they were then trying to develop.  

It is after the end of the 10th century and before the 13th that an act 
essential to the history of combinatorial analysis took place: the explicit, no 
longer merely implicit, recognition that the rules applied by linguists, 
cryptographers, and others were the same as those that the algebraists 
provided and established, and moreover that one could apply them to a 
variety of situations: arithmetic research, philosophy, etc. At present, 
however, one cannot say with complete certainty who made the leap. But it 
is impossible to ignore the fact that Naṣīr al-Dīn al-Ṭūsī was already 
moving very comfortably in this new universe of thought, the very one to 
which belong the works of al-Ṭūsī’s successors, such as al-Fārisī and Ibn 
al-Bannāʾ. 

An additional stage has yet to be crossed, but it does not present any 
particular difficulties: to speak of these rules and formulas in a 
combinatorial language, but with no reference whatever to any domain of 
application. This step inscribes the discipline’s act of recognition and 
forges its autonomy. It is al-Ḥalabī who takes this step, which is more 
theoretical than technical; the importance of his book lies in this epistemic 
gesture. By inventing a technical language, albeit a clumsy one, which 
Leibniz will later find in his Horizon of Human Doctrine,36 al-Ḥalabī 
asserts once again his will to distinguish a branch of learning: 
combinatorial analysis. Was al-Ḥalabī the first to do so? To the best of our 
present knowledge, he is indeed.  

The history of Arabic combinatorial analysis stops here. The discipline 
will be reactivated when it is applied to the vast and new field of 
probability theory. But for that step, one must wait for Fermat, Pascal, and 
J. Bernoulli, among others. 
 

 
35 Al-Samawʾal, al-Bāhir en Algèbre, ed. S. Ahmad and R. Rashed, pp. 104–12. 
36 Leibniz, De l’horizon de la doctrine humaine (1693), ed., French transl. from 

Latin and postface by M. Fichant, Paris, Vrin, 1991. 
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THE FIRST CLASSIFICATIONS OF CURVES 
 
 
 

1. INTRODUCTION 
 

It is no exaggeration to say that research on curves has given birth to some 
of the most important inventions in mathematics. Consider the histories of the 
differential calculus, the calculus of variations, differential geometry, alge-
braic geometry… The mathematicians of Plato’s day had invented curves 
aimed at solving several problems of geometrical construction raised at the 
time, notably the quadrature of the circle, the two means, the duplication of 
the cube. Later, it was on curves that the most advanced works of Hellenistic 
geometry focused: Archimedes, Zenodorus, Apollonius, Diocles… In 9th-
century Baghdad, mathematicians evinced no less interest in curves; on the 
contrary, it was the study of curves that wove together the main networks 
among the different mathematical chapters of the period. The intervention of 
the algebraists of that time (al-Khayyām and Sharaf al-Dīn al-Ṭūsī) opened up 
other perspectives, which Descartes and Fermat would go on to rethink and 
transform. It is still in research on curves that mathematicians began to dis-
cover the main methods of mathematical analysis. One can complete the pan-
orama by noting that, if one were to forget research on curves, entire chapters 
of the history and the philosophy of mathematics would drop off the map. 
Among the themes encountered at the crossroads between effective mathe-
matical research and the philosophical reflection it stimulates, the classifica-
tion of curves is surely one of the most ancient and the most fruitful. Plato 
already alluded to it, Aristotle discussed it, Geminus lingered in it, followed 
by Xenarchus, Sporos, Pappus, Proclus, Simplicius, and probably yet others. 
When mathematical research revives in 9th-century Baghdad, first-order math-
ematicians such al-Qūhī and al-Sijzī, among others, take up the theme of the 
classification of curves on other foundations. Beginning in the 9th century, 
algebraists, notably al-Khayyām and Sharaf al-Dīn al-Ṭūsī, renew that line of 
research until it becomes the object of a second transformation, thanks to 
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Descartes in the 17th century. Descartes and Fermat complete this first period 
and open a new one that will occupy the efforts of Newton, MacLaurin, 
Cramer, and their contemporaries and successors. For at least two millennia, 
then, this problem was a steady preoccupation, even though the number of 
known curves was rather limited. Indeed until 1637, transcendental curves 
were limited to the quadratrix and spirals of Archimedes, and plane algebraic 
curves could be counted on the fingers of one hand. To these, Descartes him-
self added two others after 1630. Indeed the following were known: a cubic 
(cissoid), two quartics (the conchoid of Nicomedes and the so-called ‘snail of 
Pascal’, to which Descartes had added two cubics: the ‘folium’ and the 
‘trident’. In addition, two algebraic space curves were known – that of 
Archytas and the hippopede of Eudoxus. Now this paradoxical situation is 
more than mildly interesting. Why indeed exert oneself in classifying such a 
small number of objects?  

Moreover, in the mathematical and philosophical literature from the 
ancient to the classical period at least until the middle of the 17th century, one 
encounters several concepts of the curve that coexist or follow one another. 
These conceptions, of which some are kinematic and others geometrical, 
reflect the procedures for generating curves, by points, by motion, or by com-
binations of motions. This is what transpires from the examination of such 
curves as the quadratrix, the spiral, the helix, the conchoid, etc. The continuity 
of the curve is ensured by that of the motion(s). For his part, Descartes 
requires in addition a perfect organic coordination of the motions. But it is one 
thing to conceive of a way of tracing a curve, it is quite another to define it. 
For a long time, the term ‘curve’ was understood as a line that satisfies none 
of the definitions of the straight line, whether that of Euclid or that of 
Archimedes, for example.1 Alongside this negative definition, one encounters 
in the Archimedean tradition the concept of curve as the limit of a polygon 
with an infinite number of sides. Such is the conception of Ibn al-Haytham, 
for example, which one encounters again in Fermat, Pascal, Leibniz… By way 
of example, consider the Marquis de l’Hospital in his Traité analytique des 
sections coniques (1720):  

 
1 See for example M. Federspiel, ‘Sur la définition euclidienne de la droite’, in 

R. Rashed (ed.), Mathématiques et philosophie de l’antiquité à l’âge classique, Études en 
hommage à Jules Vuillemin, Paris, Éditions du CNRS, 1991, pp. 115–30. 
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If one imagines that any curved line whatever is divided into an infinite num-
ber of infinitely small arcs […], it is clear that, by taking the chords of these 
arcs instead of the arcs themselves, one will see emerging a polygon with an 
infinite number of sides, each indefinitely small, which one can take to be the 
curved line, since it will in no way differ from the latter.2 

This is a well-known concept, which Father Castel formulates in almost 
identical terms when he writes eight years later in his book of 1728: 

Since every curved line is a polygon with an infinity of infinitely small sides, 
geometers consider the tangent to be the extension of the small side to which it 
adjusts itself by touching the curve.3  

This is still the same concept, but now joined to a definition of the tangent 
that differs from that of the ancients. These two concepts of the curve are still 
alive in the 18th century, that is, an era in which the algebraic curve is already 
defined by an equation. If one restricts oneself to a particular curve, such as a 
conic, the fundamental property of which had already been demonstrated 
before Apollonius and which he himself took up in the first book of the 
Conics, the curve is known as a plane section; but this fundamental property 
does not characterize it, because its reciprocal had not been demonstrated. Not 
until the algebraists of the 11th and 12th centuries was this particular curve 
defined by its equation. One sees, therefore, that for centuries people under-
took to classify a small number of objects, the generation procedures of which 
they knew, while still hesitating about their definitions. The latter will become 
precise later, with the gradual evolution of the infinitesimal calculus, thanks to 
the elaboration of such new concepts as the curvature, evolutes, involutes. Is it 
not precisely the case, as Cramer put it, that ‘to know its Nature perfectly, one 
must know in addition how much the curve moves away from this direction 
[of the tangent at every point]; one must be able to measure its curvature. For 
a given curve is not equally curved everywhere’.4 For such a study to see the 
light of day, no long wait was necessary, since Newton was already engaged 

 
2 Traité analytique des sections coniques, Paris, Montalant, 1720, p. 129. 
3 L.-B. Castel, Mathématique universelle. Géométrie transcendante, Paris, P. Simon, 

1728, p. 566. 
4 Gabriel Cramer, Introduction à l’analyse des lignes courbes algébriques, Geneva, 

1750, p. 539. 
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in it at the end of 1664.5 Not least, even from a completely modern point of 
view, it is far from easy to define what a curve is with complete generality. 

Finally, notice that the names listed above include mathematicians as well 
as philosopher-mathematicians and philosophers. This third remarkable char-
acteristic immediately leads us to wonder whether, at least at the beginning of 
Greek mathematics, this theme was not the result, as Paul Tannery wrote, of 
‘an unfortunate encroachment of philosophy onto the domain of mathemat-
ics’;6 or whether this theme is not rather the reflection of mathematical 
rationality itself, of its power of discernment among existing objects – curves, 
in this case – however few they might be, and a reflection of its capacity to 
conceive an a priori classification of objects, the full knowledge of which is a 
pledge to be redeemed in the future. Indeed, as a matter of fact, is not the clas-
sification of mathematical objects itself a mathematical activity? This is the 
fourth remarkable aspect in the theme of the classification of curves, and of 
classification in mathematics more generally. I restrict myself here to the first 
classification of curves, that is, those that were proposed before the complex 
plane intervenes and before the foundation of the differential calculus, and 
later, of the theory of functions.  

To write even the merest historical sketch of this question thus demands 
that one multiply the points of view and superimpose the perspectives: the 
effective study of curves by mathematicians; the attempts at classification; but 
also the analysis of the consciousness that mathematician-philosophers and 
philosophers had of it. Indeed this consciousness not only indicates the extent 
and the limits of the various formulations of the problems of classifications, 
but also can illuminate the reasons that guided these formulations. These clas-
sifications can in fact be empirical, that is, a posteriori, according to the form 
of the curve; they can be ‘experimental’, so to speak, according to the mode of 
the generation of the curves; or they can also be a priori, corresponding to the 
mathematical formula that characterizes the curve. These are the modes that 
interest us here, particularly when one begins to combine the last two: it is 
indeed a major event in the history of mathematics when the mode of genera-

 
5 The Mathematical Papers of Isaac Newton, ed. D. T. Whiteside, Cambridge, 

Cambridge University Press, 1967, vol. I: 1664–1666, pp. 245–8. 
6 P. Tannery, ‘Pour l’histoire des lignes et surfaces courbes dans l’antiquité’, in 

Mémoires scientifiques, published by J.-L. Heiberg and H.-G. Zeuthen, Toulouse/Paris, Ed. 
Privat/Gauthier-Villars, 1912, t. II: Sciences exactes dans l’antiquité, no. 30, pp. 1–47, at 
p. 37. 
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tion of the curve and its formula jointly guide its classification. For the conics, 
such an event first takes place in the 10th century, with al-Qūhī and his 
successors; next, come the algebraic curves with Descartes. But before 
reaching this point, it was necessary to travel a long road, the main stages of 
which we sketch here. 

 All along this road, as we shall see, what is under consideration is not a 
random line, i.e., a line traced by chance on the sand or on paper, but only the 
line obtained thanks to a technical process controlled by the rules of geometry, 
thus allowing one to make an exact replica of it as often as one wishes. Both 
the line and the instrument invented to trace it are thus geometrical, a fact of 
which mathematicians are fully conscious. Listen, for example, to Gabriel 
Cramer in the middle of the 18th century:  

Every line is regular or irregular. The irregular lines are those that are des-
cribed without any certain or known rule. Such is the doodle that a writer makes 
randomly. These lines are not the object of Geometry: they give it no traction 
[…]. Regular lines, on the contrary, are those that are described according to a 
constant law that determines the position of all of their points. There is some 
uniform property that pertains equally to all of the points of one and the same 
regular line, and that pertains to them alone. This property constitutes this line’s 
Nature or Essence.7 

It nevertheless remains that the characterization of these curves and of the 
curve in general is intimately tied to the mathematics of the times. It is pre-
cisely these objects, in their mathematical horizons, that one wanted to 
classify.  

This horizon was quickly redrawn during the first half of the 18th century. 
Already towards the middle of this century, mathematicians were occupied 
with the classification of functions (e.g., Euler’s Introductio in analysin 
infinitorum, 1748).8 Indeed, they were beginning to discuss arbitrary functions 

 
7 Cramer, Introduction à l’analyse des lignes courbes algébriques, pp. 1–2. Note also 

that Newton in 1667 or 1668 seems to distinguish geometrical curves, mechanical curves, 
and randomly drawn curves (‘curva sive Geometrica sive Mechanica & casu ducta’, 
translated by D. T. Whiteside as ‘a curve be it algebraic or transcendental and drawn 
haphazardly’, The Mathematical Papers of Isaac Newton, Cambridge, Cambridge 
University Press, 1968, vol. II: 1667–1670, pp. 142–3).  

8 Euler expresses this new concept thus: ‘Although one can describe several curves 
mechanically with the continuous motion of a point which reveals to the eye the curve as a 
whole, we consider them here primarily as the result of functions, since this way of 

(Cont. on next page) 
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and their representations by a curve forming a continuous tracing or drawn 
freehand (Euler, d’Alembert, Lagrange, D. Bernoulli). Up to that point, this 
type of curve seemed to have escaped the attention of mathematicians; to 
establish the study of it, one had to wait for many other 19th-century works, 
beginning with Fourier.  

 
 

2. SIMPLE CURVES AND MIXED CURVES 
 

The first such classification is that of the Parmenides (145 b). With 
respect to the One, Plato already discussed three possible figures: straight line, 
circle, and a mixture of straight line and circle. Aristotle takes up this classifi-
cation, but by pairing the first two curves to two types of motion, on the one 
hand, and by considering them as the only simple curves, on the other. This is 
what he clearly affirms when he writes:  

But all movement that is in place, all locomotion, as we term it, is either straight 
or circular or a combination of these two, which are the only simple movements. 
And the reason for this is that these two, the straight and the circular line, are 
the only simple magnitudes.9 

In his Commentary on the First Book of Euclid’s Elements, Proclus takes 
up the preceding points to summarize Aristotle’s teaching. He writes:  

Aristotle’s opinion is the same as Plato’s; for every line, he says, is either 
straight, or circular, or a mixture of the two. For this reason there are three 
species of motion – motion in a straight line, motion in a circle, and mixed 
motion.10 

According to this commentary, and the citation of Aristotle, one under-
stands that the forms of lines precede – logically at least – the forms of motion 
                                             
(Cont.) conceiving them is more analytic, more general, and more suited to calculation. 
Thus any function of x will yield a straight line or a curved one, whence it follows 
reciprocally that curved lines can be connected to functions’ (From Introduction à l’analyse 
infinitésimale, transl. from Latin into French, with notes and explanations by J. B. Labey, 
Paris, 1797, t. II, p. 4). 

9 De Caelo I 2, 268 b 17–20 (J. L. Stocks translation). 
10 Procli Diadochi in primum Euclidis Elementorum librum commentarii, ed. 

G. Friedlein, Leipzig, Teubner, 1873, p. 104, 21–25; Proclus, A Commentary on the First 
Book of Euclid’s Elements, transl. with introduction and notes by G. R. Morrow, Princeton, 
Princeton University Press, 1970, p. 85. 
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in place. What one must remember, is the distinction between the first two 
motions and the motion that is a result of their mixture. Indeed the latter 
depends on the nature of the first two and cannot be called ‘simple’. In 
Physics, VIII, 8, 261 b 28–31, Aristotle writes:  

The motion of everything that is in process of locomotion is either rotatory or 
rectilinear or a compound of the two (πᾶν μὲν γὰρ κινεῖται τὸ ϕερόμενον ἢ 
κύκλῳ ἢ εὐθεῖαν ἢ μικτήν): consequently, if one of the former two is not 
continuous, that which is composed of them both cannot be continuous either.11 

No need to tarry longer: Aristotle does not inflect his teaching by stating 
that he is dissatisfied simply to take up Plato’s opinion; rather, he takes pains 
to link the classification of curves with that of local motion, and to distinguish 
in his classification – both of curves and of motions – between the entities that 
are simple and those that are not. According to him, there are only two simple 
curves, the straight line and the circle, since all others are compounded of 
these two elementary curves and therefore cannot be simple.  

The remaining step is to find out what precisely is meant by ‘mixed 
curves’, which amounts to wondering: at the time, of what did the knowledge 
of curves consist? Tradition assigns the discovery of the quadratrix to Hippias 
of Elis (c. 420 BC), a sophist and contemporary of Plato’s.12 It also credits 
Plato’s friend, Archytas of Tarentum, with the discovery of the eponymous 
curve. The discovery of conic curves is attributed to Menaechmus, a student of 
Eudoxus’s (c. 350 BC). Neither Plato nor Aristotle could therefore be ignorant 
of these curves, and notably the sophist’s quadratrix. On the same grounds as 
the others mentioned above, it is a mixed curve.  

It is in fact Proclus13 who attributes the discovery of this curve to Hippias 
of Elis. From his testimony alone, however, it is impossible to know which 
quadratrix he meant. For his part, Pappus gives a precise description of the 
curve in the fourth book of his Collection,14 but attributes it to Dinostratus, the 

 
11 R. P. Hardie and R. K. Gaye translation. 
12 See T. Heath, A History of Greek Mathematics, 2 vols, Oxford, 1921; repr. Dover 

Publications, New York, 1981, vol. I, p. 182. This curve was used for the division of the 
right angle in any ratio – notably trisection – and for the quadrature of the circle. See also, 
pp. 226–30.  

13 Proclus, ed. Friedlein, p. 356, 8–11; English transl. G. R. Morrow, p. 277 and more 
clearly, p. 212 (Proclus, ed. Friedlein, p. 356, 8–11 and, more clearly, p. 272, 7–10). 

14 Pappi Alexandrini Collectionis quae supersunt e libris manu scriptis edidit latina 
interpretatione et commentariis instruxit F. Hultsch, 3 vols, Berlin, 1876–1878; La 

(Cont. on next page) 
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brother of Menaechmus, and dates it two generations after Hippias. 
P. Tannery,15 who maintains that Hippias made the discovery, states that the 
two curves of Dinostratus and Hippias can be assimilated. For the purposes of 
our present discussion, however, the priority dispute does not matter. Let us 
therefore follow Tannery and begin by examining the description of the curve 
as Pappus reports it:  

Let DAB be a quarter circle, and AB and AD be two orthogonal semi-
diameters; and let a semi-diameter AE rotate uniformly from AB to AD. Let 
the straight line B′Z move uniformly from B along BA parallel to AD and let it 
cut the semi-diameter AE at Z. Let it continue to displace itself uniformly until 
its foot B′ arrives at A; point E thus moves from point B to D. The locus of the 
points Z is the quadratrix of Dinostratus, the curve with the vertex at H.16 

 

Fig. 15 

 
This description by Pappus stimulates the following remarks: 
• From point B one can construct, by means of an iterated bisection of the 

angles, an infinity of points Z of the curve, everywhere dense on the arc BH; 

                                             
(Cont.) Collection mathématique, Work translated for the first time from Greek into 
French, with an introduction and notes by P. Ver Eecke, 2 vols, Paris/Bruges, 1933; New 
printing Paris, 1982.  

15 P. Tannery, ‘Pour l’histoire des lignes et surfaces courbes dans l’antiquité’, in 
Mémoires scientifiques. On the history of the quadratrix, see for example E. Knobloch, ‘Sur 
le rôle de Clavius dans l’histoire des mathématiques’, in Ugo Baldini (ed.), Christoph 
Clavius e l’attività scientifica dei gesuiti nell’ età di Galileo, Rome, 1995, pp. 35–56, esp. 
pp. 50–2.  

16 Cf. La Collection mathématique, French transl. Ver Eecke, p. 192. 
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but point H cannot be constructed in this way. This is the case for all 
quadratrixes.  

• One could thus trace this curve by means of points. But the question of 
the necessity of the continuous tracing is not pertinent to the mathematics of 
the period. 

• The term ‘mixed’ seems to designate negatively, so to speak, the form of 
the curve (it is neither straight nor circular); but, especially positively, the 
method of generation of this curve, which is traced by means of two distinct 
motions, one circular (a rotation), the other rectilinear (a displacement). It is 
on this mode of generation that Aristotle’s classification rests. In contradis-
tinction to a simple curve – a straight line or a circle – which results from a 
single uniform motion, a ‘mixed’ curve is traced by means of two distinct 
uniform motions.  

• Finally, it is clear that the class of ‘mixed’ curves includes curves of very 
different kinds, the quadratrix as well as a conic. This will soon cause 
difficulties, which will surface as soon as the classification is reformed or at 
least amended. But attempts at reform or rectification cannot be isolated from 
effective mathematical research. One of the first such attempts seems to be 
tied precisely to research on the quadratrix.  

 
Still discussing the quadratrix of Dinostratus, Pappus records a criticism 

addressed by his immediate predecessor, Sporos, pertaining to the use of this 
curve.17 It essentially concerns the determination of the vertex H. With good 
reason, Sporos believes that the mode of construction of the moving point Z is 
not applied to H, since the two straight lines whose intersection determines the 
point Z – the radius of the circle and the parallel to AD – are superimposed 
during the determination of H, for which there is no precise construction. In 
other words, if the unicity of H is established by Dinostratus’s reasoning, or 
by the continuous decrease of AZ and the continuous increase of AT, point H 
is not constructed according to the proposed rules.  

In other words, if one takes (AD, AB) as a system of axes (x, y), point H is 
the limit position of Z when y → 0, and one runs into a form of indetermina-
tion. The equation of the curve is written 

 
17 La Collection mathématique, French transl. Ver Eecke, pp. 193–4. 
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x = y

tan π y
2A

, 

 
where a = AB, and AH is the value of x for y = 0, which yields the indetermi-

nate form ; since tan π y
2a

≈ π y
2a

 ; when y tends to 0, one has AH = 2a
π

. 

 
Sporos concludes his criticism thus:  

[…] it is not appropriate that, by trusting the reputation of the men who invented 
it, one admit this line, which is in some fashion too mechanical 
(μηχανικωτέραν πως οὖσαν).18  

Following this last phrase is another: ‘and useful to mechanicians for 
many problems’, which the editor believes to be an ancient interpolation. The 
presence of the expression ‘too mechanical’ to characterize the curve or the 
reference to ‘its usage’, whether or not the phrase is interpolated, implies that, 
in this era already, they were isolating a certain number of curves, including 
the quadratrix, within the category ‘mixed’. Did this distinction rest only on 
the use of these curves, as the incriminated phrase specifies? or, in part and 
indirectly, on their mode of generation? The question is important since it 
elicits criteria of classification. P. Tannery, whom P. Ver Eecke follows,19 has 
hypothesized that the phrase indicated ‘that set-squares in which a quadratrix 
replaces the hypotenuse (équerres en quadratrice) were used in practice since 
the time of Hippias and that Sporos insists that the necessarily approximate 
construction of these instruments does not stand up to comparison with the 
compass and straightedge’;20 but he offers no historical argument in support of 
such a hypothesis. J. Itard21 has followed the eminent historian down this 
hypothetical road, and tried to imagine such a set-square.  

Let us return to the first figure and draw on it a circle of center A and of 
radius AZ; it meets AB at M and AD at S. Let us draw an arc with the same 

 
18 Pappi Alexandrini Collectionis, ed. Hultsch, vol. I, p. 254, 24. 
19 La Collection mathématique, p. 194, n. 3. 
20 P. Tannery, ‘Pour l’histoire des lignes et surfaces courbes dans l’antiquité’, in 

Mémoires scientifiques, p. 11. 
21 J. Itard, ‘La espiral y la cuadratriz en los Griegos’, Ciencia y Tecnologia, 5, 1955, 

pp. 53–8. 
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center that passes through point H and meets AB at N. From the property of 
the quadratrix, one has 

ZT
AB

= DE�

DB� = ZS�

MS� . 

 

 

Fig. 16 
 
For sufficiently small arcs, one can approximate arcs with chords. Thus 

ZT and arc ZS whence AB ≈ MS� . One then has ZT ≈ HV�  and the triangle 
AZH is approximately equal to sector AVH; one thus has a set-square with a 
quadratrix. But this set-square will in no way allow a precise determination of 
point H.  

One must nevertheless concede that, according to this conjecture, one 
could conclude that the term ‘mechanical’ refers not only to the use, but also 
to the manufacture, of a tool destined to determine the curve, in the manner of 
the ‘horn-shaped ruler’ that Diocles will later use to join the points of a 
cissoid.22 But in each of these cases, the adjective ‘mechanical’ pertains to 
practice, without any theoretical justification. Nevertheless, with this term, 
Sporos offers a first amendment to the Aristotelian classification. The second 
critique aimed at the latter originates in the study of another curve, the cylin-
drical helix, which will also lead to a correction of Aristotle’s classification.  

 
22 Les Catoptriciens grecs. I: Les miroirs ardents, ed., transl. and commentary by 

R. Rashed, Collection des Universités de France, Paris, Les Belles Lettres, 2000. 
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The long-dominant Aristotelian doctrine was evidently not endorsed by 
all. If we can believe Proclus,  

Some dispute this classification, denying that there are only two simple lines 
and saying that there is also a third, namely, the cylindrical helix, which is tra-
ced by a point [reading sêmeion instead of sêmeiou – Friedlein] moving unifor-
mly along a straight line that is moving around the surface of a cylinder. This 
moving point generates a helix, any part of which coincides homoeomerically 
with any other, as Apollonius has shown in his treatise On the Cochlias. This 
characteristic belongs to the helix alone.23 

This idea rests on another, to be explicated later: the homogeneity of the 
curves in question (the straight line and the circle in the plane, the helix in 
three dimensions) relative to the group of displacements. Indeed the only 
homoeomeric curves (with respect to the group of displacements) in the plane 
are the straight line (translation) and the circle (rotation); and in three dimen-
sions, they are a straight line, the circle, and the helix, which corresponds to a 
one-parameter group of screw-motions. If one replaces the group of displace-
ments with that of similarities, a new homogeneous curve appears: the loga-
rithmic spiral, studied in the 17th century by Mersenne, Descartes, and 
Torricelli as well. Proclus did not think it necessary to record either the names 
or the arguments of these contradictors. Nevertheless, one gathers that this 
classification of curves became the arena of a lively debate, between not only 
mathematician-philosophers, but also theologian-philosophers.24 This debate 
goes back at least to the first century of our era since – still according to 
Proclus – Geminus took part in it. We also know from Simplicius that 
Xenarchus, at the beginning of the millennium, had rejected the Aristotelian 
classification, and that Alexander of Aphrodisias in turn criticized him two 
centuries later. In Simplicius’s words:  

 
23 Proclus, ed. Friedlein, p. 104, 26–105, 7; transl. G. R. Morrow, p. 85.  
24 M. Rashed, ‘La classification des lignes simples selon Proclus et sa transmission au 

monde islamique’, in C. d’Ancona and G. Serra (eds), Aristotele e Alessandro di Afrodisia, 
Padua, Il Poligrafo, 2002, pp. 257–69. The Neoplatonists, and Pseudo-Dionysius in their 
wake, related the three constitutive moments of the Triad to the two simple lines and the 
composite of them. In the domain of the real, these three geometrical entities are the 
imperfect images of the three divine ‘motions’.  
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But Xenarchus, in answering many things in his work Against the Quintessence, 
also answered the argument that ‘the cause of it is that only these magnitudes 
likewise are simple, namely the straight and the circular’.25 

Xenarchus opposes this Aristotelian thesis in the following terms:  

for another simple line is the helix on the cylinder, on the grounds that every 
part of the latter is superposable on every equal part. But if there is a simple 
magnitude alongside the first two, there could also be a simple motion alongside 
the other two, and another simple body, alongside the five, that would be moved 
by this motion.26 

To defend the simplicity of the helix is to strike at the heart of several 
points of Aristotelian doctrine: the number of simple lines, the number of sim-
ple motions, and the number of simple bodies. Alexander of Aphrodisias, the 
great commentator of Aristotle, was therefore duty-bound to reply to 
Xenarchus, to whom he addresses two criticisms. Only the second matters 
here, which Simplicius records as follows:  

that the helix on the cylinder is not even a simple line, even though it is true that 
it is generated from two dissimilar motions, circular and rectilinear (ἐκ δύο 
κινήσεων ἀνομ οίων … κυκλικῆς τε  καὶ  ἐπ᾿  εὐθείαϛ ). Indeed, having drawn a 
straight line circularly around the surface of the cylinder, and letting any point 
move regularly (ὁμαλῶϛ) on this straight line, the cylindrical helix (ἡ 
κυλινδρικὴ ἕλιξ) is generated, as Xenarchus himself recognizes when he writes 
as follows: ‘let us make a square revolve while keeping immobile only one of 
its sides, which will be the axis of then cylinder. On the side that is parallel to it 
and that revolves, let us draw a point such that it covers the length of the line in 
the time it takes for the parallelogram to return to its starting point. The paral-
lelogram thus produces a cylinder, whereas the point drawn on the line produce 
a helix, which, according to his statement, is simple (ἁπλῆν) because it is 
homoeomeric (διότι ὁμ οιομερής)’. But even if it is homoeomeric, it is not 
simple. For the simple line is necessarily also homoeomeric, but the homoeo-
meric line is not necessarily simple, on account of its not being uniform 
(μονοειδής); and if <the simple ligne> is produced as the result of a motion, this 
motion is also uniform and, what is more, one.27 

 
25 Simplicius, In Aristotelis de caelo commentaria (C.A.G. 7), ed. Heiberg, p. 13, 22–

25. 
26 Ibid., p. 13, 22–28. 
27 Ibid., p. 14, 10–24. See A. Falcon, Corpi e movimenti, Il De caelo di Aristotele e la 

sua fortuna nel mondo antico, Elenchos XXXIII, Naples, Bibliopolis, 2001.  
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In short, the cylindrical helix is homoeomeric, on the same grounds as the 
straight line and the circle; unlike these, however, it is not a simple line, 
because two dissimilar motions generate it. Now, according to Proclus, well 
before Alexander, Geminus in effect had already answered Xenarchus pre-
emptively. For Proclus, Geminus gets the credit for having noted this point:  

Hence from these distinctions it may be gathered that the only three lines that 
are homoeomeric are the straight line, the circle, and the cylindrical helix. Two 
of them lie in a plane and are simple; one is mixed and lies around a solid. This 
has been clearly shown by Geminus, who had previously demonstrated that the 
two lines drawn from a point to a homoeomeric line and making equal angles 
with it are themselves equal.28 

These angles are mixed angles, formed by a straight line and a curve: it is 
therefore hard to see how Geminus could manipulate them and complete his 
demonstration about them. Such a difficulty cannot be avoided, however, for 
the simple reason that here Geminus apparently wishes to give a geometrical 
meaning to this rather imprecise notion of homoeomery. To disentangle this 
difficulty, it would have been necessary to state that, for every homoeomeric 
curve, there exist points from which one can draw straight lines that are both 
equal and isogonic. Thus Geminus could have said:  

Given the curve ABC, with point B as the 
middle of the arc AC, and BD as an axis of 
symmetry. Let us place this arc on itself, A at 
C and C at A; then B does not move, nor does 
the middle D of chord AC, which is generally 
distinct from B. For every point P of the 
straight line BD, the line segments PA, PC 
share this property of equality, not only for A 
and C, but also for every pair of points on the 
curve that has B as their middle. AC, how-
ever, is perpendicular to D at BP. 

 
Fig. 17 

Thus all chords AC are thus perpendicular to BP at their middle. If this 
property is true of every point B of the curve, that is, if every point B is the 
extremity of an axis of symmetry, the curve is homoeomeric. To every point B 
of the homoeomeric curve (other than a straight line), one thus associates one 

 
28 Proclus, ed. Friedlein, pp. 112, 19–113, 3; Morrow, pp. 91–2. 
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and only one straight line BP.29 In the case of the helix, it is the generatrix of 
the right helicoid that plays an important role in the passages that Pappus 
devotes to this curve. It is clear that, according to this definition, a homoeo-
meric curve allows a transitive group of displacements on itself. But an argu-
ment of this sort could not be put forward without having defined the concept 
of symmetry.  

Such an interpretation makes it possible to display the ‘geometric’ nature 
of this concept of homoeomery without, however, forgetting motion. Indeed, 
still according to Proclus, the very same Geminus ‘[…] has rightly declared 
that, although a simple line can be produced by a plurality of motions, not 
every such line is mixed, but only one that arises from dissimilar motions’.30 If 
therefore the helix is not simple, it is on account of the type of motion that 
generates it, whereas its homoeomery is, for Geminus at least, answerable, to 
geometry. For the cylindrical helix, the concept of homoeomery thus seems 
irreducibly opaque, whereas this is not the case for the circle, which is both 
homoeomeric and simple – a case in which motion and geometry combine. 
Geminus’s step forward is certainly important: henceforth, the classification of 
curves depends on the type of motions and on their composition, as well as on 
a geometric characterization that still remains to be determined.  

According to the Proclus citation above, already in Apollonius’s On the 
Cochlias, the cylindrical helix stood out as an exceptional curve insofar as it is 
the only one all of whose parts coincide; in other words, it is homogeneous.31  

Not only is the Greek original of Apollonius’s book lost, but no trace of it, 
either direct or indirect, has been preserved by the heirs of Hellenistic mathe-

 
29 J. Itard, ‘La espiral y la cuadratriz en los Griegos’. 
30 Proclus, ed. Friedlein, p. 105, 26–106, 3; transl. Morrow, p. 86. 
31 A displacement of the plane is composed of two symmetries with respect to two 

straight lines D and Dʹ. If D and Dʹ are parallel, the displacement is a translation; if not, it 
is a rotation around the point common to D and Dʹ. It follows that the only curves that are 
homogeneous (with respect to the group of displacements) in the plane are the straight line 
(translations) and the circle (rotations). 

A displacement in three dimensions is composed of two or four symmetries with 
respect to the planes because it is composed of a rotation (about a point chosen as origin) 
and of a translation; each of these two transformations reduces to two symmetries. A 
suitable choice of origin allows one to reduce a given displacement to the composite of a 
rotation about an axis and of a translation parallel to this axis (screw-motion). The curves 
that are homogeneous in three dimensions are thus the straight line, the circle, and the helix, 
which corresponds to a one-parameter group of screw-motion helicoids. 
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matics. The mathematicians of the 10th century therefore knew nothing about 
it. Did they hear some echoes, even indirectly, of Proclus’s Commentary? 
Whereas this question remains largely open, they certainly had some 
knowledge of this curve, either from the Commentary of Alexander on the 
first book of the De caelo, from which Simplicius draws his knowledge of 
Xenarchus, or from the studies of Hero of Alexandria and Pappus. The first 
book of Alexander’s Commentary, which interests us here, was indeed trans-
lated into Arabic; better yet, the 10th-century mathematician al-Khāzin com-
mented on it.32 Hero’s Mechanics was also translated into Arabic, and as was 
book eight of Pappus’s Mathematical Collection. More importantly, al-Sijzī 
(second half of the 10th century) personally transcribed this eighth book from a 
copy made in the 9th century for the famous mathematician brothers, the Banū 
Mūsā.33 

In book two of the Mechanics, Hero defines the cylindrical helix and 
explains how to draw it; Pappus will take up Hero’s exposition in almost 
identical terms.34 Here are Hero’s words:  

We claim that the nature of the line drawn on it (the screw) is the following: if 
one assumes that one of the sides of a cylindrical figure moves on the surface of 
the cylinder, and if one assumes that any point (starting) at the end of this side 
that moves on this side by covering its entire length in the same time that the 
side takes to make one full turn around the entire cylindrical surface, then the 
line that this point traces on the surface of the cylindrical figure is one turn of a 
helix, which is called ‘helix’. 

When we wish to trace this line on the surface of the cylinder, we use the 
following procedure: on any given plane, we assume two straight lines, one of 
which is erected perpendicularly on the other, one of the two straight lines being 
equal to the side of the cylinder and the other equal to the circle of the cylinder, 
that is, to the circle of its base. If we join the ends of the two straight lines that 
surround the right angle with a straight line that subtends the right angle, and if 
we apply the straight line equal to the side of the cylinder onto the side of the 
cylinder, and the straight line equal to the circle of the base of the cylinder onto 
the base of the cylinder, then the straight line that subtends the right angle is 

 
32 See al-Nadīm, Kitāb al-Fihrist, ed. R. Tajaddud, Teheran, 1971, p. 311. 
33 Ms. Istanbul, Ahmet III 3457, fol. 34v. 
34 Ms. Istanbul, Ahmet III 3457, fols 26v–27r; Pappi Alexandrini Collectionis, ed. 

Hultsch, pp. 1122, 26–1124, 24. 
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rolled around the surface of the cylinder, and on the latter one will obtain a turn 
of a helix.35 

Challenges to Aristotelian doctrine always originated from its incapacity 
to distinguish between the various kinds of ‘mixed’. The study of mixed 
curves – now the quadratrix, now the cylindrical helix – was not the only thing 
feeding this antagonism; from the 3rd century on, both the multiplication of 
newly discovered mixed curves and the elaboration of a theory of conics gave 
it a lively stimulus. Even the most rigid Aristotelians could not help but emend 
the Stagirite’s classification. Thus, in his Commentary on Book I of Euclid,36 
Simplicius returns to it in his study of the Euclidian definition of the straight 
line. Following Aristotle, he distinguishes two classes, the simple (the straight 
line and the circle) and the ‘intermediate’, that is, the curves composed of the 
first two. In contrast to Aristotle, however, within the ‘intermediates’ he 
distinguishes two sub-classes: the first includes mixed curves that have neither 
‘order’ nor ‘regularity’ and that geometers do not use; in the second are curves 
such as the conics, the helicoids, among many others that geometers do use. If, 
therefore, by ‘geometrical’ one means the curves that interest geometers, these 
are the straight line, the circle, and the curves that are governed by an 
‘order’.37 How ought one understand these two important concepts that define 
mixed geometrical curves in opposition to mixed curves that are not 
geometrical? To this question, Simplicius does not offer the slightest answer. 
The most likely interpretation, which is also the simplest, brings us back to 
tradition: ‘ordered’ and ‘regular’ are the terms that characterize what can exist 
in only one way, whatever its mode of construction may be, even if one cannot 
determine it directly.  

The preceding classification is not free of all ambiguity. Despite its 
Aristotelian partisanship, it does not rely on a doctrine of motion and remains 
essentially descriptive. Among the ‘intermediaries’, Simplicius thus numbers 
the conics as well as the helix: this is justifiable if one is considering order and 
regularity, but not if one is thinking about the motion required to draw them. 
Moreover, the term ‘intermediary’ means, in a first sense, the curves other 
than the circle and the straight line, and in a second, those that are ‘like’ (ka) 

 
35 Translated from a slightly emendation of the edition in Héron d’Alexandrie, Les 

Mécaniques ou l’élévateur des corps lourds, Arabic text of Qusṭā ibn Lūqā established and 
transl. by B. Carra de Vaux, repr. Paris, Les Belles Lettres, 1988, pp. 46–7. 

36 See below Appendix, p. 237. 
37 Ibid. 
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those composed of the straight line and the circle. Now this last meaning 
surely is not appropriate for conics, which are nevertheless considered to be 
intermediaries. Finally, there remains the most important point of this classifi-
cation: the distinction between the curves that geometers use and those that 
they do not, a distinction that later mathematicians will retain.  

 
 

3. GEOMETRICAL AND MECHANICAL:  
THE CHARACTERIZATION OF CONIC SECTIONS  

 
Beginning in the middle of the 9th century, mathematicians were familiar 

with not only the writings of Aristotle, Alexander, and Simplicius, but also 
Hero’s work and Pappus’s borrowings from it. But they elaborated their 
knowledge in a completely different context, and directed it to other ends. 
Hero and Pappus had encountered the cylindrical helix in their studies of 
instruments designed to raise heavy bodies, most specifically the screw and 
‘the peculiarities of its construction and its usage’, as Pappus writes. For the 
mathematicians of the 9th century, however, the dominant concerns were pure 
geometry and the classification of curves. 

Since we have given a detailed account of this new mathematical land-
scape elsewhere, we will recall here only a few of its characteristics. Without 
fear of contradiction, one can state unequivocally that never since Apollonius 
had the geometry of conics flourished so remarkably. To make the point, one 
need only allude to the works of the Banū Mūsā, Thābit ibn Qurra, and 
Ibrāhīm ibn Sinān, among others.38 Never up to that point had the geometry of 
conics built so many bridges and woven so many networks among the various 
mathematical disciplines: the establishment of anaclastics and of the first 
theory of plano-convex and biconvex lenses; the study of certain projective 
properties of conics; extensive studies of geometrical constructions by means 
of conics; the geometrical theory of cubic equations and their solution by the 

 
38 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: Fondateurs 

et commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-Qūhī, Ibn al-
Samḥ, Ibn Hūd, London, al-Furqān, 1996; English transl. Founding Figures and 
Commentators in Arabic Mathematics. A History of Arabic Sciences and Mathematics, vol. 
1, Culture and Civilization in the Middle East, London, Centre for Arab Unity Studies, 
Routledge, 2012. R. Rashed and H. Bellosta, Ibrāhim ibn Sinān. Logique et géométrie au Xe 

siècle, Leiden, E. J. Brill, 2000. 
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intersection of conics, etc. One of the results of this research, the importance 
of which needs no demonstration, is a distinction that ultimately became the 
standard, namely, that between the curves that one can obtain geometrically as 
plane sections of a cone or cylinder and draw with a continuous motion; and 
all the others. This continuous motion, which is conceived geometrically and 
not kinematically, is generated thanks to new instruments designed with this 
goal in mind; among these, the perfect compass in particular stands out.39 
Thanks to these instruments, the mode of generation of a class of curves and 
their geometrical characterization are now unified. This unification has a spe-
cific date, and al-Qūhī is responsible for it. 

Al-Qūhī distinguishes the curves traced by the perfect compass – the 
straight line, circle, and conic sections – by giving them a generic name: ‘the 
qiyāsiyya lines’, which we translate as ‘measurable lines’. At the beginning of 
his book he writes:  

This is a treatise on the instrument called the perfect compass, and it contains 
two books. The first deals with the demonstration that it is possible to draw 
measurable lines (qiyāsiyya) by this compass – that is, straight lines, the cir-
cumferences of circles, and the perimeters of conic sections, namely parabolas, 
hyperbolas, ellipses, and opposite sections.40 

Henceforth the tradition will dedicate the term qiyāsiyya to designating 
these curves and also to excluding the others.  

What did al-Qūhī and his successors mean by ‘measurable lines’? If one 
follows the geometrical terminology of the period, the expression denotes 
lines governed by the theory of proportions. This is precisely what al-Qūhī 
means: They are curves generated by a single continuous motion – that of the 
leg of a perfect compass, for example – and to which the theory of proportions 
can be applied. Such is the case of the straight line and the circle, but also of 
the conic sections characterized by symptomata or by the properties of the 
focus and the directrix, or later the eccentricity.  

Al-Qūhī has thus established a classification of curves: those that are 
measurable, and the others. By doing so, he has just left behind a distinction 

 
39 R. Rashed, ‘Al-Qūhī et al-Sijzī: sur le compas parfait et le tracé continu des sections 

coniques’, Arabic Sciences and Philosophy, 13.1, 2003, pp. 9–44 and Geometry and 
Dioptrics in Classical Islam, Chap. V. 

40 Fī al-birkār al-tāmm, ed. R. Rashed in Geometry and Dioptrics in Classical Islam, 
Chap. V, Arabic p. 727, 3–6. 
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anchored in tradition: the distinction that opposes the straight line, on the one 
hand, and curves (including the circle), on the other. In addition, he has upset 
the ancient classification between ‘simple’ and ‘mixed’, since the straight line, 
the circle, and the conics now belong to the same class. Finally, he has opened 
up a new perspective: every curve is measurable that an instrument can gener-
ate in a single continuous motion and that one can study geometrically in 
terms of the proportion theory. This is al-Qūhī’s message to the future. In 
other words, he has just isolated plane curves of the first and second degree. 
Now, by distinguishing this class of curves, the very criterion of classification 
changes: the line of demarcation now runs between ‘measurable’ and ‘non-
measurable’ curves, according to their mode of generation and according to 
whether or not they are governed by proportion theory. 

‘Non-measurable’ curves remain, and al-Sijzī, al-Qūhī’s younger contem-
porary, will make progress in this domain. In his Introduction to Geometry,41 a 
book devoted to the classification of geometrical entities, he distinguishes 
three types of curve: the ‘measurables’ we have just discussed; the ‘non-
measurables’ that have an order (niẓām) and a regularity (tartīb), adopting the 
terminology that we have already encountered in Simplicius; and the ‘non-
measurables’ without ‘order’ or ‘regularity’.  

The first, generated by a single continuous motion, are ‘geometrical’, that 
is, one draws upon them in geometry; the second are generated by two contin-
uous motions that are dissimilar. They are no longer ‘geometrical’ but 
‘mechanical’. Finally, the third, also generated by two dissimilar continuous 
motions, are not even mechanical. They have no specific name. The example 
that al-Sijzī gives is a curve that we know well: the cylindrical helix. In his 
words: 

As to the cylindrical helix (al-khaṭṭ al-lawlabī), which is used in mechanics (al-
ḥiyal) and not in geometry (for it is not measurable [ghayr qiyāsī] but has an 
order and a regularity), it is generated by the motion of the point following a 
straight line and following a circle in common with the cylinder.42 

He continues: 

Here is its figure. Given the cylinder ABCD with its two bases AB and CD. If 
we imagine that point A moves with uniform motions following the straight line 

 
41 Al-Madkhal ilā ʿilm al-handasa, ms. Dublin, Chester Beatty 3652, fols 2v–8r, ed. 

R. Rashed and P. Crozet in Œuvre mathématique d’al-Sijzī, vol. II, forthcoming. 
42 Al-Madkhal ilā ʿilm al-handasa, ms. Dublin, Chester Beatty 3652, fol. 4r. 
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AC and that the cylinder rotates in uniform motion, the line AEGHID is gene-
rated, which is a cylindrical helix. As to the line that has no order, it therefore 
has neither limit (ḥadd, also translated by ‘definition’) nor extremity, and it is 
used in none of the arts; that is why it is neither described nor defined.43  

Al-Sijzī draws the cylindrical helix, but gives no example of nonmeasura-
ble curves without order or regularity. Perhaps he had in mind such curves as 
the quadratrix or the spiral.  

About the meaning of the distinction between measurable and nonmeasur-
able curves, there is not the shadow of a doubt. A clear confirmation of the 
meaning of these terms in al-Sijzī’s use of them when he defines angles: the 
nonmeasurable angles are precisely curvilinear angles and the angle of contin-
gency (the horn-angle), whereas the measurable angles are those one can study 
by means of proportion theory.44  

Note that ‘measurable’, ‘nonmeasurable’, ‘order’, and ‘regularity’ are 
qualifications of curves and not of motions, and even less of the problems, in 
distinction to ‘plane’, ‘solid’ and ‘linear’ in Pappus. The same continuous and 
dissimilar motions generate curves that cannot be qualified as ‘mechanical’. 
The singularity of the cylindrical helix, which Apollonius had already estab-
lished by affirming that same-length parts of the cylindrical helix coincide 
homoeomerically, recurs in al-Sijzī, but in a different form. In this case, the 
wine and the wineskins are both new.  

Nowadays we know that the helix traced on the cylinder of revolution is 
the only skew curve whose radii of curvature and radii of torsion are con-
stants. It remains to be discovered whether Apollonius’s formula  
– ‘homoeomeric’ – as well as al-Sijzī’s concepts – ‘nonmeasurable’, ‘with 
order and regularity’ – were means of expressing qualitatively properties that 
they had glimpsed without yet having the means of knowing them. In the case 
of al-Sijzī, one can suggest the following conjecture: as a young contemporary 
of Ibn Sahl and al-Qūhī, that is, two mathematicians who devoted themselves 
to the study of tangents and tangent planes, al-Sijzī was in a position to know 
a distinctive property of this curve: the tangents to it form a constant angle 
with the axis. This is indeed a property of order and regularity.  

In his classification of curves, al-Sijzī proceeds by means of a double ref-
erence point: the number and nature of the motions involved in generating the 

 
43 Ibid. 
44 Ibid., fol. 8r. 
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curve; and the geometrical properties of the curve itself, ‘order and regularity’, 
destined to characterize the curves (or not).  

One should also remember that the proposed classification very naturally 
echoes the mathematical knowledge of the time, reflecting its extent and 
boundaries. Indeed some of its distinctive characteristics derive from two lim-
itations in the latter. As has already been pointed out, al-Sijzī alludes to no 
‘mechanical’ curve apart from the cylindrical helix: in doing so, he is no 
exception. Short of being contradicted by a surprising discovery, one can 
venture that the 10th-century mathematicians, as well as their successors, had 
little interest in ‘mechanical’ curves. To explain this fact, however, one cannot 
restrict oneself to the history of transmission of the Greek geometrical corpus. 
Although it is true that Archimedes’ treatise on the spiral, for example, was 
not translated into Arabic (thereby depriving mathematicians of this curve), 
his treatise On Conoids and Spheroids was not translated either; yet this did 
not prevent them from reinventing and transcending its content. It is therefore 
necessary to look elsewhere for an explanation, which will turn out to be the 
flip-side of a fact that is itself positive.  

We have shown that during the 10th century, with mathematicians like al-
Qūhī,45 new requirements have now established themselves as norms: one 
must provide a genuine proof of existence when it is necessary, and one must 
also establish construction procedures on solid geometrical foundations. Thus, 
the mechanical system of Ibn Sahl and the perfect compass of al-Qūhī, which 
are both intended for the construction of conics, are not just any old instru-
ments; they are themselves shaped by the theory of conics that they embody. 
The mathematicians thus restricted themselves to the only curves for which 
they had the means of establishing their existence and of proceeding to their 
construction. To put the point clearly and succinctly, it is thanks to these very 
requirements that mathematicians were able to distinguish the class of plane 
curves of the first two degrees, and turned away from the active study of 
‘mechanical’ curves.  

 
45 R. Rashed, Les mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-

Haytham. Théorie des coniques, constructions géométriques et géométrie pratique, 
London, al-Furqān, 2000 (English translation: Ibn al-Haytham’s Theory of Conics, 
Geometrical Constructions and Practical Geometry. A History of Arabic Sciences and 
Mathematics, vol. 3, Culture and Civilization in the Middle East, London, Centre for Arab 
Unity Studies, Routledge, 2013); and Geometry and Dioptrics in Classical Islam. 
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The second limitation in the mathematical knowledge of the time is inher-
ent in the same class of plane curves. Having now defined the class of ‘meas-
urable curves’, why indeed did they stop with the first two degrees, even 
though they had encountered solid and ‘super-solid’ problems? The question 
is a fundamental one. After all, al-Qūhī had generalized the Euclidean method 
of applying areas to solids46 and had changed the criteria for permissible con-
structions: no longer restricted to the straightedge and compass as the 
Ancients had been, he now allowed constructions by means of conics.47 In 
other words, until new evidence to the contrary turns up, no one ever tried to 
trace a cubic. To do that, it would have been necessary to have the definition 
of any plane curve – not merely those of the first two degrees – by its equa-
tion. In other words, one would have needed the establishment of a new 
chapter in which curves are studied by means of their equations. Not until the 
end of the 17th century, at least, would this be truly realized. For now, we will 
be content with stating that, beginning in the middle of the 10th century, it is 
the very framing of the problem that evolves: its formulation appears increa-
singly to be that of a geometrical problem. The mode of generation of an 
entire class of curves is always conceived in terms of motions, but these 
motions are themselves studied either in the geometrical terms of the perfect 
compass or other instruments that are themselves incarnations of mathematical 
theories; or in terms of loci on quadratic surfaces. If the ‘geometrization’ of 
the problem took place at the cost of the limitations emphasized above, it in 
turn generated new technical questions that goaded mathematicians to fine-
tune the classification of second-degree curves. This is how al-Sijzī undertook 
to determine conic sections as plane sections of solids. In three of his writings, 
he made it his goal to characterize several quadratic surfaces by means of their 
plane sections, thus classifying them by means of a new concept: ‘the rank’. 
The rank is a number, a function of the number of sections, whether limited or 
unlimited, associated with the surface. In al-Sijzī, the term ‘unlimited’ has a 
double meaning. A curve is unlimited if it goes to infinity, which happens 
only for parabolas and hyperbolas; conversely, a family of ellipses is ‘unlim-
ited’ if the diameters of these ellipses are not limited. We have studied al-

 
46 R. Rashed, Les mathématiques infinitésimales, vol. III, pp. 919–35; English transl. 

Ibn al-Haytham’s Theory of Conics, pp. 714–27. 
47 To understand the importance of this extension, recall that Viète allowed only 

constructions made with a straightedge and compass. 
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Sijzī’s classification elsewhere,48 and will therefore simply reproduce the table 
here.  

 
Solids Plane Sections Rank 

Sphere Circle 1 
Oval or lenticular solid Circle, ellipse 2 
Cylindrical solid Circle, unlimited ellipse  3 
Parabolic or hyperbolic cupola Circle, ellipse, parabola or hyperbola 4 
Conic solid Circle, ellipse, parabola, hyperbola, 

triangle (unlimited curves) 
5 

 
Note what is missing from among the solids that al-Sijzī considers here: 

elliptical, parabolic, and hyperbolic cylinders. But he examined these three 
solids in another study of their plane sections and gave the following classifi-
cation:49  

 
Solids Plane Sections  

Elliptical cylinder  Parallelogram 
Ellipse 
Circle 

 

Hyperbolic cylinder  Parallelogram 
Hyperbola  

 

Parabolic cylinder Parallelogram 
Parabola  

 

 
This table completes the preceding one, and hence the classification of 

quadratics of revolution. One will have to wait another eight centuries for a 
consideration of ruled quadrics. 

In his writings, al-Sijzī characterizes a certain number of surfaces by their 
plane sections. He limits himself to cases in which these sections are circles or 
conics, and he does not mention the straight line when the surface is a plane. 
No one will take up this problem until Fermat does so in his Introduction aux 

 
48 R. Rashed, Œuvre mathématique d’al-Sijzī. Vol. I: Géométrie des coniques et 

théorie des nombres au Xe siècle, Les Cahiers du Mideo, 3, Louvain/Paris, Peeters, 2004, 
Chap. I. 

49 On the Properties of Elliptical, Hyperbolic and Parabolic Solids, in R. Rashed, 
Œuvre mathématique d’al-Sijzī, vol. I. 
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lieux en surface.50 Note also that, more generally, this method will play a 
privileged role in the study of algebraic surfaces at the end of the 19th century. 

 
 

4. GEOMETRICAL TRANSFORMATION AND THE CLASSIFICATION OF CURVES 
 

Thus far the opposition between geometrical and mechanical is the princi-
pal tool in the first classifications of curves. It will remain such for several 
centuries, as we shall see later, still accompanied by the doctrine of motion 
that undergirds it. But another equally important constant of these first classi-
fications of curves is that this opposition will be pushed into the background 
as soon as mathematicians attempt to refine the classification of geometrical 
curves. In this case, either one tries to translate the concept of motion into 
operational terms, or one associates with it other concepts that allow the isola-
tion of families of curves in the midst of this category; thus the concept of 
equation, for example.  

We have just alluded to the examples of Ibn Sahl for the conics, and espe-
cially of al-Qūhī’s perfect compass. The theory of this instrument, developed 
by al-Qūhī and his successors to draw continuously curves of the first two 
degrees, made it possible not only operationally to translate the motions (rota-
tion, translation), but also to unify in the language of proportion theory both 
the procedure for generating curves that involve motions and the characteriza-
tion of the latter, that is, their equations. It thus became possible to identify 
this family of geometrical curves. Fine-tuning this classification a little farther, 
however, puts one in a position to organize the curves of this same family. 
This is precisely what al-Sijzī accomplished, thanks to his studies of certain 
quadratic surfaces and to his concept of ‘rank’. In parallel with these attempts, 
however, mathematicians were successfully clearing the way for a further 
refinement of the classification. The point at issue was to draw on geometrical 
transformations as a tool for establishing a class of objects. The stunning 
fertility of this route will become clear later, in this field as well as many 
others.  

To understand how mathematicians from the beginning of the 10th century 
set out on this new path, it will be useful to recall a few salient facts. Ever 
since the Banū Mūsā in the middle of the 9th century, the study of geometrical 

 
50 Œuvres de Fermat, published by P. Tannery and C. Henry, Paris, 1896, vol. III, 

pp. 102–8. 
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transformations spread to such an extent that the new geometrical research 
eventually became distinct from the legacy of the Hellenistic period.51 
Conversely, from the beginning of the 10th century, geometers such as Ibn 
Sinān and al-Khāzin raised the theoretico-technical question of drawing conics 
both by points and continuously. Finally, an apparently modest result was 
obtained, with mathematical and philosophical consequences that were not: 
the circle belongs explicitly and by birthright to the family of the conics. 
Everything was therefore in place to raise an unprecedented question: can one 
obtain the three conic sections by means of geometrical transformations of the 
circle? If so, one will, on the one hand, effectively solve the theoretical-
technical problem of drawing conics and, on the other, conceive of the act of 
classification as an authentically mathematical act. The rather vague concept 
of continuous motion will be replaced by the more rigorous and operational 
concept of transformation. Finally, this act of classification will henceforth be 
a deliberately unifying one in the sense that the family of curves will now be 
composed of transforms of one of its elements.  

To our knowledge, the first mathematician who took this route is Ibrāhīm 
ibn Sinān (909–946). In the introduction of a treatise that he titled On the 
Drawing of the Three Conics, he wrote:  

When we discovered that the continuous drawing of these three sections by 
means of the compass or other instruments is difficult, we exerted ourselves to 
trace many points, the number of which one can increase at will and such that 
these points will be on one of the three sections. Everything that we determined 
thus shows how these sections, as well as others, can be generated starting from 
the circle.52  

 There is no doubt that Ibn Sinān knew that the continuous drawing of the 
conics is impossible with a straightedge and compass. He therefore tried to 
invent a method to trace them using these same instruments, but by points. 
This method is nothing other than the transformation of the circle into these 
curves. In his treatise, he thus spells out how to obtain the parabola starting 
from a family of circles by means of affine transformation; the ellipse by 

 
51 R. Rashed, Les mathématiques infinitésimales du IXe au XIe siècle, vol. IV: 

Méthodes géométriques, transformations ponctuelles et philosophie des mathématiques, 
London, al-Furqān, 2002; R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et 
géométrie au Xe siècle. 

52 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe siècle, 
p. 264; Arabic p. 265, 14–17. 
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orthogonal affinity; and the hyperbola by projective transformation. We have 
studied this treatise elsewhere after having established and translated the 
text.53 Let us interpret here Ibn Sinān’s study of the case of the hyperbola, 
using a language other than his own. 

Given a circle of radius r = , and the line EG, tangent to the circle at E. 

One draws the straight line GO in any fixed direction such that GO = GE. Let 
P and T be the orthogonal projections of E and O respectively. In triangle 
CEG  

,  
 

whence  

. 

 
Moreover  

,  

 
whence  

. 

 
Letting θ be the angle ZGO, one has  
 

 

 
and  

. 

 

 
53 Ibid., Chap. III. 

AB

2

CE 2 = CP ⋅CG

CG =
r2

CP

GE
CE

=
PE
PC

GE = r ⋅
PE
PC

GT = GOcosθ = GE cosθ = r PE
PC

cosθ

TO = GOsinθ = GE sinθ = r PE
PC

sinθ
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If one notes x, y as the coordinates of E, and X, Y as those of O on the 
orthogonal axes with origin C, the x-axis being CZ, one thus has 

 

X = r2

x
+ ry cosθ

x
,     Y = ry sinθ

x
;  

 
these are the parametric equations of hyperbola H of equation 

X 2 − 2XY
tan θ

−Y 2 = r2  as a function of the parameters x and y that verify x2 + y2 = 

r2. For all values of x, one has 

      Y
X

= ysinθ
r + ycosθ

 (equation of straight line GO). 

 
Fig. 18 

 
If x = 0, one has y = r where y = – r (point U or point V of the circle); in 

this case  
Y
X

= sinθ
1+ cosθ

 or Y
X

= sinθ
cosθ −1

; 

 
one thus has the equations of the asymptotes of the hyperbola H.  The straight 
line with the equation Y = X tan θ is the conjugate diameter of the transverse 
diameter AB. 

One half-century after Ibn Sinān, al-Sijzī drafts a treatise with a title that is 
nothing less than an entire research program – All Figures Start from the 
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Circle – as well as a letter with the same title addressed to a contemporary.54 
No trace of the book remains but we have the letter, in which al-Sijzī takes up 
briefly the terms of his treatise. Along with another work entitled On the 
Description of Conic Sections,55 the letter shows that al-Sijzī stands in the 
tradition of Ibn Sinān. The next step in this same direction will not be taken 
until Desargues, who will develop fully the idea that all conic curves are 
obtained by conic projection starting from the circle, and make this proposi-
tion the foundation of the theory of conic sections.  

 
 

5. THE INTERVENTION OF THE ALGEBRAISTS: THE POLYNOMIAL EQUATION 

AND THE ALGEBRAIC CURVE 
 

To the geometers, the algebraists of this period lent a strong hand, insofar 
as these curves of the first two degrees were henceforth characterized by their 
equations.  

The geometers of the 10th century knew about not only conic sections, but 
also other non-mechanical curves, such as the conchoid of Nicomedes and 
also the cissoid of Diocles. What is more, they themselves – notably the Banū 
Mūsā – invented another curve, the ‘conchoid of the circle’, which Roberval 
would later call ‘Pascal’s snail’. They relied on some of these curves for the 
construction of solid problems – finding two means and trisecting an angle. 
But their successors soon turned away from these curves to focus on conic 
sections in the construction of solid problems, which in the end constituted a 
full and important chapter in the geometrical research of the era.56 Thus they 
limited themselves exclusively to curves admissible to geometry. Neverthe-
less, alongside the active research in this area, which deliberately turned its 
back not only on mechanical curves, but also on curves other than conics, al-
Khāzin and Abū al-Jūd among others were developing a geometrical theory of 
algebraic equations. It was al-Khayyām (1048–1131) who in the end elabo-
rated it, followed by Sharaf al-Dīn al-Ṭūsī. 

 
54 R. Rashed, Œuvre mathématique d’al-Sijzī, vol. I, Chap. II and Text no. 6. 
55 Ibid., Text no. 3. 
56 R. Rashed, Geometry and Dioptrics in Classical Islam, Chap. IV. 
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Without retracing here the history of this theory,57 let us recall two of its 
results, which are of particular significance for the topic at hand.  

For the equations of the third degree, al-Khayyām gives a classification 
that indicates the two conic curves used to determine a positive root. For 
example, he gives the following pairs for these quadrinomial equations:  

 circle and hyperbola 

 hyperbola and hyperbola 

 circle and hyperbola 

 hyperbola and hyperbola 

 hyperbola and hyperbola 

 circle and hyperbola 

 hyperbola and hyperbola. 
 

One thus sees that the quadrinomial cubic equations of this class are 
constructed by means of an equilateral hyperbola and a circle, or of two equi-
lateral hyperbolas.  

Henceforth – and this is not the least result of the classification of equa-
tions of the first three degrees – it is known that a polynomial equation (here 
the first three degrees, and also the fourth) is constructed starting from two 
conics, that is, from their equations. Moreover, it is also known that the 
symptoma (once the reciprocal has been established) is nothing more than a 
second-degree equation.  

This correspondence between polynomial equations and conic curves car-
ries within itself a seminal idea that will later renew the very criterion of clas-
sification. Once it is exploited generally, before the invention of instruments 
suitable to tracing curves of a higher degree, it will isolate a class of curves: 
algebraic curves. For now, however, this correspondence stops on the thresh-
old of this development. Take, for example, the case in which one encounters 
the problem raised, and probably solved, by Ibn al-Haytham (d. after 1040), 
namely, the problem of determining four segments between two segments 
such that the six be in continuous proportion:  

 

 
57 R. Rashed and B. Vahabzadeh, Al-Khayyām mathématicien, Paris, Librairie A. 

Blanchard, 1999. 

x3 + ax2 + bx = c
x3 + ax2 + c = bx
x3 + bx + c = ax2

x3 = ax2 + bx + c
x3 + ax2 = bx + c
x3 + bx = ax2 + c
x3 + c = ax2 + bx
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       (with a and b given), 

 
which reduces to a fifth degree equation 

 
y5 = a3b2 

 
and which can be solved by the intersection of a hyperbola yz = ab and of a 
cubic y3 = az2.  

Al-Khayyām writes:  

This has been demonstrated by Abū ʿAlī ibn al-Haytham; it is very difficult, 
however, so that we cannot include it in our book.58 

In other words, since al-Khayyām wished to develop a systematic theory 
from which he wanted to exclude the fourth degree and, a fortiori, higher 
degrees, he stopped here both in the correspondence between polynomial 
equation and curve and in the examination of his concept. As a last resort, he 
no doubt could have included the fourth degree insofar as the intersections of 
conics were sufficient to give a solution; but his concept of dimension kept 
him from heading in this direction. For degrees higher than the fourth, the 
geometrical solution requires that one consider algebraic curves of degree ≥ 3.  

Nevertheless, in this same seminal idea is inscribed the origin of 
Descartes’s project and the classification that he establishes between 
‘geometrical’ – that is, algebraic – and ‘mechanical’ curves.59  

This intervention of algebra – more precisely incipient algebraic geometry 
– could only reinforce the classification that al-Qūhī and his contemporaries 
had conceived and, better yet, made it possible to consolidate explicitly the 
new basis of the future classification. Indeed, this classification made it possi-
ble to establish a direct and explicit relationship between conic curve and 
equation. To translate an irreducible cubic equation geometrically in order to 
solve it by the intersection of two conic curves effectively required that the 
latter be given by their equations. The conic curve is henceforth defined by its 
equation, which now becomes the main tool of classification.  

 
58 Treatise on Algebra, ed. R. Rashed in Al-Khayyām mathématicien, p. 223, 10–11. 
59 See below, ‘Descartes’s Géométrie and the distinction between geometrical and 

mechanical curves’.  
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To illustrate this situation, let us take a single example from the preceding 
list. Given the equation  

 
(1)  ,   with a, b real and positive, 
 

which is rewritten as  

, 
 

whence  

. 

 
Al-Khayyām had begun his study of cubic equations by demonstrating 

how to find two segments between two segments such that the four were in 
continuous proportion. Thus one has  

 

, 

 
and therefore  

  xy = b x − c
b

⎛
⎝
⎜

⎞
⎠
⎟ ,  the equation of a hyperbola H1 

 
and 

  ,  the equation of a hyperbola H2. 

 
The intersection of these two hyperbolas gives us once again equation (1). 

Al-Khayyām shows that the point  H1  H2, and that if this intersec-

tion is reduced to a single point, the equation has no solution; but if H1  H2 

≠ , then there exist two different points of  belonging to the 

intersection, which are the solutions of the problem. 

x3 + ax2 + c = bx

x2 (a + x) = bx − c

b
x2

=
a + x

x −
c
b

b
x

=
a + x

y
=

y

x −
c
b
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c
b

⎛
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In al-Khayyām’s discussion, one notices the first use of equations to dis-
cuss the intersection points of two conic curves, that is, an attempt, admittedly 
timid, to learn certain properties of curves by starting with their equations. 
This orientation finds a confirmation in the research of al-Khayyām’s succes-
sor, Sharaf al-Dīn al-Ṭūsī.60 

The latter rewrites equation (1) in the form 
 

   x b− x2( )− ax2 = c   with 0 < x <  
 

and then considers 
; 

 
he tries to determine the maximum of this expression. He then posits  

 

 

 
and determines x0, the positive root of g(x) = 0. Next he shows that 

 
, 

 
and obtains the following three cases: 

 
, the problem is impossible; 

, x0 is a solution; 

, the equation has two positive solutions x1 and x2, such that 

x1 < x0 < x2, which he determines. 
 
Al-Ṭūsī thus goes farther than al-Khayyām, since he derives ‘analytic’ 

properties starting from equations: the existence of the maximum.  

 
60 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques. Algèbre et Géométrie au 

XIIe siècle, Collection Sciences et philosophie arabes – textes et études, 2 vols, Paris, Les 
Belles Lettres, 1986. 

b

f x( ) = x b − x2( ) − ax2

g x( ) = b − 3x2 − 2ax

f x0( ) = sup
0<x< b

f x( )

c > f x0( )
c = f x0( )
c < f x0( )
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To develop the geometrical calculation necessary for the theory of equa-
tions of the first three degrees, al-Khayyām and his successor Sharaf al-Dīn al-
Ṭūsī took the following steps, as we have noted. On the one hand, they classi-
fied cubic equations with one unknown as a function of the conic sections 
used to solve them and starting from the property of the two means. On the 
other hand, they proceeded to characterize these second-degree curves by their 
equations. Al-Ṭūsī, for his part, took an additional step forward by developing 
an idea present only in germ in his predecessor’s theory: to rediscover certain 
properties of curves by starting from their equations and determining other 
analytic properties of algebraic equations. It is precisely to this task that he 
devoted himself in his research on maxima, to which his work on the existence 
of intersection points of conic curves had led him. But neither al-Khayyām nor 
al-Ṭūsī had studied an algebraic curve defined by a cubic equation. Not until 
Descartes would an unprecedented program devoted to the study of algebraic 
curves emerge.  

 
 

6. THE CLASSIFICATION OF CURVES 
 AS MECHANICAL AND GEOMETRICAL 

 
Beyond straight lines and conics, only three other algebraic curves were 

known: the cissoid of Diocles, which is a cubic,61 the conchoid of Nicomedes, 
and the so-called ‘Pascal’s snail,’ which is a conchoid of the circle (two quar-
tics). It is even more significant that no algebraist before Descartes thought of 
defining these cubics or quartics by their equations. Beginning in 1630, 
Descartes would add two cubics to these three curves: the folium and the 
trident. 

This was the situation before 1619 when a young Descartes, still equipped 
with a modest mathematical culture, conceived of this new program for stud-
ying algebraic curves. Since we have explained this program elsewhere,62 only 
the leading ideas will be mentioned here. Descartes seeks to classify geomet-
rical problems as a function of the curves used to solve them. Thus one has 
problems that are soluble by means of a straight line and a circle (with a 
straightedge and compass); those that require the intervention of other curves 

 
61 R. Rashed, Les Catoptriciens grecs. 
62 See below, ‘Descartes’s Géométrie and the distinction between geometrical and 

mechanical curves’.  
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different from the circle but generated by a single continuous motion; and yet 
others solved by curves generated by motions that differ from one another and 
are not subordinated to one another. The first curves are geometrical, the 
others are all mechanical, and only the former are allowed in geometry.  

According to the other axis of his research program, the challenge is to 
classify the curves themselves, first by considering the motions by which they 
are drawn (as we have just seen) and later as a function of the equations that 
define them. Not until the Géométrie did the concept of equation operate 
explicitly in the classification of curves.63  

The intention that governs his program is clear: to go beyond the conics in 
order to isolate a class of curves of which the latter are only a subclass, and on 
the strict condition of drawing on no concept alien to the ancients; that is, by 
respecting the rules of proportion theory. What deserves special emphasis here 
is that, as his research advanced from 1619 to the composition of the 
Géométrie in 1636, Descartes seems to have realized that it would be advanta-
geous to add two concepts: to the concept of movement, which allowed him to 
exclude mechanical curves from geometry – an eminently positive act – he 
added another, more effective and more operational, that of the equation of a 
curve.64 The latter notion allowed him to circumscribe this new class of 
geometrical curves, to extend it beyond the conics, and finally to bring about a 
new classification on which an entire stream of research would rely, already 
among contemporaries such as Fermat, and later among his successors into the 
late 18th century.  

Let us now turn to the Géométrie, and book 2 in particular. As Descartes 
writes, the second book concerns ‘some general statements (quelque chose en 

 
63 See the text cited later (at note 77) in which Descartes explains himself without any 

ambiguity (A.T. VI, pp. 392–3). See also J. Itard, ‘La Géométrie de Descartes’, Les 
Conférences du Palais de la Découverte, série D, no. 39, 7 January 1956; repr. in J. Itard, 
Essais d’histoire des mathématiques, collected and introduced by R. Rashed, Paris, A. 
Blanchard, 1984, pp. 269–79, and J. Vuillemin, Mathématiques et métaphysique chez 
Descartes, Paris, P.U.F., 1960, esp. pp. 91–3. 

64 ‘In 1618 the curves constructed with compasses are called geometrical; these curves 
will later be called “organic curves”. In 1632 geometrical curves are those which, in 
relation to one axis – Descartes never used two coordinate axes – one could express an 
algebraic equation between the abscissas and the ordinates’ (J. Itard, ‘La Géométrie de 
Descartes’, p. 276). See below, ‘Descartes’s Géométrie and the distinction between 
geometrical and mechanical curves’.  
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général) about the nature of curved lines’.65 Both the project and the formula-
tion are new: at stake is nothing less than the construction of a theory of 
curves. But in order to reach ‘some general statements’, several routes are 
possible, one of which, not the least traveled, consists in classifying, mostly a 
priori, objects or operations. It is therefore not surprising that, as his point of 
departure, Descartes settles on a classification that is already available, and 
that he then takes up the one that Pappus had proposed for geometrical prob-
lems: planes, solids, and linear.66 Whereas he agrees with Pappus in asserting 
that plane problems are soluble with straightedge and compass and that solids 
are soluble by means of conics, Descartes diverges from him when it comes to 
linear problems, the construction of which requires other curves. Descartes 
criticizes Pappus’s classification at two points, which he articulates as follows:  

But I am astonished that they (= the ancients according to Pappus) did not dis-
tinguish different degrees among these more complex curves besides this (those 
for the construction of linear problems), and I am unable to understand why 
they called these curves mechanical, rather than geometrical.67 

Descartes explains that this can be justified neither by the mode of con-
struction of these curves, nor by their complexity. He continues, in his own 
words: 

But it is appropriate to note that there is a great difference between this method 
of finding several points in order to trace a curved line passing through them, 
and the method used for the spiral and similar curves. For in the latter we do not 
 
65 La Géométrie, A.T. VI, p. 387; Descartes, Discourse on Method, Optics, Geometry, 

and Meteorology, English transl. with intro. by P. J. Olscamp, Indianapolis, Bobbs-Merrill 
Co., 1964, p. 189.  

66 The text of Pappus reads (Book III, Prop. 5): ‘The ancients considered three classes 
of geometric problems, which they called plane, solid, and linear. Those which can be 
solved by means of straight lines and circumferences of circles are called plane problems, 
since the lines or curves by which they are solved have their origin in a plane. But problems 
whose solutions are obtained by the use of one or more of the conic sections are called solid 
problems, for the surfaces of solid figures (conical surfaces) have to be used. There remains 
a third class which is called linear because other “lines” than those I have just described, 
having diverse and more involved origins, are required for their construction. Such lines are 
the spirals, the quadratrix, the conchoid, and the cissoid, all of which have many important 
properties’. (The Geometry of René Descartes, transl. D. E. Smith and M. Latham, Open 
Court Publishing, 1925, reprint Dover, 1954, p. 40, n. 59; cf. La Collection mathématique, 
French transl. by P. Ver Eecke, vol. I, pp. 38–9, see also p. 207.) 

67 La Géométrie, A.T. VI, p. 388; transl. P. J. Olscamp, p. 190. 
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find all the points of the required line indiscriminately, but only those which can 
be determined by some process which is simpler than that which is required for 
composing the curve. And so, strictly speaking, we do not find any one of its 
points, that is to say, not any one of those which are so properly points of this 
curve, that they cannot be found except through it; on the other hand, there is no 
point on the lines that can be used for the proposed problem which cannot be 
found among those which can be determined through the method (façon) just 
explained.68 

This ‘great difference’ that Descartes mentions refers in effect to the 
‘method (façon)’ of tracing every sort of curve, according to whether the pro-
cedure conforms or not to proportion theory. Indeed, whereas for the two 
types of curves one proceeds by means of a continuous motion or motions, for 
geometrical curves these motions must have the same nature, and conse-
quently must be comparable, or better, commensurable, whereas for the spiral, 
the quadratrix, and the other mechanical curves, these motions have a different 
nature and are therefore incommensurable. We know that tracing the spiral, 
the quadratrix, etc., relies on a rotation and a translation. But according to the 
doctrine of motion that goes back to Aristotle,69 and to which Kepler,70 
Viète,71 as well as Descartes, among others, adhered, these motions do not 
pertain to the same measure ‘[…] because the ratios between straight and 
curved lines are unknown, and even, I believe, unknowable to men, so that we 
cannot thereby reach any exact and assured conclusions’.72 This is certainly a 
sufficient reason to exclude mechanical curves during geometrical construc-
tions. As to geometrical curves, Descartes describes in Book 2 of the 

 
68 La Géométrie, A.T. VI, pp. 411–12; transl. P. J. Olscamp, p. 206. 
69 Aristotle, Physics, VII 4, 248 a 10–249 a 29. 
70 J. Kepler, Paralipomena, 1604, p. 2r: ‘Per cossam id fieret si etiam a rectis ad curvas 

esset in cossicis denominationibus’. 
71 According to François Viète, the analyst does not compare the straight line with the 

curve, because the angle is a certain mean between the straight line and the plane line. This 
is why the law of homogeneity is repugnant to it. This is what he writes in his In Artem 
Analyticen Isagoge: ‘Lineam rectam curvæ non comparat, quia angulus est medium 
quiddam inter lineam rectam & planam figuram. Repugnare itaque videtur homogeneorum 
lex’ (Opera mathematica, recognita Francisci à Schooten, Vorwort und Register von J. E. 
Hofmann, Hildesheim/New York, Georg Olms, 1970, p. 12, § 28). 

72 La Géométrie, A.T. VI, p. 412; transl. P. J. Olscamp, p. 206. 
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Géométrie an instrument related to the mesolabon of Eratosthenes that allows 
one to draw them continuously and consistently with proportion theory.73 

According to Descartes, then, the ancients were wrong to include, among 
mechanical curves, curves that were eminently geometrical, such as the con-
choid of Nicomedes and the cissoid of Diocles. They were also wrong for 
failing to distinguish the various subclasses within the class of complex 
curves. It is therefore necessary to correct these defects by reworking the clas-
sification of curves. This is what Descartes proposes to do.  

To rework Pappus’s classification, however, is first of all to give a brand 
new meaning to the opposition between mechanical and geometrical. It is by 
clearly isolating the class of geometrical curves and by enriching it with new 
curves that Descartes will conceive this new meaning. He goes about the task 
in two related stages. He begins with the conception of motion or movement, 
and writes:  

We must no more exclude complex lines from it (= geometry) than simple ones, 
provided that we can conceive them as being described by a continuous 
movement, or by several successive movements of which the latter are com-
pletely determined by those which precede.74 

Note that in 1629 already, in a letter to Mersenne on November 13, he 
states about the helix and the quadratrix:  

Although one can find an infinity of points through which the helix and the 
quadratrix pass, yet one cannot find geometrically any of the points that are 
necessary for the effects desired from the one as much as from the other; and 
one can trace them in their entirety only by the conjunction of two movements 
that are not mutually dependent.75 

In other words, in contrast to geometrical curves, for which one can 
determine the generic points, for mechanical curves one can only determine an 
incomplete set of points, even if it is everywhere dense.76 

 
73 Cf. H. Lebesgue, Leçons sur les constructions géométriques professées au Collège 

de France en 1940–1941, preface by M. Paul Montel, Paris, Gauthier-Villars, 1950, 
pp. 16–18. 

74 La Géométrie, A.T. VI, pp. 389–90; transl. P. J. Olscamp, p. 191. 
75 ‘Descartes à Mersenne, 13 novembre 1629’, A.T. I, p. 71. 
76 This is how the point was made at the time: ‘The geometrical curves are those 

whose nature can be expressed and determined by the ratio of ordinates and abscissas, 
which are each finite magnitudes; the mechanical curves are those whose nature cannot be 

(Cont. on next page) 
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Now, to invoke as a criterion the movement that intervenes in the drawing 
of curves is not completely unprecedented. Indeed the mathematicians of the 
10th–12th centuries appealed to this same criterion. What is new, however, is 
the second stage; when Descartes – sometime after 1632 defines the geomet-
rical curve of whatever degree as that expressed by a polynomial equation 
irreducible between the two coordinates. Here are his own words:  

I could give here many other ways of drawing and conceiving curved lines 
whose complexity would increase, by degrees, to infinity. But in order to 
understand together all curves that are present in nature, and to classify them by 
order into certain types, I know of nothing better than to say that all points of 
those curves which can be called ‘geometrical’ – that is, which fall under some 
precise and exact measure – necessarily have a certain relation to all the points 
of a straight line; and this relation can be expressed by a single equation for all 
the points. And when [no term of] this equation is higher than the rectangle of 
two undeterminate quantities, or else of the square of a single unknown quan-
tity, the curved line is of the first and simplest class, which comprises only the 
circle, parabola, hyperbola, and ellipse. But when one or both of the equation’s 
two unknown quantities (for there must be two, in order to explain the relation 
between two points) reaches the third or fourth degree, the curve is of the 
second class; and when the equation reaches the fifth or sixth degree, the curve 
is of the third class; and so on for the others, to infinity.77 

From now on, it is possible to refine the classification of curves and to 
give a foundation to the famous ‘geometrical calculus’. As to mechanical 
curves, Descartes in the Géométrie adds nothing and is content to give exam-
ples: spirals and the quadratrix of Dinostratus. Leibniz and his students will 
define these curves by a differential equation connecting not the abscissa and 

                                             
(Cont.) expressed thus, because the ordinates and the abscissas have no regulated ratio. In 
the geometry of infinitely small quantities, the nature of all curves, whether geometrical or 
mechanical, can be expressed uniformly by the ratio of the infinitely small portions of the 
axis to the corresponding differences. The whole difference between geometrical and 
mechanical curves is that the mechanical ones cannot be expressed by this ratio, whereas 
the geometrical ones can also be expressed by the ratio of the ordinates and the abscissas’. 
(Commentaires sur la Géométrie de M. Descartes, by Father Claude Rabuel, Lyon, 1730, 
p. 99.) 

77 La Géométrie, A.T., VI, pp. 392–3; transl. P. J. Olscamp, pp. 192–3.  
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the ordinate, but their differentials; and they will give them a new name: tran-
scendental curves.78 

The definition of the geometrical curve by its algebraic equation marks the 
new departure in the classification of such curves. Indeed, it makes possible 
the conception of an entire class of curves, of which those of the first two 
degrees constitute only a small group.79 Conversely, the new approach makes 
it possible to circumscribe other groups inside this class: cubics, quartics, 
quintics, sextics, etc., and thus to proceed to a sub-classification of curves. 
The landscape established by means of this new classification not only is 
incomparably richer, but is organized according to a concept that Descartes 
introduced: that of ‘genre’. Finally this new conception leads to a new ques-
tion, a technical one this time, the answer to which would in turn stimulate 
research. It is a matter of determining every time the group to which belongs 
any curve generated by an ‘organic construction’, that is, by the intersection of 
two or more straight lines, or of straight lines and other geometrical curves. 
Recall that Descartes allows that ‘in order to trace all the curved lines which I 
intend to introduce here, we need to assume nothing except that two or more 
lines can be moved through one another, and that their intersections determine 

 
78 This concept of ‘Transzendent’ appears in a manuscript of 1675; see H. Breger, 

‘Leibniz Einführung des Transzendenten’, Studia Leibnitiana, Sonderheft 14, 300 Jahre 
‘Nova Methodus’ von G. W. Leibniz (1684–1984), Wiesbaden, Franz Steiner, 1986, 
pp. 116–32, esp. pp. 122–3. 

Note however that this term ‘Transzendent’ was introduced by Leibniz beginning in 
the fall of 1673, that is, before the invention of his differential calculus, as E. Knobloch and 
S. Probst have noted in their introduction to vol. VII, 3 of the Mathematische Schriften, ‘Ab 
Herbst 1673 (N. 23) verwendet Leibniz den Ausdruck transcendent für Figuren (figura 
transcendens), Kurven (curva transcendens), Probleme (problema transcendens), denen 
keine algebraische Gleichung bestimmten Grades zugeordnet werden kann. Dem entspricht 
die aequatio transcendens (N. 64)’ (p. xxiv, cf. the text of Leibniz no. 23, pp. 266–7. I 
thank E. Knobloch for having drawn my attention to this fact).  

79 E. Giusti correctly writes: ‘Before Descartes, only named curves were known, that 
is, particular curves for which one could give an explicit construction by means of 
geometrical or kinematic operations: after Descartes, the concern will be completely 
arbitrary lines that are described immediately by means of their equation’ (‘Le problème 
des tangentes de Descartes à Leibniz’, Studia Leibnitiana, Sonderheft 14, 1986, pp. 26–37, 
esp. p. 26.  
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other curves – which seems to me no more difficult [than the other two 
postulates]’.80 

Indeed we must not forget that Descartes allows as a postulate, so to 
speak, that geometrical curves are ‘organic (organiques) curves’ in the 
etymological sense of organon (tool), that is, curves drawn by his famous 
compasses, and reciprocally. The correctness of this hypothesis was only 
established in 1876 by Alfred Bray Kempe.81 Note however that the drawing 
instruments that Kempe considers are formed by links articulated in a plane, 
with axes of rotation perpendicular to this plane. One fixes enough points of 
the instrument so that it has only one degree of freedom (Descartes’s continu-
ous movement). One can establish that any point of such an instrument 
describes an algebraic curve; indeed the coordinates of such a point are tied to 
the sole parameter by algebraic relations obtained by a sequence of resolutions 
of triangles, and one therefore obtains an algebraic relation among them by 
eliminating the parameter.  

Kempe’s theorem states, reciprocally, that for every plane algebraic curve, 
one can construct an instrument of the foregoing sort that traces at least part of 
it. Thus, given a curve of equation f(x, y) = 0, assume x = a cos ϕ + b cos ψ, 
y = a sin ϕ + b sin ψ where a and b are given and ϕ, ψ are variables; point 
M = (x, y) describes a certain area of the plane and one will trace the part of 
the curve that is in this area. One has 

 

(1)   

 

with ci ∈ ℜ+
* , mi, ni ∈ Z and εi ∈ 0, ± π

2
, π{ } . 

Now consider the vectors  with respective lengths ci and polar angles 
miϕ + niψ + εi; equation (1) means that point Qn belongs to the y-axis, since its 
first member is the abscissa of Qn. 

Kempe devised two types of instruments: the translator and the reversor, 
which make it possible to bring about, respectively, a translation and a sym-

 
80 La Géométrie, A.T., VI, p. 389; Descartes, Discourse on Method, Optics, Geometry, 

and Meteorology, transl. P. J. Olscamp, pp. 190–1. 
81 Alfred Bray Kempe, ‘On General Methods of Describing Plane Curves of the nth 

Degree by Linkwork’, Proceedings of the London Mathematical Society, 7, 1876, pp. 213–
16. 

f (x, y) = ci
i =0

n

∑ cos miϕ + niψ +ε i( ) = 0

Qi −1Qi
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metry with respect to a straight line. By connecting a certain number of these 
instruments, one can bring about the transformation of point M to Qn or 
reciprocally. By making Qn describe the y-axis, the result is that M describes 
the given algebraic curve. 

 Descartes’s instruments are of a different kind since they involve rulers 
sliding along certain straight lines.82 One can nevertheless reproduce the 
motion of these instruments by means of those of Kempe since the latter can 
describe a straight line.  

But to understand both the concept of ‘genre’ and the determination of the 
group to which the curve belongs, let us return to the example that Descartes 
gives.  

Given a curve EC drawn by means of two rulers – two straight lines – and 
of an instrument – a figure. The first ruler is the vertical ruler AK; the second 
is the ruler GL which pivots at G and turns around G without leaving it. Given 
the figure LKN such that KN is extended indefinitely without changing direc-
tion, that is, remains parallel to itself when LKN moves along AK; point C 
slides on the rule between G and L. The intersection of KN and of GL 
describes the curve EC. 

 
Fig. 19 

 
One thus has a bijection between the sheaf with vertex G and the sheaf of 

straight lines parallel to KN. Note that this is a particular case of Poncelet’s 

 
82 La Géométrie, A.T. VI, Book II, pp. 391–3; transl. P. J. Olscamp, pp. 191–4. 
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closure theorem, according to which the intersection point of the two sheaves 
of straight lines in homographic correspondence describes a conic. 

The curve EC thus traced is indeed a branch of a hyperbola. Indeed, note 
that AB = x, CB = y (CB || AG), GA = a, KL = b and NL = c; for the equation 
of EC, one has  

y2 = cy − c
b

xy + ay − ac , 

 
a curve of the second degree, and thus of the ‘first genre’.83 

The concept of the ‘genre’ of a curve is unquestionably the main tool for 
classifying algebraic curves. Second-degree curves belong to the first class, 
curves of the third and fourth degree belong to the second class, and so on. In 
general, a plane algebraic curve is said to be of ‘genre’ n when, referred to two 
coordinate axes, it represents an equation of degree 2n or 2n – 1. This differ-
ence goes back to the fact that straight lines were not considered to be curves. 

For this concept of ‘genre’ to be an effective instrument for the classifica-
tion of curves, the ‘genre’ must be invariable, whatever its reference system 
may be. It must also be possible to order the classes. These two requirements 
seem perfectly natural and necessary when the task at hand is to erect this new 
classification, clearly a priori, on a solid foundation.  

About the first requirement, the invariability of the ‘genre’, Descartes 
writes:  

[…] although there are many choices which shorten and simplify the equation, 
nevertheless, no matter in what way we choose the straight lines, the curve will 
always belong to the same class, as is easily demonstrated.84  

Descartes thus states that the ‘genre’ of a curve is independent of its refer-
ence frame. He will forcefully rework this idea a year after publishing the 

 
83 For the time being, Descartes says nothing more about this. In his commentary, Van 

Schooten gives both its center and its asymptotes, but says nothing about the other branch 
of the hyperbola. For more details, he cross-references his De organica conicarum sectio-
num in plano descriptione, Leiden, 1646. 

84 La Géométrie, A.T. VI, pp. 393–4; transl. P. J. Olscamp, p. 193. This is an 
important text. The degree of the equation P(x, y) = 0 is independent of its reference frame. 
In 1667 or 1668, Newton affirms the permanence of the ‘species’ of the curve relative to 
the angle of the coordinates (see Mathematical Papers of Isaac Newton, II, p. 10). Newton 
gives a magisterial statement of the problem of changing the reference frame (ibid., IV, pp. 
383–4). See also Euler, Introduction à l’analyse infinitésimale, vol. II, pp. 12–17. 
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Géométrie, in a letter about the folium addressed to Mersenne on August 23, 
1638. 

Descartes first gives for the equation of this curve ; then, 

after changing the reference frame, the equation , he writes ‘[…] 

that the new line […] is the same as the other one’.85 The reason for this is that 
every affine transformation of coordinate axes does not change the degree of 
the curve’s equation, nor therefore its ‘genre’; in other words, the ‘genre’ is 
for Descartes affine-invariant. This problem of the permanence of ‘genre’ will 
later be tackled and solved by Newton in the years 1667–1678, and discussed 
in detail by Euler, Cramer, and other successors of Descartes.86 

Let us turn briefly to the second requirement – ordering the ‘genres’ – and 
return to the example of the preceding curve, the branch of the hyperbola. 
Descartes continues his exposition:  

If in the instrument used to describe the curve we replace the straight line CNK 
by this hyperbola, or some other curved line of the first class terminating the 
plane CNKL, the intersection of this line and the ruler GL will describe, instead 
of the hyperbola EC, another curved line, which will belong to the second class. 
Thus if CNK is a circle whose center is L, we shall describe the first conchoid of 
the ancients; and if it is a parabola whose diameter is KB, we shall describe the 
curved line which, as I have already said, is the first and simplest curve required 
for the problem of Pappus, when there are but five straight lines given in 
position.87 

If then one replaces the straight line KN by a circle of center L and of 
radius LK, one obtains a curve of the superior class (‘genre’). Indeed this is the 
conchoid of Nicomedes, of class 2. And if one replaces KN by a parabola, one 
will obtain a cubic – Descartes’s parabola – with the equation  

 
(*)     (trident). 

 
85 Correspondance du P. Marin Mersenne, commencée par Mme. P. Tannery, publiée 

et annotée par Cornélis de Waard, Paris, Éd. du CNRS, 1963, vol. VIII: Août 1636–Déc. 
1639, p. 63, see also pp. 40–4. 

86 The implied transformation is the following: x =
u + v

2
, x =

u − v
2

, whence  

  u
3 + v3 = a 2  u ⋅ v . 

87 La Géométrie, A.T. VI, pp. 394–5; transl. P. J. Olscamp, p. 194. 

x3 + y3 = nxy
y2

x2 =
a − x

a + 3x

y3 − 2ay2 − a2y + 2a3 = axy
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Descartes then gives the principle of his classification by means of the 
concept of ‘genre’. He writes:  

Now I place curved lines which raise this equation to the square of the square in 
the same class (genre) as those which raise it only to the cube; and those whose 
equation goes as high as the square of the cube, in the same class as those in 
which it goes only as high as the supersolid, and similarly for the others.88  

He thus groups in one and the same class cubics and quartics, quintics, 
and sextics, etc. The reason for such a grouping is that ‘there is a general rule 
for reducing to a cube all the difficulties that pertain to the square of the 
square, and to the supersolid all those that pertain to the square of the cube, in 
such a way that we need not consider the latter more complex than the lower 
ones’.89 Whereas this rule is valid in the first case – that of the cube – Jacques 
Bernoulli will criticize its generalization.90 

Descartes’s main idea is the following: the curves generated by the inter-
section of one straight line and another straight line, or another curve, always 
belong to a higher class than that of the straight line or the curve from which 
they derive. It is this idea that Descartes’s contemporaries and successors will 
criticize. For example, Fermat writes in his Dissertatio tripartita:  

Let us imagine, for example, instead of the straight line CNK […] a cubic para-
bola with vertex K and an indefinite axis KLBA; if one completes the construc-
tion in the spirit of Descartes, it is clear that the constitutive equation of this 
parabola will be  

a3 = b2e.  

One can immediately see that the curve EC deriving from this supposition 
only has a biquadratic equation; thus the biquadratic curve is of a higher degree 
or class than the cubic curve, according to the rule that Descartes himself stated, 

 
88 Transl. P. J. Olscamp, p. 195, adapted here to follow the original terminology of La 

Géométrie, A.T. VI, p. 395. 
89 La Géométrie, A.T. VI, pp. 395–6. Translation note: The above rendering translates 

more literally the material that the Olscamp translation renders as: ‘there is a general rule 
for reducing to a cube all the difficulties of the fourth degree, and to an equation of the fifth 
degree all equations of the sixth degree, in such a way that we need not consider the higher 
ones more complex than the lower’ (p. 195).  

90 Opera, ed. G. Cramer, Geneva, 1744, vol. II, pp. 676–7. 
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whereas he expressly states on the contrary that the biquadratic curve and the 
cubic are of the same degree or class.91 

Indeed if, in the preceding figure, one replaces the mobile straight line 
KNC by a cubic parabola CB, 

,  
 

one has  

;  

 
noting that CB = x, AB = y, GA = c, KL = d, one thus has 
 

; , 

 
whence the equation  

, 

 

Fig. 20 
 

which defines a curve of degree 4 and ‘genre’ 2, which Descartes places in the 
same ‘genre’ as the cubic that generated it. This point justifies Fermat’s cri-
tique, which amounts to denouncing a contradiction between the classification 
that Descartes proposed for algebraic curves, and the principles that he himself 
defends on the generation of these curves with a motion. This classification of 

 
91 Œuvres de Fermat, III, pp. 112–13. 

CB3 = b2 ⋅ KB

CB

LB
=

GA

LA

LB = KB − d =
x3

b2 − d LA = KB + BA − d =
x3

b2 + y − d

x 4 − cx 3 + b2 xy − b2dx + b2cd = 0

G

C

K

L

B
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Descartes’s was the butt of yet other criticisms, by Fermat again, Newton, 
Jacques Bernoulli, and others.  

 
The cubic parabola of equation (*), the trident discovered by Descartes, is, 

as he proves, a solution to the problem of Pappus for five straight lines.92 It is 
precisely to this problem of Pappus, which he studied in the first book of the 
Géométrie, that Descartes returns in the second, now to focus on curved solu-
tions.  

This is not the place to cover the problem of Pappus itself;93 let us 
consider only the case of five straight lines. 

Let AB, IH, ED, GF be four parallel and equidistant straight lines, to 
which GA is perpendicular. One must find a point C such that CF, CD, CH, 
CB, CM (the distances perpendicular to the straight lines) are such that  

 
CF · CD · CH = CB · CM · a, 

 
where a is the distance between AB and IH. 

One divides the odd number 2n – 1 into two groups n and n – 1 (for 5, one 
has 3 and 2), such that the product of the distances to the segments of the first 
group is in a given ratio to the product of the distances to those of the second, 
a product completed, as needed, by a given constant factor; this is the problem 
of Pappus.  

In the case of five straight lines, Descartes proves that point C is found on 
the curve defined by equation (*) generated, as we have seen, by a ruler that 

 
92 Note that in January 1632, Descartes apparently has not yet discovered the trident. 

This is what he writes to Golius: ‘As I should at least have included an example of five or 
six straight lines given in position to which I would have applied the required curved line, 
but I understood the difficulty involved in making the calculation’ (A.T. I, p. 234).� 

93 Given the very rich secondary literature on the history of this problem, I mention 
here only a few titles: the sixth chapter of G. Milhaud’s classic, Descartes savant, Paris, F. 
Alcan, 1921, pp. 124–84; J. Vuillemin, Mathématiques et métaphysique chez Descartes, 
esp. pp. 99–112; J. M. Bos, ‘On the Representation of Curves in Descartes Géométrie’, 
Archive for History of Exact Sciences, 24, 1981, pp. 295–338; see also Chapter 23 in his 
book: Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern 
Concept of Construction, New York, Springer, 2001, pp. 313–4. Ch. Sasaki, Descartes’ 
Mathematical Thought, Dordrecht/Boston, Kluwer Academic Publishers, 2003, pp. 207 ff, 
which also includes a rich bibliography. 
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pivots about a fixed point and a parabola that moves parallel to itself in the 
same plane. 

 
Fig. 21 

 
Given CB = y, CM = x, AI = AE = GE = a, and substituting in the pre-

ceding equation, one obtains equation (*). 
It is here that Descartes considers ‘the intersection of the parabola CKN 

(which is made to move so that its diameter KL is always on the straight line 
AB) and the ruler GL (which meanwhile turns about the point G in such a way 
that it always passes through the plane of this parabola at the point L). And I 
make KL = a, and make the principal right side (that is, the one corresponding 
to the axis of this parabola) also equal to a, and GA = 2a, […]’.94 One then has 

 

 
 

(the triangles GMC and CBL are similar), whence 
 

 
94 La Géométrie, A.T. VI, pp. 408–9; transl. P. J. Olscamp, pp. 204–5. 

2a − y

x
=

GM

MC
=

CB

BL
=

y

BL
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and  

; 

 
but BK is a segment of the diameter of the parabola with latus rectum a, one 
therefore has  

, 

 
whence  

, 

 
whence equation (*). The point that was sought is therefore C. 

 
Descartes goes on to discuss the ‘adjunct’ cEGc, that is, the parabola 

symmetrical of the first one in relation to GA; but this is no longer the same 
algebraic curve.  

We will say nothing more about Descartes’s discussion in the case of five 
straight lines. We merely note that, for the problem of Pappus for 2n straight 
lines distributed into two groups of n straight lines with the equations of, 
respectively, ϕi(x, y) = 0 (1 ≤ i ≤ n) for the first group and ψi (x, y) = 0 (1 ≤ i ≤ 
n) for the second group, where the ϕi and ψi are polynomials of the first 
degree, one writes the equation of the problem in the form  

 
(1) ϕ1(x, y) ϕ2 (x, y) … ϕn(x, y) = λψ1 (x, y) ψ2 (x, y) … ψn (x, y) 
 

where λ is a non-zero factor of normalization. Indeed, the distance from one 
point with coordinates x, y to a straight line with the equation ϕ(x, y) = 0 is 
proportional to ϕ(x, y), which is the fundamental idea behind the Cartesian 
procedure. One can see that the locus defined by equation (1) is an algebraic 
curve of degree n. In the case of a locus with 2n – 1 straight lines, the equation 
of the problem is  

 
(2) ϕ1(x, y) ϕ2 (x, y) … ϕn(x, y) = λaψ1 (x, y) ψ2 (x, y) … ψn-1 (x, y) 

BL =
xy

2a − y

BK = KL − BL =
2a2 − ay − xy

2a − y

BK

BC
=

BC

a
=

y

a

  
 y

a
=

2a2 − ay − xy

y 2a − y( )
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in which a is a constant segment. The locus is again an algebraic curve of 
degree n; it can be interpreted as if the last straight line was displaced to infin-
ity, since the ratio of the infinite distances from two points to the straight line 
at infinity remains constant.  

Descartes defines ‘the adjunct’ by changing the sign of λ, which also 
yields an algebraic curve of degree n. 

Thus, to obtain the trident as a locus of 5 straight lines, one must identify 
its equation with an equation of the form  

 
ϕ1ϕ2ϕ3 –λaψ1ψ2 = 0. 

 
The terms of degree 3, which derive from ϕ1ϕ2ϕ3, must be reduced to y3, 

therefore the straight lines of the first group must be parallel to the x-axis of 
equation y = 0. By writing that the point at infinity in the direction of the x-
axis is double, one discovers that ψ1 = 0 or ψ2 = 0 is parallel to this axis, for 
example ψ1 = 0. 

The equation is thus written in the form: 
 

(y + α) (y + β) (y + γ) = λa (y + δ) (x + vy + w) 
 

defining a cubic with a double point at infinity in the direction of the x-axis, 
with a parabolic branch and a branch tangent to the straight line with the 
equation y + δ = 0. This seems to explain Descartes’s hypotheses. 

More generally, consider any cubic C of equation f(x, y) = 0, f being a 
polynomial of degree 3. 

Let a1, a2, b1, b2 be four points of C, any three of which are not aligned, 
and let ϕ1 = 0, ϕ2 = 0 be the equations of the straight lines joining, respec-
tively, a1, b1 and a2, b2. These straight lines again cut C, respectively, at points 
c1 and c2. Now let ψ1 = 0, ψ2 = 0, ψ3 = 0 be respectively the equations of the 
straight lines joining a1, a2; b1, b2; and c1, c2. These straight lines again cut C 
at the three points a3, b3, c3. The cubics passing through the eight points a1, b1, 
c1, a2, b2, c2, and a3, b3 form a linear sheaf, that is, their equations depend line-
arly on one parameter. They can therefore be written in the form 

 
f + λ ψ1ψ2ψ3 = 0, 

 
since f = 0 and ψ1ψ2ψ3 = 0 are two cubics of the sheaf. 
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If ϕ3 = 0 is the equation of the straight line joining a3, b3, the equation 
ϕ1ϕ2ϕ3 = 0 defines a degenerate cubic of this sheaf. There is therefore a value 
of λ such that ϕ1ϕ2ϕ3 = f + λψ1ψ2ψ3;95 one therefore has 

 
f = ϕ1ϕ2ϕ3 – λψ1ψ2ψ3 

 
and sees that C is a locus of the problem of Pappus with 6 straight lines.  

Descartes’s statement is therefore true for the most general cubics.  
Conversely, Descartes’s statement is not generally true: counterexamples 

appear already in the fourth degree.  
According to the problem of Pappus for 2n or 2n – 1 straight lines, the 

defined locus is of degree n; for degree 4, one must therefore take 8 or 7 
straight lines, and the equation of the locus is of the form 

  
 ϕ1ϕ2ϕ3ϕ4 – λψ1ψ2ψ3ψ4 = 0 

 
or 

 ϕ1ϕ2ϕ3ϕ4– λaψ1ψ2ψ3 = 0 
 

where the ϕi and the ψi are first-degree polynomials.  
We see that each of the straight lines of equation ψi = 0 meets the curve at 

the four points where this straight line meets respectively the straight lines of 
equation ϕ1 = 0, ϕ2 = 0, ϕ3 = 0, ϕ4 = 0. Thus a quartic locus of the problem of 
Pappus with eight or seven straight lines is met at four points by some straight 
lines in the plane.  

Now, there exist convex quartics that each straight line of the plane cuts in 
0 or 2 points; such quartics cannot be defined by the problem of Pappus. This 
is the case, for example, for the curve of equation y = x4; nevertheless, one 
considers this curve to be a limiting case of the locus with eight straight lines, 
of which four are superimposed on the y-axis and three on the straight line to 
infinity; but this falls outside of the framework that Descartes considers. As 
another example, one can consider Cassini’s ovals, of equation:  

 
 

 
95 The result is that ϕ

1
ϕ

2
ϕ

3
= 0 passes through c3; therefore the straight line ϕ3

 = 0 
passes through c3. 

x 2 + y2( ) 2
+ 2a2 y2 − x 2( ) + a4 − b 4 = 0
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with a, b > 0; these curves are convex, therefore every straight line cuts them 
in 0 or 2 points.  

By examining all the limiting cases in which some straight lines in the 
problem are superimposed, one can moreover see that the curve of the solution 
must have bitangents or tangents of inflection, except in the case of a curve of 
equation ϕ4 – λψ = 0, which, by a change of coordinates, reduces to y = x4. 
Now a convex curve has neither a bitangent nor a point of inflection; thus the 
oval of Cassini is not a limiting case and constitutes a counterexample even 
for the limiting cases.  

Finally, note that the equation of the locus of the problem of Pappus for 2n 
straight lines (or 2n – 1, as the case may be) depends on 4n + 1 coefficients (or 
4n – 1, as the case may be). Now the equation of a curve of degree n depends 

on  coefficients; one for  > 4n – 1 for n ≥ 5 and  > 4n + 

1 for n ≥ 6. It is therefore impossible to reduce the general equation of a curve 
of degree ≥ 5 (or 6, as the case may be) to that of a locus of the problem of 
Pappus for 2n – 1 (or 2n, as the case may be) straight lines. 

All of this indicates that Descartes treated explicitly only the cases that we 
examined before, namely the loci for 3, 4, or 5 straight lines. He then gener-
alized the result without verifying it.96 

 
96 One referee of this chapter offered the following objection: ‘To write that one of the 

straight lines D present in the equation of Pappus necessarily meets the curve in four points 
is incorrect: that it meets 4 straight lines is correct, but can two of them, for example, cut 
each other at the point where they both meet D? This simple case already reduces the 
number from 4 to 3 and one obviously could go down to 2. There are therefore more 
numerous parasitic particular cases to examine than the single case in which at least 2 
straight lines are superimposed. In short, I am not completely certain that the Cassini ovals 
are indeed a counterexample’. 

I thank the author of this interesting objection, which I answer thus:  
Let ϕ1ϕ2ϕ3ϕ4 = λψ1ψ2ψ3ψ4 Let that be the equation of a quartic C defined by the 

problem of Pappus. The ϕi and the ψi are affine linear functions of the coordinates x, y. Let 
us suppose that the straight line D of equation ψi = 0 meets the 2 straight lines Δi defined by 
the equations ϕi = 0 (i = 1, 2) at the same point M: the intersection of D and of C in M is of 
multiplicity 2. That is that D is tangent to C at M, or else M is a double point of C. 

Cassini ovals do indeed have two double points at infinity, but they are imaginary 
(they are the circular points). One can therefore exclude the case of a double point. If D is 
tangent to C at M, it in addition meets C at the 2 points at which it meets the straight lines 

(Cont. on next page) 

n n + 3( )
2

n n + 3( )
2

n n + 3( )
2

I thank the author of this interesting objection, which I answer thus:  
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The preceding example illustrates the procedure that Descartes wanted to 
be systematic. He thus hoped to determine in every case the sought curve. 
Once he had considered the case of 3 or 4 straight lines that gave him a curve 
locus of the points of one of the three conics, he went on to the five straight 
lines and obtained the cubic parabola. Descartes presumed that, by increasing 
the number of straight lines, he would obtain curves of superior ‘genres’ ; he 
even went so far as to believe that the problem of Pappus would allow him to 
reach all geometrical curves, as he implies in a statement following his com-
pletion of the problem with five straight lines:  

As for the lines used in the other cases, I shall not stop to classify them by types, 
because I did not undertake to cover everything and having explained the 
method of finding an infinite number of points through which these curves pass, 
I think I have given sufficient means of describing them.97 

In Descartes’s eyes, the problem of Pappus would therefore allow one, on 
the one hand, to determine all geometrical curves (an error that Newton will 
denounce) and, on the other hand, to establish an order that is, as it were, 
‘genetic’ in the sense that each curve solution would serve to find others. But 
the sentences cited above apparently show that Descartes himself had aban-
doned this path.98 

                                             
(cont.)  Δj (j = 3, 4) but this is impossible for a convex curve. If D was parallel to these 
straight lines Δj, it would be an asymptote of C, which is also impossible.  

The objection does not pertain to the quartic of equation y = x4, even though it is 
convex; indeed, it has a triple point at infinity. If, however, it is defined by the problem of 
Pappus, the same reasoning implies that D has an equation of the form x = c (it passes 
through the multiple point) and the same goes for the straight lines Di defined by the 
equations ψi_ = 0. Thus the equation is written ϕ1ϕ2ϕ3ϕ4 = λ (x – c1)(x – c2)(x – c3)(x – c4). 
Each of the straight lines Di meets C at a single point a finite distance away and at a triple 
point at infinity; thus 3 of the Δj must still have equations of the form x = dj (j = 1, 2, 3) and 
Δ4 meets C at the abscissa points c1, c2, c3, and c4: this is possible only if these 4 values are 
superimposed. Thus the curve considered is not defined by the problem of Pappus either. 

97 La Géométrie, A.T. VI, p. 411; transl. P. J. Olscamp, p. 206. 
98 All the properties of these curves must therefore derive from their equations or, in 

the words of Descartes, ‘to find all the properties of curved lines one need only know the 
relation that all of their points have to those of straight lines and the way of drawing other 
lines that intersect them at right angles at all of these points’ (La Géométrie, A.T. VI, pp. 
412–13). But if Descartes up to now is interested in affine properties, it is the metric that he 
from now on places in relief, namely those of the normal and of the tangents. But we 
cannot pause now to discuss this important research. See for example, G. Milhaud, 

(Cont. on next page) 
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The Cartesian classification of plane curves99 nevertheless constituted 
both a completion of the first classifications and also a new point of departure; 
it did so not despite the criticisms that several of his contemporaries (Fermat) 
and his successors (Newton and Jacques Bernoulli) levelled at it, but indeed 
because of these critiques and corrections. The central ideas on which this 
classification is founded became a permanent addition to the mathematical 
patrimony that Descartes’s successors will continue to perfect and to deepen, 
by actually bringing the Cartesian program to fruition, while adapting it as 
needed. Such is the case for the idea of defining by its equation the algebraic 
curve of any ‘genre’, and not only the first; for the idea of the invariability of 
the ‘genre’ and its independence from the reference frame – ideas that are 
essential to the classification; for the idea of extracting the properties of the 
curve from its equation, etc. To conclude, let us listen to Cramer and to Le 
Cozic, the translator of MacLaurin’s Algebra. Cramer writes:  

The most important thing to notice in this distribution of algebraic lines into 
orders, is that each line is so well fixed in its order that it never leaves it, no 
matter what equation represents it. By this I mean that, whereas one can express 
the nature of an algebraic line by an infinity of different equations, depending 
on one’s choice of origin and of the position given to the axes, yet all of these 
equations belong to the same order, to which consequently the proposed line 
must be related.100 

Paraphrasing MacLaurin, his translator Le Cozic writes:  

To proceed with some order in the search for the main properties of algebraic 
lines, the latter are distinguished into several orders, according to the degree of 
the equation, freed from fractions or radicals, that expresses its nature. To prove 
that this type of distinction is sufficient, we will show that the equation of the 
same line does not change its degree regardless of any change to the axis, to the 
origin of the abscissas, and to the angle of the coordinates; consequently, one 
will be assured that the same line will never be related to different orders.101  

                                             
(Cont.) Descartes savant, pp. 128 ff. and J. F. Scott, The Scientific Work of René Descartes 
(1596–1650), London, Taylor & Francis, 1952, pp. 115 ff. 

99 At the end of Book 2 of his Géométrie, Descartes briefly brings up skew curves 
(p. 440). Only at the end of the century, with Parent, and in the next century with Clairaut 
in his Recherches sur les courbes à double courbure (1731) and then Euler in his 
Introductio in analysin infinitorum, 1748, will these curves be studied.  

100 Cramer, Introduction à l’analyse des lignes courbes algébriques, pp. 53–4. 
101 Traité d’algèbre et de la manière de l’appliquer, Paris, 1753, p. 280. 
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One could multiply the testimonials, beginning with the writings of 
Newton, Leibniz, the Bernoulli brothers, Euler, and Bézout: henceforth, when 
curves are classified, the point of departure is none other than Descartes’s 
classification, reworked and reformed in light of the development of both 
algebra and the infinitesimal calculus. By completing the program that 
Descartes put in place, these mathematicians will set out on a new stage in the 
research on the classification of curves. That, however, is the topic of another 
study.  

 
 

7. DEVELOPMENTS OF THE CARTESIAN CLASSIFICATION  
OF ALGEBRAIC CURVES 

 
To go farther along on the road of the classification of curves is to be able 

to isolate sub-classes within the whole, in order to make a detailed description 
and to characterize more precisely the behavior of each: its length, its infinite 
branches, its singular points, etc. These are precisely the tasks of Descartes’s 
successors, such as Newton, MacLaurin, Euler, or Bernoulli, for example. But 
Descartes himself, and his junior Fermat even more so, had already taken sev-
eral steps down this road. The former conceived the seminal idea of giving to 
the curve an operational role, as it were, leading to the derivation of other 
curves, which in the final analysis made it possible to speak of a family of 
curves associated with an initial curve. As to Fermat, he gave a procedure for 
deriving an infinite family of curves from a given curve, a family that could be 
ordered thanks to the concept of the arc-length of the curve. Whereas 
Descartes did not need any new concept, Fermat had to have at his disposal 
other mathematical means that were altogether absent from Descartes’s 
Géométrie. 

Indeed, we have seen that Descartes substituted a circle for a straight line 
in order to obtain a conchoid, then substituted for this straight line a parabola 
in order to obtain a cubic parabola. To be sure, he neither followed up on this 
substitution nor did he develop the method. Nevertheless, already present here 
was the idea of considering a curve in itself as the means of obtaining others, 
and therefore an entire family.  
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Twenty-two years after the publication of Descartes’s Géométrie, Fermat 
does go farther. Here and elsewhere, as we have shown,102 he operates along 
the lines of Descartes, but also against him. He notably devotes to this theme 
two works published in 1660, but drafted a year earlier: Propositions à 
Lalouvère and De la comparaison des lignes courbes avec les lignes droites. 
In the latter work, Fermat sets himself the task of constructing curves that are 
‘purely geometrical’ – that is, algebraic – with a length equal to a ‘given 
straight line’. This will be the case in particular for a convex curve for which 
one knows how to construct a running point by means of a straightedge and 
compass starting from given line segments.103 

But a rigorous theory for the lengths of the arcs of curves, which is what 
Fermat proposes to construct, requires one way or the other the introduction of 
concepts from the differential calculus. In the absence of such a tool, Fermat 
draws on the idea that underlies the method of Archimedes: the length of a 
convex curve is ‘framed’ by the length of polygonal lines or, as Fermat puts it, 
‘our method by double circumscription’.104 

My goal here is to examine not the infinitesimal geometry of Fermat, but 
only his procedure for the derivation of new curves and their classification. To 
keep the exposition concise and to highlight the stakes clearly, I will draw on 
straightforwardly anachronistic language. 

 
102 See below, ‘Fermat and algebraic geometry’. 
103 This is how he presents his investigation: ‘Never before, as far as I know, have 

geometers ever made a purely geometrical curved line equal to a given straight line’. He 
goes on to say: ‘Indeed, I will demonstrate the equality to a straight line of a truly 
geometrical curve, for the construction of which no similar equality has been assumed 
between another curve and a straight line […]’ (III, p. 181). 

104 Œuvres de Fermat, III, p. 185. This is how Fermat explains it: ‘we will thus have 
two figures circumscribing [and circumscribed by] the curve, the one greater, and the other 
smaller, than this curve, and such that the difference between these figures is smaller than 
any given interval; a fortiori, the amount by which the greater [circumscribing] figure 
exceeds the curve, and that by which the curve exceeds the smaller figure will each be 
smaller yet’. 
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Fermat begins by inventing a new geometrical 
transformation in order to obtain other curves, the 
length of which is constructed geometrically as an 
initial curve Γ. Starting from a curve Γ1 with axis 
AB and a point C of this curve, the ordinate DN on 
point N of Γ2 with abscissa x is equal to the length 
of the arc CM of Γ1 included between point C and 
point M with abscissa x. Thus one can iterate the 
procedure and build a series of (algebraic) curves 
Γn. 

Note that this construction resembles the 
construction of the evolute of curve Γ. But Fermat 
refers the length of the arc CM to DM, the parallel 
to the axis AB, whereas one must refer the evolute 
to the tangent to Γ at M. 

 

Fig. 22 

The curve one obtains thus depends not only on the point of origin C, but 
also on the axis AB.  

Consider with Fermat the curve Γ1 = Γ with the equation  
 

y1 = f1 x( ) =
1

λ
x

3

2 , 

 
and the point C with abscissa a on it. If one marks ds1 as the element of length 
of curve Γ1, the curve Γ2 will have as its equation  
 

y2 = f2 (x) = ds1
a

x

∫ = 2
3μ

μ + x( ) μ μ + x( ) − μ + a( ) μ μ + a( )( ) , 

with . 

The element of length of the curve Γ2 is therefore  
 

ds2 = dx2 + dy2
2 = dx2 + ds1

2 = dx 2 + x
μ

. 

 
More generally, the element of length of the curve Γn is  
 

dsn = dx n + x
μ

. 

x

y
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M
N
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2

3

μ =
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Fig. 23 

 
The calculation of the length of the arcs of curves Γn is analogous to that 

done for curve Γ: Fermat uses the change of variable, t2 = μ nμ + x( ) , which 
reduces to calculating the area circumscribed by a translated parabola of 
parabola P.  Note that the axis of curve Γ is indifferently vertical (Fig. 23) or 
horizontal (Fig. 24).105  

 

Fig. 24 
 
Fermat faces a genuine difficulty in constructing the tangent to the curve 

Γ2. To do this (Fig. 23), he shows that if EB is this tangent, then MY = RS. If 
one uses the notation of the differential calculus, this amounts to the relation  

 
105 Ibid., reproduction of Figures 129 and 130, pp. 196–7.  
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MY

ME
= ′f2 x( ) =

ds

dx
=

dx2 + dy2

dx
=

VI 2 + RI −VS( )2

VI
=

RS

ME
.  

 
But this relation does not bring into play the particular form of the curve 

Γ. Fermat’s demonstration is very elegant and purely geometrical: recall that, 
for him, the tangent at E to the curve Γ is the unique straight line that passes 
through E and that remains on the same side as the curve Γ (assumed to be 
convex). 

Finally, the area of the parabola being known, one finds the length �n  of 
the arc the curve Γn is expressed algebraically:  

 

�n = 2
3μ

nμ + a( ) μ nμ + a( ) − μ 2n n( ) . 

 
To this exposition, Fermat drafts an appendix in which he applies the pro-

cedure for constructing new curves Γ′n starting with the curve Γ′1 of equation 
λx2 = y1

3 . The curves Γ and Γ′1 are identical: one passes from one to the other 
by exchanging the axes of the coordinates. One obtains the curve Γ′2 by 
applying Fermat’s construction to the curve Γ′1; the ordinate of point I of Γ′2 
with abscissa x is equal to the length of the arc AO of Γ′1 included between the 
vertex and the point with abscissa x, and so on for all curves Γ′n. 

 
Fig. 25  
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Thus with this procedure, starting from a semi-cubic parabola, Fermat 
derives a whole series of curves that are rectified by the iteration of one and 
the same geometric construction and are comparable.106 

The classification of algebraic curves is becoming finer and more precise 
because there is already a way of comparing them. But this important gain was 
possible precisely by drawing on infinitesimal concepts in the study of curves. 
Some of these concepts are already present in Archimedes and such succes-
sors of his as Ibn al-Haytham; others are new, sometimes still in limbo, but 
whatever one might say, they are already there. But this use of infinitesimals 
will soon grow rapidly and massively beginning in the second half of the 17th 
century, and will contribute effectively to modifying the very nature of the 
classifications. Here we will restrict ourselves to Fermat’s use of such 
concepts.  

We have already pointed out that, in his Dissertatio, Fermat demonstrates 
that the semi-cubic parabola ky2 = x3 is exactly rectifiable, because its rectifi-
cation reduces to the quadrature of the ordinary parabola. Fermat’s approach is 
based, on the one hand, on the construction of the tangent, according to his 

famous method and, on the other, on the examination of the ratio 
ds2

dx 2 . Let us 

then consider107 an arc of parabola defined over the interval [0, a]. Since 

dy = 3
2

x
k

dx , one has ds2 = dx2 1+ 9
4k

x
⎡
⎣⎢

⎤
⎦⎥
. Let us posit that t2 =

4

9
k

4

9
k + x⎛ 

⎝ 
⎞ 
⎠  and 

; then the length  of the arc of the semi-cubic parabola is obtained by  

λ� = λ ds
0

a

∫ = λ 1+
x

λ0

a

∫ dx = t dt
0

a

∫ . 

 
Since 2t dt = λ dx, one has  
 

λ� = 2
λ

t2 dt
λ

λ λ+a( )∫ ,  and � = 2
3λ

λ + a( ) λ λ + a( ) − λ 2( ) . 

 
106 Note that Fermat, like Descartes before him, iterates a procedure of demonstration 

by applying this procedure to the result of the previous stage of application of the same 
procedure. Al-Sijzī had already used this procedure in his treatise on the numerical right 
triangle (see R. Rashed, Œuvre mathématique d’al-Sijzī, vol. I, pp. 171–2). 

107 The point here is to rewrite in other words the steps of Fermat’s calculation. 

4

9
k = λ �
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Note that, in Fermat’s method, the famous differential triangle appears, 
and that Lagrange uses this method of rectification.108  

In the Appendice to the Dissertatio, the importance of which everyone 
recognizes, Fermat appeals explicitly to the concept of slope of the tangent 
when he investigates the length of curves. Thus, Proposition 1 states that two 
curves having tangents with the same slope at points with the same abscissa 
have the same length, and moreover are ‘similar’. In Fermat’s words, ‘if one 
imagines that one superimposes them, they coincide completely and will have, 
along with their axes, equal or rather identical ordinates’.109 Rewriting this 
proposition in a language different from Fermat’s, it reads: two functions that 
have the same derivative over an interval and the same value at the extremity 
of this interval are identical; in particular they define the same curve. This is 
obviously nothing less than the fundamental theorem of the integral calculus. 

No less important than this theorem, however, are the concepts that 
Fermat mobilizes in order to demonstrate it. By drawing on infinitesimal con-
siderations, he rigorously demonstrates that the two curves have the same 
length. But he does not have the tools to demonstrate with the same rigor that 
the curves are superimposable. His demonstration relies on the remark that, at 
homologous points, the two curves make the same angle with the ordinate for, 
he writes, ‘the inclination of the curves is measured by that of the tangents’.110 
Fermat did not have available two concepts that would soon be defined: that 
of curvature and that of the evolute. Conversely, he seems to proceed on the 
intuition of the fact that a curve is well defined by its intrinsic equation, give 
or take one displacement.  

The second proposition of the Appendice states that two curves that are 
homothetic in a given ratio have lengths in the same ratio. The third proposi-
tion states that two curves, deduced the one from the other by orthogonal 
affinity, have tangents that intersect each other on the axis of affinity. In other 
words, the image φ(T), by an affinity φ, of the tangent T to a curve Γ at a point 
M is the tangent to the curve φ(Γ) at the point φ(M). It is from these proposi-
tions that Fermat establishes the ‘general theorem’ that consists in deriving 
curves from other curves.  

 
108 Théorie des fonctions analytiques, Paris, Imprimerie de la République, 1797, 

pp. 222–3. 
109 Œuvres de Fermat, III, p. 206. 
110 Ibid., III, p. 205. 
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From these studies of Fermat, one sees that the first classifications are in 
the process of completion, and that beginning in the second half of the 17th 
century mathematicians are engaging in other types of classification that, in 
order to be effective, will have to wait for the intervention of the differential 
and integral calculus as such. All told, Fermat’s contribution is located at the 
hinge between the first, ancient classifications and the modern ones, those that 
will be conceived after the creation of the differential calculus. This pivotal 
position derives from the studies of asymptotic properties, not only of geo-
metrical curves, but also of the curves that Descartes had excluded from 
geometry, notably the cycloid and the logarithmic spiral. To these studies, 
Descartes himself made fundamental contributions, along with Roberval, 
Fermat, de Beaune, and Pascal. By pursuing that work, their contemporaries 
and successors would modify both the nature and the range of the classifica-
tions.  

To refresh our memories, recall that the Cartesian distinction between 
geometrical curves and mechanical curves became the point of departure for 
other classifications with more branches. As we have already seen in the case 
of Fermat, the tendency was very naturally to isolate families from among 
geometrical curves. Barely three decades after Descartes, sub-classifications 
were already proposed that presented themselves in terms of a systematic 
study of each Cartesian ‘genre’. Whereas in the case of the first ‘genre’ the 
classification itself was technical and essentially known even before 
Descartes, one nevertheless witnesses the appearance, in the course of the 
systematic investigation, of books in which the properties of curves are 
examined by starting from their equations. This was absolutely not the case 
for the ‘second genre’ (the cubics) nor for the superior ‘genres’. 

With respect to the ‘first genre’, recall the example of Ozanam and of the 
three books that he published in 1687. He begins by defining curves of the 
first class as follows:  

[…] curved lines, for which, having drawn mutually parallel lines, their squares 
correspond in a given ratio to certain rectangles, such as are the conic sections 
[…].111 

 

 
111 Ozanam, Traité des lignes du premier genre expliquées par une méthode nouvelle 

et facile, Paris, 1687, p. 5. 
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He considers this property ‘which is general for these three conic sections, 
in order to be able to prove all the other properties that are specific to them’.112 
Ozanam then goes on to examine the properties of these curves, which he 
studies methodically. With respect to classification, he goes no farther than his 
predecessors. Indeed he considers only the domain of the real numbers and 
does not consider the degenerate cases. Thus this classification does not 
include the cases of y2 = x2, y2 = 1, or y2 = 0. But by drawing on curves to 
study Diophantine equations of the second degree, he obtains an important 
result in this systematic research. One can perhaps see here one of the first 
encounters – admittedly timid – between algebraic geometry and Diophantine 
analysis. But the true innovation in these sub-classifications occurs in 
Newton’s study of the second ‘genre’, the cubics, which we will not examine 
here.113  

The heirs of the Cartesian classification, such as Leibniz,114 who were reti-
cent toward the idea of excluding transcendental curves when constructing 
geometrical problems, took advantage of the active research devoted to them, 

 
112 Ibid., p. 6. 
113 Newton worried about this problem since the years 1667–68, that is, fewer than 30 

years after Descartes, in his Enumeratio curvarum trium dimensionum (ed. D. T. Whiteside, 
in The Mathematical Papers of Isaac Newton, vol. II, pp. 10 ff.). In 1704 Newton would 
publish his famous Enumeratio linearum tertii ordinis (ibid., vol. III, pp. 579 ff.), in which 
he exhibits seventy-two species.  

114 ‘I confess that, if one must present the definition of geometrical ones that Descartes 
gave us, ours will not be such. But just as he rightly criticized the ancients for having 
excluded from geometrical curves conic sections or the loci that they called linear, likewise 
must he in turn be criticized for depriving science of a necessary aid by having reduced the 
name of the geometrical to the analytic’ (De Serierum summis et de quadraturis pars deci-
ma, in Gottfried Wilhelm Leibniz, Mathematische Schriften, printed by the Leibniz-Archiv 
der Niedersächsischen Landesbibliothek Hannover, Dritter Band 1672–1676: Differenzen, 
Folgen, Reihen, Berlin, Academie Verlag, 2003, p. 485, 5–8: ‘Fateor si ferenda est definitio 
geometricarum quam dedit nobis Cartesius, nostra talis non erit: sed quemadmodum ille 
veteres iure culpat, quod a geometricarum numero conicas, aut certe quos vocabant lineares 
locos, exclusissent; ita; ille rursus culpandus est, quod geometricarum nomine ad analyticas 
coarctato; scientiam auxilio necessario privat’). In the introduction by Leibniz, the terms 
‘algébrique, transcendant’ take the place of ‘géométrique, mécanique’ of Descartes, see 
H. Breger, ‘Leibniz Einführung des Transszendenten’ (cited in n. 78). 
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notably the logarithmic spiral and the cycloid.115 Since they felt constrained by 
the geometrical/mechanical opposition, which they nevertheless continued to 
accept as the basis of the classification, they simply began, as Cramer 
writes,116 by intercalating between the algebraic curves and the transcendent 
ones  

[…] the class (genre) of exponential curves. This is the name given to curves 
the nature of which is expressed by equations, in which truthfully no infinitely 
large or infinitely small quantity enters, but that nevertheless cannot be related 
to ordinary algebraic equations, because they contain terms that have variable 
exponents.  

One of the simplest curves of this type is the logarithmic, represented by the 
equation y = bax.  

Cramer continues:  

To this genre, or rather to a class intermediate between exponential and alge-
braic curves, one can relate those that Mr. Leibniz calls interscendent. These are 
the ones in the equation of which one finds several terms with irrational expo-
nents such as the equation y 2 + y = x . 

These are effectively the transcendental curves, which one can neverthe-
less express without relying on a differential equation, if one admits as granted 
the definition of ab for an irrational exponent b, which mathematicians were 
doing at the time. But with Newton, Leibniz, and their contemporaries, we are 
already in the domain of the second classification of curves, the topic of a 
different study. Let us now take stock of the first. 

 
 

8. CONCLUSION 
 
At first sight, it might seem that for two millenia the classification of 

curves is a theme imported from philosophy into mathematics, an ‘encroach-
ment’ of the former on the latter; or also the result of a speculative approach to 
organizing diverse and scattered strands into a coherent system. It may also 

 
115 See especially Leibniz, Quadrature arithmétique du cercle, de l’ellipse et de 

l’hyperbole, Latin text edited by E. Knobloch, intro., transl., and notes by M. Parmentier, 
‘Mathesis’, Paris, Vrin, 2004, pp. 124 ff. 

116 Cramer, Introduction à l’analyse des lignes courbes algébriques, p. 8. 
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seem at first sight that this theme originated in the desire of enumerating a 
posteriori the forms in which the curves presented themselves to the mathe-
matician’s experience. We can now see that this is not the case. Indeed the 
preceding investigation shows that the proposed classifications were inti-
mately tied to the mathematical knowledge of the period and to its renewal. At 
stake were, on the one hand, the knowledge of the technical procedures for 
generating curves and, on the other, the knowledge of the theoretical means of 
defining them. Only when the knowledge of the technical procedures con-
ceived for drawing curves was combined with the theoretical means of char-
acterizing them did it become possible to consider an a priori classification. 
That event first took place in the 10th century, and would be constantly reiter-
ated. As one might expect, these combinations modified the nature of the two 
elements involved: the instruments invented to draw the curves became the 
incarnations of mathematical formulas that defined the latter, whereas these 
same formulas took the form of the equations of the curves. In short, precisely 
this interaction between the technical and the theoretical will constitute the 
foundation of classifications and will endow the latter with their explanatory 
power.  

But what is the role of philosophical elucidation revealed in such pairs as 
‘simple-mixed’ and ‘geometrical-mechanical’, for example? Without the 
slightest doubt, the doctrines on which these oppositions rest are aimed at jus-
tifying the proposed classification, in the absence of an authentic mathemati-
cal justification that other means alone could supply. Not until the 19th century 
did this take place. In this case as in many others, the philosophical elucida-
tion finds its origin – better yet, its necessity – in the mismatch between actual 
mathematical knowledge and that required by the problem at hand.  

But let us not delude ourselves: the classifications were hammered out 
under the pressure of problems imposed by the development of mathematical 
techniques: constructions that were admissible or not in geometry; proofs of 
existence and the need for them; relations among geometry and algebra; rela-
tions between these two, and infinitesimal geometry (and later the differential 
calculus). 

It is true that the history of the first classifications of curves presents a 
certain continuity into which one could read a semblance of autonomy. As we 
have seen, these first classifications agree to restrict themselves to the geo-
metrical framework, that of proportion theory. Even Fermat was still working 
along these lines. All of these classifications choose a doctrine of motion in 
order to explain the generation of curves, and all of them go back to the same 
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more-or-less explicit concept of the curve in general, as a ‘limit’ of polygonal 
lines. But these common elements, which allow us to distinguish these first 
classifications, must not obscure the deep cleavages that separate them. If 
indeed mathematicians persist in invoking the exclusive pairs of ‘simple-
mixed’, ‘geometrical-mechanical’, these oppositions in every case take on a 
new meaning by embracing the evolution of the mathematical knowledge of 
curves – before disappearing in the end. It is in just this sense that the clas-
sifications echo this knowledge.  

Note finally that these first classifications play two crucial roles, which 
attest to the extent to which they are tied to mathematical activity: the first is 
heuristic; the second, unifying.  

We have pointed out that the classifications often raise new mathematical 
problems: how to explain the fact that a ‘mixed’ curve, such as the cylindrical 
helix, is nevertheless homoeomeric? Is this helix a ‘measurable’ curve in the 
sense of al-Qūhī? Or might it be ‘nonmeasurable’ in the same respect as the 
quadratrix or the spiral of Archimedes? To which group does such a curve 
belong? (Descartes more than once raised this question). Starting with an ini-
tial curve, can one derive others from it? (a question raised by Descartes, and 
especially by Fermat). Starting from the general equation of a class of alge-
braic curves, how can one obtain all the curves that compose it, as for the 
cubics?  

As to the unificatory function, it takes place in the sense that the classifi-
cation both isolates and integrates. From the 10th to the 12th century, mathe-
maticians isolated ‘measurable’ curves from those that are not, in order to dis-
tinguish from among the former the group of the first two degrees. Separating 
this last group, however, made it possible to integrate the straight line, the cir-
cle, and the conic curves into one and the same theory. By excluding 
mechanical curves, Descartes for his part was able to gather the algebraic 
curves into one theory. Even if, for the purposes of justification, mathemati-
cians appeal to a philosophical doctrine – that of motion – the work that they 
do is in every case genuinely mathematical.  
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APPENDIX 
 

SIMPLICIUS 
On the Euclidean definition of the straight line and of curved lines 

 
 

Simplicius has said: By his statement, Euclid means ‘(the) equal to what is 
between any two given points’. If indeed we assume the two points that are 
the extremities of the line (given that here he only defined the finite line) and 
if we consider that the distance between them ‘is not a line’, then this distance 
will be equal to the straight line of which these two points are the extremities. 
If by the line we measure the distances that are between certain points and 
others, we measure them only by the shortest of lines, which is the shortest 
(aqrab) of the intervals between the separated things and we do not measure 
them by a line that includes circularity. This is why Archimedes defined it by 
saying: the straight line is the shortest of lines whose extremities are its 
extremities; he means that it is the shortest line that joins two points. The 
measure is only by means of the straight line because it is the only one to be 
limited. Indeed, among all other lines, absolutely none is limited, given that 
we can join a point to another point by means of lines that are curved and cir-
cular or composite, some of which are longer than others, and we do this all 
the time. Furthermore, when Euclid defines the genus of the line and when he 
says that it was ‘a length without breadth’, he came to speak about species. 
The species of lines are many – namely, straight lines, circular lines, interme-
diate ones between circular and straight lines, and that are composed of them. 
Among the intermediaries, some lines have neither order nor arrangement  
– that is why geometers do not use them – these are the lines that resemble the 
shapes of the outlines of animals and which are of curved-in forms and other 
innumerable ones. Among these, there are lines that geometers use, such as 
the conic sections, which are the parabola, the hyperbolas, the ellipse, and the 
helicoidal lines [...] and numerous other lines like these, which include admi-
rable things. But Euclid, to preserve the style and the scope of a prologue, 
defined only the straight line and the circular one, which are the seeds of all 
lines.117  

 
117 Text cited by al-Nayrīzī in his Tafsīr muṣādarāt Uqlīdis, ms. Qum, Bibliothèque 

Ayatallah al-Uzma al-Marashi al-Najafi, no. 6526, fol. 2r, edited and translated by 
R. Rashed. 
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DESCARTES’S GÉOMÉTRIE AND THE DISTINCTION BETWEEN 
GEOMETRICAL AND MECHANICAL CURVES 

 
 
 
Descartes sometimes complains that his Géométrie fell victim to a 

certain incomprehension. Was this simply part of the man’s character? A 
sign of the author’s susceptibility? A way of emphasizing his distance from 
Viète? Or was it yet another argument in a lively polemic in which he 
relishes denouncing the Parisians’ limitations? There is no doubt a little 
truth in each of these points, but the essential point lies elsewhere. The rea-
son for this incomprehension, I believe, is much more profound. Descartes 
himself grasped it as in a chiaroscuro, which takes shape every time con-
flicts erupt about interpretations of the Géométrie. For some, Descartes 
gives us an algebrization of geometry; for others, he did precisely the con-
trary. Yet others, in the wake of a judicious analysis, rightly refuse to 
become prisoners of this dilemma; in this regard, at least two names 
deserve mention: J. Itard1 and J. Vuillemin.2 

One year after the publication of the Géométrie, Descartes foresaw that 
his books would not fail to generate opposite and mutually exclusive reac-
tions from both geometers and algebraists. ‘I understand’ he writes,3 ‘that it 
[the Géométrie] will be understood with difficulty by those who have not 
learned analysis before, and I see that those who have, see no merit in it 
and do their best to despise it as much as they can.’ Five months earlier, he 
had sent to Mersenne the famous line: ‘Your analysts understand nothing 
about my geometry’.4 

The contempt that Descartes denounced and against which he would 
often react is in no way the product of his character or the figment of his 
imagination. Some of his contemporaries also noticed it. Desargues, who 

 
1 ‘La Géométrie de Descartes’, Les conférences du Palais de la Découverte, série 

D, no. 39, 7 janvier 1956; repr. in J. Itard, Essais d’histoire des mathématiques, 
collected and introduced by R. Rashed, Paris, A. Blanchard, 1984, pp. 269–79. 

2 Mathématiques et métaphysique chez Descartes, Paris, P.U.F., 1960. 
3 Letter to Mersenne, 27 July 1638, A.T. II, pp. 275–6. 
4 Letter to Mersenne, 1 March 1638, A.T. II, p. 30. 
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was not the least of them, has this to say: ‘Whatever Monsieur de 
Beaugrand and others say, I have grounds for suspecting that they do not 
understand [the Géométrie] thoroughly, by which I mean that they do not 
fully grasp Monsieur Descartes’s intentions about his Géométrie’.5 Once 
set loose, the question will continue to be raised following Van Schooten’s 
translation and Rabuel’s commentary:6 what are ‘Monsieur Descartes’s 
intentions concerning his Géométrie’? This difficult question will lead us 
to ponder the reasons that might have prevented the ‘analysts’, the disciples 
of Viète, from understanding in depth a book with a genesis and a filiation 
that are as deliberately algebraic as the theory of equations that it contains. 
At the same time, this question will lead us to wonder what kinds of obsta-
cles geometers might have encountered when reading a book emphatically 
entitled Géométrie. 

Superimposed upon the Géométrie’s rather paradoxical place in the 
history of mathematics is another one that is no less disconcerting. Histori-
ans unanimously grant the modernity of Descartes’s Géométrie; none is so 
flippant as to reduce it to any of its predecessors. More importantly, no 
other book of mathematics disputes the role of the Géométrie as a symbol 
of mathematical modernity. Indeed, its date, its impact on contemporaries, 
the extension that successors such as Newton gave it all make the 
Géométrie the book of the first half of the 17th century. Published in 1637, 
it was the fruit of research carried out between 1619 and 1636, as attested 
by Descartes’s own Cogitationes privatae, a few echoes in his Regulae, 
and several testimonials that Beeckman confided to his journal. Historians 
are thus correct to treat this book and its author as emblems of the new era. 
But when it comes to giving some content to this modernity and to define 
its relations to tradition, historians diverge and the consensus shatters. They 
find themselves confronting the original question about ‘Monsieur 
Descartes’s intentions concerning his Géométrie’. 

I would like to try to answer this question beginning with the writings 
of Descartes’s predecessors. I restrict myself to medieval mathematicians 
writing in Arabic, notably ʿUmar al-Khayyām (1048–1131) and the new-
comer, Sharaf al-Dīn al-Ṭūsī, who followed him a generation later. Al-
Ṭūsī’s treatise, entitled The Equations, is of considerable importance and 
has just been restored, analyzed, and integrated into the history of mathe-

 
5 Letter to Mersenne, 4 April 1638, in Correspondance du P. Marin Mersenne, 

commencée par Mme Paul Tannery, publiée et annotée par Cornélis de Waard, Paris, 
éd. du CNRS, 1963, vol. VII, p. 157. 

6 Commentaires sur la Géométrie de M. Descartes, by R. P. Claude Rabuel, Lyon, 
1730. 
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matics.7 Recall that al-Khayyām was the first in history to elaborate a geo-
metrical theory of equations with degrees ≤ 3; as to al-Ṭūsī, he wrote the 
first systematic study of the existence of roots of these equations.  

I must emphasize that my intention is in no way to find Descartes’s 
Géométrie in the works of his predecessors. By referring to the latter, how-
ever, I do wish to localize more precisely the novelty of the Géométrie in 
order to understand in what ways it is truly modern, and to establish the 
ties that bind it to earlier tradition(s). I hope to show on the one hand that, 
setting aside questions of influence, Descartes’s Géométrie represents the 
completion of the tradition that al-Khayyām and al-Ṭūsī inaugurated; and, 
on the other hand that this accomplishment engages another tradition that 
certainly finds its source in Descartes’s book, but the true foundation of 
which will be laid in the work of his successors. I am not interested here in 
whether Descartes indirectly knew the tradition of al-Khayyām. I will 
analyze only the mathematical projects and their implementation. Also, as 
the reader will surely appreciate, it is impossible in this study to describe 
every facet of Descartes’s Géométrie, and even more so to plumb all the 
strata imposed upon it. I will quickly restrict myself to two main axes that 
traverse this magisterial work and around which it is organized. The first 
consists in reducing a given geometrical problem to an algebraic equation 
with one unknown; the second reduces the solution of the equation to its 
construction by means of the intersection of two ‘geometrical’ curves, one 
of which, as far as possible, will be a circle. The difficulty of grasping the 
meaning of Descartes’s Géométrie originates in these two procedures, 
which are somewhat contradictory even though they are inseparable. Here 
lies the source of the interpretative controversy that swirls around the book. 
It is therefore to these two axes that we turn. 

 
 

1. THE GEOMETRICAL THEORY OF ALGEBRAIC EQUATIONS:  
THE COMPLETION OF AL-KHAYYĀM’S PROGRAM 

 
One of Descartes’s first mathematical acts focuses on the geometrical 

theory of algebraic equations, that is, on the solution of several third-
degree equations by means of geometry. In 1619, he provides a 
classification of these equations, and solves some of them thanks to his 

 
7 About the algebra of al-Khayyām and al-Ṭūsī, see R. Rashed and B. Vahabzadeh, 

Al-Khayyām mathématicien, Paris, Librairie Blanchard, 1999; R. Rashed, Sharaf al-Dīn 
al-Ṭūsī, Œuvres mathématiques: Algèbre et géométrie au XIIe siècle, 2 vols, Paris, Les 
Belles Lettres, 1986. 
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‘compasses’, and studies a problem that reduces to a cubic equation. 
Thanks to Beeckman, we also know that around this time he is concerned 
with the invention of his ‘compasses’, an assemblage of articulated stems 
intended precisely to solve solid problems. The discoveries that he will 
make in this field during his famous six days of intense creative 
concentration are in effect four demonstrations, of which he is obviously 
proud: ‘remarkable and completely new, and such on account of my 
compasses’.8 The first demonstration focuses on the multisection of the 
angle into equal parts; the three others are solutions of four cubic equations 
drawn from among the thirteen equations obtained by combining number, 
root, square, and cube. Nothing new here: even the language is still that of 
the German cossists and of Clavius’s Algebra (1608). It is, moreover, from 
the latter that he borrows, with minor variations, the modest symbolism he 
uses. In short, his classification is that of al-Khayyām, his results do not yet 
reach the generality that characterizes the latter, and his language is that of 
his masters. The novelty that he claims belongs rather to the order of the 
imaginary, or perhaps is the result of his still modest mathematical culture. 
But his genuine novelty lies elsewhere. It consists of one seminal idea that 
inspires his entire enterprise: all the successive clarifications and formula-
tions until his Géométrie, are so many indicators of the genesis and evolu-
tion of his algebraic geometry. It is precisely this idea that allowed 
Descartes, starting from rather modest mathematical knowledge, to aim 
high and to see far, by opening for him the road he had to travel. Let us fol-
low his steps.  

Also in 1619, Descartes writes the following famous sentences, the 
importance of which is difficult to exaggerate:  

also I hope to demonstrate for continuous quantities that some problems can 
be solved with straight circular lines alone; that others cannot be solved 
except by curved lines [other than circles], which, however, result from a 
single motion and therefore can be drawn with new types of compasses, 
which I deem to be as exact and geometrical as the common ones used to 
draw circles; and finally others can be solved only by curved lines generated 
by motions that differ from one another and are not subordinated to one 
another, which [lines] are certainly only imaginary: one such is the rather 
well-known quadratrix. And it is my judgment that one could not imagine 
anything that could not be solved by such lines. But I hope to establish by 
demonstration which questions can be solved in this way or that, and not in 

 
8 Letter to Beeckman, 26 March 1619, in Descartes. Œuvres philosophiques 

(1618–1637), ed. F. Alquié, Paris, 1963, vol. I, p. 36. 
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some other way, so that almost nothing will remain to be discovered in 
geometry.9  

Descartes himself goes on to comment: ‘The task, it is true, is infinite, 
and cannot be accomplished by one individual, an incredibly ambitious 
project!’ We see that despite a rather humble mathematical knowledge, 
Descartes launches a program – ‘ambitious’ by his own admission – the 
central ideas of which are: a classification of problems organized by the 
curves used to solve them; a classification of curves organized by the 
motions with which they are drawn; and finally an unshakable faith, with 
no clear justification, in the heuristic value of these classifications for 
exhausting all questions of geometry by means of demonstration.  

I will return to these classifications, which only later will be named 
‘geometrical’ and ‘mechanical’. For now, I pause on a comparison between 
the program that Descartes announced and the one that al-Khayyām 
implemented. One will immediately conclude that the project conceived by 
Descartes, as he formulates it in 1619, both falls short of and goes beyond 
that of al-Khayyām.  

Indeed Descartes, just like al-Khayyām, concedes that in the last analy-
sis a plane problem reduces to one (or more) equations of the second 
degree, whose roots are constructible using the properties of the circle and 
the straight line. But they differ in important respects. Al-Khayyām distin-
guishes solid problems from supersolid problems, and claims that it is the 
properties of the conic sections that make it possible to determine the root 
of cubic equations corresponding to the former and, as Ibn al-Haytham had 
established in the 10th century, it is the properties of a cubic curve and a 
conic that make it possible to solve a fifth degree equation. For his part, 
Descartes does not yet draw any such distinction and alludes in the aggre-
gate to these curves, which will later be called ‘geometrical’. Al-Khayyām, 
on the contrary, alludes to no curve other than a conic (and implicitly a 
cubic). Descartes speaks about one set of curves being opposed to another 
and differing according to the type of motion used to trace it. Al-Khayyām, 
for his part, does not refer to any ‘mechanical’ curve; in geometry, he 
‘abhors motion’, as it were. In a word, then, in 1619 Descartes stands in the 
same terrain as al-Khayyām, with mathematical results that are less gen-
eral, but he is motivated by a more general project in which the dominant 
idea concerns a class of curves that includes all those with which algebraic 

 
9 Letter to Beeckman, 26 March 1619, ed. Alquié, vol. I, pp. 38–9; A.T. X, p. 157; 

translation modified from C. Sasaki, Descartes’s Mathematical Thought, Boston 
Studies in the Philosophy of Science, vol. 237, Dordrecht/Boston/London, Kluwer 
Academic Publishers, 2003, p. 102. 
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geometry deals. Although still embryonic in this project, these new inter-
ests will lead him increasingly to privilege both the concept and the study 
of the algebraic curve. Other results, however, were required for this semi-
nal idea to keep its promises, become a fertile one, and reach a new stage. 
At the time, matters were not yet there. 

Six years later, in 1625–1626, Descartes composes his Algèbre, 
communicated to Beeckman in 1628, the year in which he also shares his 
construction of all solid problems. These pieces of information, among 
others, teach us that Descartes is still involved in this same research 
already accomplished by al-Khayyām: to reduce solid problems to alge-
braic equations of the third degree, that can be solved by the intersection of 
two conics. This task obviously mixes algebraic interests with geometrical 
interests, which are so intertwined that one would vainly hope to disentan-
gle them. It cannot help but run up against the problem of elaborating and 
justifying a genuine ‘geometrical calculus’. On this point, we do not know 
precisely what Descartes’s idea was in 1628. At the very least, one notices 
that he is still hesitant.10 In his Géométrie, just like al-Khayyām in his 
Algebra, he proceeds by means of a geometrical calculation based on the 
choice of a unit length. Whereas the 11th century mathematicians adapted 
the unity to the dimension in order to respect homogeneity – this constant 
worry will still haunt Viète, for example – Descartes uses only rectilinear 
lengths. The conception of the unity that one finds at the beginning of the 
Géométrie was in fact a later acquisition, later than 1628, as far as the later 
documents reveal it. Until 1628, he mixes the two conceptions, that of al-
Khayyām and that of his Géométrie. To grasp the difference between these 
two conceptions, note that, having chosen a unit, the calculation on straight 
line segments is first of all research aimed at finding the geometrical con-
struction by means of which one can carry out, on these segments, the 
same operations that one performs on numbers in arithmetic (±, × ⁄ ÷, √ ). 
This idea, which al-Khayyām was the first to express, turns up in al-Ṭūsī, 
Bombelli, Viète, among others, as well as in Descartes. But, although they 
all change the unit as a function of dimension, only Descartes, in his 
Géométrie, draws on rectilinear lengths, or as he writes:  

It is to be noted that by a2 or b3 or the like, I ordinarily mean only simple 
lines, although, in order to make use of the names used in algebra, I call 
them squares, cubes, etc.11 

 
10 G. Milhaud, Descartes savant, Paris, 1921, pp. 70 ff. 
11 La Géométrie, A.T. VI, p. 371; English translation with introduction by P. J. 

Olscamp in Discourse on Method, Optics, Geometry, and Meteorology, Indianapolis, 
Bobbs-Merrill Co., 1965, p. 178. 
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First of all, one observes a clear break, the importance of which several 
historians have obviously emphasized. And in fact, when one looks more 
closely, one notes that Descartes’s predecessors did not always respect 
homogeneity and that he himself never completely broke with it, not even 
in the Géométrie. To be sure, it is by omission or negligence that such 
predecessors as al-Ṭūsī or Bombelli sometimes violated this principle. But 
a mathematician of al-Ṭūsī’s caliber does not neglect a principle if he 
deems it important for demonstration. As to Descartes, after having enunci-
ated this beautiful opinion, he wastes no time making his first concession 
to homogeneity on the same page, uttering in addition pertinent remarks on 
the manner of making homogeneous a formula that is not. His writing then 
remains homogeneous – for example z3 = az2 + b2z – c3; and it is perhaps 
this desire for homogeneity that prevents him from setting a polynomial 
equal to zero (for that, it would be necessary to wait for the middle of the 
second book of Géométrie), and from daring to represent a ratio by a single 
letter. Descartes was not the sort of fellow to concede to tradition a princi-
ple important for demonstration.  

 
Three years later, upon returning from the Middle East with a crop of 

mathematical manuscripts including an additional copy of al-Khayyām’s 
Algebra, the mathematician and Arabist Golius puts to Descartes a problem 
that will deeply influence his mathematical thinking: the problem of 
Pappus. It can be rewritten thus: Given a group of 2n or 2n – 1 line seg-
ments of known position and not all parallel; divide them into two sub-
groups, one of which consists of n straight lines, if the number is even; or, 
of n and n – 1 groups if the number is uneven. Find the locus of points such 
that the product of the distances to the segments of the first subgroup 
stands in a given ratio to the product of the distances to those of the second, 
a product to be completed, if necessary, by a given constant factor. The 
locus of these points is a line of given position. In January 1632, Descartes 
sends to Golius the sketch of his proposed solution to this problem, which 
constitutes in broad strokes the one that appears five years later in the 
Géométrie.12 

I stress briefly only two impacts that this solution to the problem of 
Pappus had on Descartes’s program. It consists first in the obligation of 
finding equations of curves that answer Pappus’s question. This research 

 
12 See above ‘The first classifications of curves’, pp. 217–22. Cf. J. Vuillemin, 

Mathématiques et métaphysique chez Descartes, pp. 99–112; as well as H. J. M. Bos, 
‘On the Representation of Curves in Descartes’ Géométrie’, Archive for History of 
Exact Sciences, 24, 4, 1981, pp. 295–338, esp. pp. 298–302 and 332–8. 
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had two effects: on the one hand, it extended the theory of algebraic equa-
tions much farther than before; on the other, it expanded the domain of 
algebraic curves. The same research, beginning precisely with line seg-
ments, finally led Descartes to show that these ‘geometric’ curves are the 
loci of points of straight lines and curves. To clarify, let us consider 
Pappus’s question in the simplest case, that of 3, 4, or 5 straight lines. As 
Descartes writes, ‘We can always discover the required points through sim-
ple geometry – that is through the use of ruler and compasses alone’.13 In 
other words, for 5 straight lines, one has an equation in x, y such that  

 
f (x, y) = xy(x − ay − b)− kα(x − cy − d)(x − ey − f ) = 0 ; 

 
if x (respectively y) is given then y (respectively x) is found by means of 
the second degree equation. Now if the five straight lines are all parallel  

 
f (x) = αx(x − a)− (x − b)(x − c)(x − d) = 0,  

 
a third-degree equation that generally cannot be reduced to zero.  

If Pappus’s question concerns 6, 7, 8, or 9 straight lines, analogously 
one has an equation of the fourth degree, except if the 9 straight lines are 
all parallel, in which case the equation is of the fifth degree. Next 
Descartes gives two other groups of straight lines: he writes that ‘it is 
essential to use a curved line of degree still higher than the preceding, and 
so on to infinity’.14 In the second book of Géométrie, Descartes takes up 
again the problem of Pappus in order to determine the curve sought in each 
case. In the first case (with 3 or 4 straight lines), this curve will be the locus 
of the points of one of the three conics, of the circumference of a circle, or 
of a straight line;15 the locus will be a cubic or a quartic in the case of 5, 6, 
or 7 straight lines; it will be a curve of the fifth or sixth degree in the case 
of 9, 10, or 11 straight lines. Descartes goes farther; he even believes that 
the problem of Pappus would thus give him all the geometrical curves, an 
error that Newton will later denounce.16 But this error should not obscure 

 
13 La Géométrie, A.T. VI, p. 380; English transl. P. J. Olscamp, p. 185. 
14 Ibid., p. 381; English transl. P. J. Olscamp, p. 185. 
15 In fact, without insisting much, Descartes shows that he knows very well that it 

could only be a matter of not a single curve, but two. 
16 Cf. The Mathematical Papers of Isaac Newton, vol. IV: 1674–1684, ed. 

D. T. Whiteside, Cambridge, Cambridge University Press, 1971, p. 340, where Newton 
writes: ‘Descartes erred further in that he asserted that all curves that he calls 
Geometrical are useful for the problem of Pappus. // Erravit præterea Cartesius in eo 

(Cont. on next page) 
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the essential point: to solve this problem, Descartes proceeds by means of 
algebraic methods, appealing to the best notation of his era, and without 
bringing into play the methods of traditional geometry. Better yet, this 
problem gives him the occasion to generalize his algebraic method. Before 
1631, he knew how to solve particular questions, but he probably had not 
yet conceived of a general procedure that would always work. Now, he has 
a premonition that the essential point is to obtain the equation of a 
‘geometrical’ curve and the curve itself as a locus of points. Solving the 
problem of Pappus thus led him to try to isolate the ‘geometrical’ curves 
and to express them as the locus of the points that are sought by means of 
algebraic relations between the coordinates of each of these points, P(x, y) 
= 0, where P is a polynomial. It is therefore thanks to the solution of this 
problem that Descartes was able to return, but at a much higher level and 
with a much higher precision, to the questions about the classification of 
problems and of curves that he had raised in 1619, at the beginning of his 
mathematical career. Without ambiguity, he now assimilates ‘geometrical’ 
curves to ‘organic’ curves, that is, those that one can draw by means of his 
‘compasses’. But Descartes does not give the slightest proof of this. 
Indeed, none will be forthcoming until that of Alfred Bray Kempe (1849–
1922) in 1876. 

We can now compare more rigorously the net gains of Descartes with 
those of the mathematician al-Khayyām in the 11th century, from the per-
spective that we have called the first axis: to reduce a geometrical problem 
to an algebraic equation with a single unknown. Note first of all that, 
before confronting the problem of Pappus, Descartes had, like al-Khayyām, 
solved all equations of the third degree by the intersection of conics. In his 
Géométrie, he proceeds, still like al-Khayyām, to solve all equations of the 
third and fourth degree by the intersection of two conics, but, for his part, 
he restricts himself to a given parabola and to a variable circle, depending 
on the type of equation. But no more than al-Khayyām did, he does not at 
this time deal with the existence of roots. For the equations of the fifth and 
sixth degree in which al-Khayyām deliberately takes no interest (indeed he 
encountered the first case and knew its solution, x5 = k), Descartes con-
ceived a cubic parabola, or a parabolic conchoid, a curve with the equation  

y3 − 2ay 2 − a2 y + 2a3 = xy . 

                                        
(Cont.) quod asseruit omnes curvas quas Geometricas vocat utiles esse in Problemate 
Pappi’. Newton’s, it is true, is not very clearly expressed, but it does exist. D. T. 
Whiteside notes that Newton has left ‘a long gap at this point in his manuscript, 
evidently intending to develop the criticism further’ (ibid., p. 340, n. 22). 
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But, faced with a cubic equation, for example, Descartes like al-
Khayyām was reduced to stating that at most it was solid; he could thus not 
specify the nature of the irrationals that entered into the solution. Neither 
mathematician evidently suspected that this problem required one to know 
the decomposition of the associated polynomial into its prime factors over 
the field of its coefficients. Thus far, then, Descartes is reiterating al-
Khayyām’s procedure; to be sure, he fine-tunes it, generalizes it, takes it to 
the very limits of logical possibility; in short, he completes it, but without 
truly plumbing its substance nor recasting its meaning. Is this also the case 
when we turn to the second axis of research that runs through the 
Géométrie? This is the question we will now try to answer.  

 
 

2. FROM GEOMETRY TO ALGEBRA: THE CURVES AND THE EQUATIONS 
 
Without the slightest doubt, the theoretical instrument of the new pro-

gram is the classification of curves into ‘geometrical’ and ‘mechanical’. 
Whoever is interested in Descartes’s Géométrie must first know the origin 
of this classification and ask what it covers. The most common hypothesis 
proposed to explain this classification refers to the unprecedented increase 
in the number of new curves in the 17th century.17 On this account, it was a 
new need – the necessity of giving an account of these new objects – that 
allegedly stimulated Descartes to hammer out his famous distinction. 
Indeed, one of the most significant points of mathematical research in the 
first half of the 17th century was this invention of new curves. Consider, for 
example, all the efforts and debates that surrounded the cycloid. This 
hypothesis thus appears seductive, even natural, if only it could stand up to 
the chronology, to the examination of Descartes’s mathematical knowledge 
when he conceived the classification, and to the reception with which his 
contemporaries greeted it. But this is not the case.  

We have just seen that, despite the missing terminology, the first clues 
about this classification are relatively old, since they go back to the years 
1619–1621. For example, Descartes writes the following at the time of the 
Cogitationes Privatae: ‘The line of proportions must be conjugated with 
the quadratrix; [the quadratrix] is indeed born of two nonsubordinated 
motions, the circular and the straight’.18 Ten years later, in 1629, Descartes 

 
17 See for example H. J. M. Bos, ‘On the Representation of Curves in Descartes’ 

Géométrie’, pp. 295–7. 
18 A.T. X, pp. 222–3: ‘Linea proportionum cum quadratice conjungenda: oritur 

enim [quadratrix] ex duobus motibus sibi non subordinatis, circulari & recto’. 
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affirms about the quadratrix and the cylindrical helix that neither is ‘admit-
ted in geometry’, ‘because […] one can only draw them in their entirety by 
joining two motions that are independent of one another’.19 These few cita-
tions confirm what we already knew: the classification is ancient, even 
though it will later become both clearer and more elaborate. But which new 
curves did Descartes know at this time? Only one, and in a still rather 
imprecise manner: the linea proportionum; all the other curves he mentions 
come from the ancients. About this line of proportions, he knew at the time 
only that it was generated, like the quadratrix, by two separate motions, 
and therefore was a ‘mechanical’ curve. Only much later will he know the 
second new ‘mechanical’ curve, the rolling circle or cycloid: he discusses it 
only one year after the publication of the Géométrie.20 And even if one 
assumes that he already had had some echo of it in 1635, his knowledge 
could only have been about a still poorly studied curve, as Roberval 
personally attests.21 Descartes’s interest in curves and in their classification 
could therefore not follow from an increase in the number of new curves. 
Even more surprising: his interest manifests itself against the background 
of a traditional knowledge of curves, at least until he wrote the Géométrie. 
Moreover, this classification is credited to Descartes alone. In this 
particular respect, he indeed owes nothing to his predecessors, whether 
immediate or distant. Clavius, for example, was far from excluding the 
quadratrix from geometry,22 and Viète refuses to consider any curve, 

 
19 Letter to Mersenne, 13 November 1629, A.T. I, p. 71. Note indeed that the 

quadratrix is the locus of points M, the intersection of a straight line AM parallel to Ox 
that is displaced by a uniform motion of translation, and of a straight line OM, rotating 
about O with a uniform rotary motion. 
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20 Letter to Mersenne, 23 August 1638, A.T. II, p. 313: ‘One should also note that 
the curves described by rolling circles (roulettes) are completely mechanical lines, and 
among those that I rejected in my Géométrie’. 

21 Letter from Roberval to Torricelli 1647, from which it transpires that the former 
did not concern himself with this curve before 1634. Cf. Opere di E. Torricelli, ed. G. 
Loria and G. Sassura, Faenza, 1919. 

22 Clavius, La Géométrie pratique, p. 918 (end of Book VI of Euclid’s Elements). 
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including the conics, as admissible in geometry.23 As to Descartes’s 
contemporaries themselves, they attached little importance to his classifi-
cation. Roberval, for example, after having defined mechanical curves 
differently, that is, as ‘curved lines that have a relation only with other 
curves or partly to straight lines and partly to curves’, believes that 
Descartes excludes them from geometry for no good reason.24 Even when 
he adopts Cartesian notions, Roberval persists in rejecting Descartes’s 
classification.25 Likewise for Mersenne, who knows about the classification 
since 1629: he does not even bother to refer to it in 1637 in his Harmonie 
Universelle, in a context where it seemed to be particularly relevant.26 
Finally, unless I am mistaken, Fermat nowhere in his correspondence 
alludes to ‘mechanical’ curves; they are mentioned only in his De linearum 
curvarum of 1660, where he seems to accept the distinction, but only 
tacitly, when he writes: ‘never, so far as I know, have geometers equated a 
given straight line to a purely geometrical curved line’.27 

In short, this classification of curves is therefore a surprising invention. 
Descartes’s predecessors with whom, whether new or distant, he had never 
broken, had seen no need for it; nor did his contemporaries; and he himself 
had proposed it under no compulsion whatever, since he did not need to 
explain new objects, such as new curves. Is this classification an arbitrary 
one? Absolutely not. He himself sets it at the center of his program, and his 
successors, who are now under pressure from a growing number of new 
curves, adopt it and refine it (e.g., Newton and Leibniz). When the young 
mathematician of genius with his still modest mathematical culture pro-
poses such a classification what then is his motivation? And what content 
does he perceive in the classification that he has just hammered out? 

Descartes himself seems to lift the veil a little about his motives by 
drawing on a speculative history and by offering us a kind of historical tale. 
He begins by accusing the ancients of having failed to ‘distinguish various 
degrees among composite lines’ beyond the conics. Then he is surprised by 

 
23 ‘Apollonius Gallus’, in Opera mathematica, recognita Francisci à Schooten. 

Vorwort und Register von Joseph E. Hofmann, Leiden, 1646; facsimile G. Olms, 
Hildesheim, New York, 1970, p. 325. 

24 Letter to Fermat, 4 August 1640, in Œuvres de Fermat, published by Paul 
Tannery and Charles Henry, Paris, 1891, vol. II, p. 200. 

25 Divers ouvrages de mathématique et de physique par Messieurs de l’Académie 
Royale des Sciences, Paris, 1693, p. 209. 

26 Vol. II, Book VI, Proposition 45, pp. 408–9; Correspondance du P. Marin 
Mersenne, vol. III, pp. 258–9. 

27 Œuvres de Fermat, vol. I, p. 211: ‘Nondum, quod sciam, lineam curvam pure 
geometricam rectæ datæ geometræ adæquarunt’. 
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a confusion between ‘geometrical’ and ‘mechanical’ that he attributes to 
them. Next, Descartes interprets the omission and makes a conjecture about 
the confusion:  

[the first curves] they considered happened by chance to be the spiral, the 
quadratrix, and similar curves, which truly belong to mechanics and are not 
among the number that I think should be included here; for we can conceive 
them as being described by two separate movements which have no pre-
cisely measurable relation to each other. Yet afterwards they examined the 
conchoid, the cissoid, and a certain few others which we do accept; never-
theless, perhaps because they did not pay sufficient attention to their proper-
ties, they took no more notice of these than of the first. Or else it may have 
been that – since, as yet they knew only a few thing about conic sections, 
and there was even much that they did not know about what could be done 
with the ruler and compass – they believed they should not approach more 
difficult material.28 

As customarily happens when telling a historical tale, Descartes here is 
not being a historian, but trying to present to his readers a few exemplary 
characteristics/traits of the progress of the mind. It matters little whether 
the events he evokes are doubtful or even false.29 By contrast, in the fine 
texture of his tale, he reveals his own intentions: to go beyond the conics 
and to distinguish clearly between this class of curves traced and privileged 
by the algebraists, and all the other curves, under the strict condition of 
relying on no concept unknown to the ancients. It will therefore be neces-
sary to correct the classification of the ancients, who were deprived of 
algebra and therefore could not see this cleavage between the classes of 
curves. The concept to which Descartes has access – at least the one that 
first presented itself to him – is none other than the ancient concept of 
motion such as we encounter it in the Aristotelian tradition. In the 
Géométrie, this notion of continuous motion is treated, to be sure, without 
any apparent kinematic consideration, but also without being clothed in the 
slightest algebraic dimensions. On the contrary, one will observe that, thus 
far, the notion of equation of a curve does not enter the picture in order to 
establish the classification; it is only later that he will call upon it to 
describe the elements of this class of curves privileged by the algebraists. 
For the moment, let me insist once again, that a curve such as the quadra-
trix or the spiral is ‘mechanical’ because it is generated by two separate 

 
28 La Géométrie, A.T. VI, p. 390; English transl. P. J. Olscamp, p. 191. 
29 A. G. Molland gives a different commentary of this ‘historical’ text in his article 

‘Shifting the Foundations: Descartes’s Transformation of Ancient Geometry’, Historia 
Mathematica, 3, 1976, pp. 21–49, esp. pp. 34–6. 



252 PART  I:  ALGEBRA  

continuous motions, ‘which have no precisely measurable relation’, and 
consequently cannot be studied in terms of the theory of proportions. The 
two motions are rotation and translation. Once he has established the 
distinction between ‘geometrical’ and ‘mechanical’, Descartes in his 
Géométrie can devote himself to geometrical problems and curves. The 
second book has precisely the goal of studying such curves, and Descartes 
states in the famous passage in the first few pages that, in order to draw and 
conceive these curves, he himself knows  

of nothing better than to say that all points of those curves which can be 
called ‘geometrical’ – that is, which fall under some precise and exact meas-
ure – necessarily have a certain relation to all the points of a straight line; 
and this relation can be expressed by a single equation for all the points. And 
when [no term of] this equation is higher than the rectangle of two 
indeterminate quantities, or else of the square of a single unknown quantity, 
the curved line is of the first and simplest class, which comprises only the 
circle, parabola, hyperbola, and ellipse. But when one or both of the equa-
tion’s two unknown quantities (for there must be two, in order to explain the 
relation between two points) reaches the third or fourth degree, the curve is 
of the second class; and when the equation reaches the fifth or sixth degree, 
the curve is of the third class; and so on for the others, to infinity.30  

As far as I know, this text gives the most precise formulation Descartes 
ever wrote about the concept of curve and its relations with the associated 
equation. It is also valuable for its ambiguities and what it says between the 
lines; elucidating it will allow us better to grasp the author’s thought. We 
notice immediately that his formulation patently pertains only to ‘geomet-
rical’ curves, whereas his declared intention was undoubtedly to discuss all 
curves; in his own words, ‘all those that exist in nature’. Everything thus 
unfolds as if Descartes was ipso facto excluding mechanical curves when 
he was trying to define more precisely the concept of curve – as if 
‘mechanical’ curves were, for him, not real curves. In this case, the only 
curve that genuinely deserves the name is the one that can be conceived as 
the locus of points or the one that can be drawn with the help of his ‘most 
general point’. In this passage, Descartes thus seems to imply that there is 
an essential difference between the two types of curve, which the concept 
of motion alone does not suffice to bring out clearly. What difference then 
distinguishes the two classes of curves? This difference seems to refer back 
to two problems that are intermingled here: that of the construction of 
points on the curve; and that of the existence of intersection points when 
the curves cut each other.   

 
30 La Géométrie, A. T. VI, p. 392; English transl. P. J. Olscamp, p. 193. 
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Indeed Descartes knows that if all the points of a ‘geometrical’ curve 
are constructible, it is not the case for a ‘mechanical’ curve. Better yet, he 
knows that if the ‘geometrical’ curve is a conic, all of its points are con-
structible by means of straightedge and compass: if it is cubic or quartic, its 
points are all constructible by the intersection of two conics; if it is of the 
fifth or sixth degree, its points are all constructible by the famous ‘second-
degree parabola’ that he conceived and by a semicircle, and so on. More 
generally, he knows that for a ‘geometrical’ curve of order n, one can 
construct all of its points if one can construct all the points of the ‘geomet-
rical’ curves of a lower order. This cascade of procedures thus allows one 
to construct all the points of the ‘geometrical’ curve. Descartes also knows, 
but without in any way proving it, that he cannot apply this cascade proce-
dure to the case of ‘mechanical’ curves: he knew that he could not con-
struct all the points of a ‘mechanical’ curve, far from it. As will be demon-
strated later, the reason for this is that all the constructible points of a small 
arc of this curve, the arc of a quadratrix for example, ‘form a set that is 
everywhere dense, but not closed, however small the considered arc may 
be’.31 Only the points of the ordinate m/2n, where m, n are integers, are 
obtained by a construction using only the straightedge and compass. 
Descartes has seen all of this in his own way (and obviously without topo-
logical concepts) when he writes:  

there is a great difference between this method of finding several points in 
order to trace a curved line passing through them, and the method used for 
the spiral and similar curves. For in the latter we do not find all the points of 
the required line indiscriminately, but only those which can be determined 
by some process which is simpler than that which is required for composing 
the curve. And so, strictly speaking, we do not find any one of its points, that 
is to say, not any one of those which are so properly points of this curve, that 
they cannot be found except through it; on the other hand, there is no point 
on the lines that can be used for the proposed problem which cannot be 
found among those which can be determined through the method just 
explained. And because this method of drawing a curved line by finding sev-
eral of its points indiscriminately only extends to those that can also be 
described by a regular and continuous movement, we need not entirely reject 
it from geometry.32 

It is clear that Descartes sees more than he demonstrates the reasons for 
excluding ‘mechanical’ curves. His strong intuition rests, at the beginning 

 
31 Henri Lebesgue, Leçons sur les constructions géométriques, preface by M. Paul 

Montel, Paris, Gauthier-Villars, 1950, p. 15. 
32 La Géométrie, A.T. VI, pp. 411–12; English transl. P. J. Olscamp, p. 206. 
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at least, on two ideas that lie at the center of algebraic geometry since its 
beginnings in al-Khayyām. The first is a kind of assumed isomorphism 
between calculation on segments, which represent the real numbers, and 
Euclidean geometry’s constructions by means of the straightedge and com-
pass. From the very beginning of the Géométrie, Descartes shows no 
ambiguity about this point: there he sees perfectly, albeit without proving 
it, that every ‘plane’ problem reduces in the last analysis to the solution of 
a second-degree equation. Second idea: the ‘solids’ can, in the final analy-
sis, be reduced to a polynomial equation of the third degree. In every case, 
all the points are constructible. Implicitly then, one will keep only the poly-
nomial equations that can be obtained by means of the intersection of 
curves of a lower order, but all of whose points are constructible. This 
time, however, it is the question of existence that will become more press-
ing, a question that is certainly important in its own right, but also on 
account of its tight relation to the definition of the entities with which it 
deals.  

This question was raised very early in the history of algebraic geome-
try: since the solutions to algebraic equations were constructed using the 
intersection of curves, one had to be sure that the intersection points duly 
existed. It was therefore necessary to have a proof of the existence of an 
intersection point in order to deduce the existence of the corresponding 
root of the equation. Barely broached by al-Khayyām for a single equation, 
this question of existence has the leading role in al-Ṭūsī’s treatise on The 
Equations. What is more, raised as a genuine requirement by the latter, the 
demonstration of existence leads him to add to al-Khayyām’s global analy-
sis of the local behavior of curves, that is, near the point of intersection. In 
Fermat, there is an attempt similar to that of al-Ṭūsī, but one operating at a 
higher level. What matters here is that, in all of these contributions, the 
main argument for affirming the existence of the point of intersection of 
two curves is the following: in the final analysis, one of the curves has 
points on one side and the other of the other curve, both being assumed to 
be continuous, that is, drawn by a continuous motion. When these curves 
are conics, one deduces from the symptoma that the point of intersection 
belongs to each of the curves. 

For his part, Descartes faces this question in a context that is, as it 
were, more dramatic, not despite the earlier progress, but precisely because 
of it. There are two reasons for this. Like his predecessors, Descartes privi-
leges the drawing by continuous motion of these same curves. Under-
standably, in this context, it is the continuous motion alone that assures the 
continuity of the curves. Unlike his predecessors, however, he recognizes 
the role of the equation in representing the curve. Now the equation most 
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often only allows him the construction by means of points; and this 
construction by points, as we have seen, is sufficient only for ‘geometrical’ 
curves. This is a highly paradoxical situation from two points of view, even 
if they are of unequal importance. The first paradox is by far the most 
profound: Descartes simply did not have the means to resolve this apparent 
contradiction: for that, he would have needed the Bolzano’s demonstration 
of the theorem about intermediary values in his treatise of 1817. 
Conversely, Descartes encounters a great difficulty when dealing with 
‘mechanical’ curves insofar as he cannot construct all the points of the 
curve. What is more, whereas Descartes knows how to solve ‘geometrical’ 
problems by the intersection of ‘geometrical’ curves, he is not up to pro-
ceeding analogously for ‘mechanical’ problems. To solve them, indeed, 
requires the intersection of curves that are themselves ‘mechanical’. Now 
the latter curves have no algebraic equation; they nevertheless admit a 
differential algebraic equation that links not the abscissa and the ordinate, 
but their differentials. In this case, not until Leibniz, and especially succes-
sors such as Jacques Bernoulli, did one witness the elaboration of these 
notions and the transfer of this problem to the new domain of analysis. 
Until then, no concept of equation can represent a ‘mechanical’ curve. The 
situation is thus frankly asymmetrical: whereas one can speak the language 
of equations for the class of ‘geometrical’ curves, this is impossible for 
‘mechanical’ curves. About the former, Descartes writes: ‘That, in order to 
discover all the properties of curved lines, it is sufficient to know the rela-
tion of all their points to those of straight lines and the way of tracing other 
lines that cut them at every point orthogonally’.33 No doubt seems possible: 
Descartes knew that all the properties of ‘geometrical’ curves must be 
drawn from their equation. This was, as we know, a program to which he 
never devoted himself; it had to await the young Newton. Thus, there is 
only a short step between what Descartes has just said and the definition of 
the curve by its equation, i.e., its characterization by the latter. Descartes 
did not take that step, probably prevented from doing so by the previously 
mentioned asymmetry with ‘mechanical’ curves. Excluded from geometry, 
they cannot for Descartes be represented by equations, which renders the 
task of unification impossible. Powerless to unify the characterization of all 
curves, Descartes the great proponent of clarity was thus backed into a 
chiaroscuro corner. This is one of the characteristics of his Géométrie, and 
one of the profound reasons for the conflict among the interpretations of it.  

We thus see that what separates the two classes of problems and curves 
pertains not only to the single concept of movement, but also to the ques-

 
33 Ibid., pp. 412–13 in the margin. 
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tions raised by the construction and by the existence of their points as well 
as to the power of the equation to define them. Even if Descartes did not 
make it completely explicit, this classification of problems and curves was 
nevertheless elaborated over the years, as an instrument geared to explor-
ing the study of certain curves by means of their equations. It is in this 
sense that the Géométrie truly deserves its name. Can one not now find the 
properties of the curve, notably its tangents and its normals, from the equa-
tion? In any case, this is how Descartes’s successors read his Géométrie. 
Cramer, for example, writes in his Introduction à l’analyse des lignes 
courbes algébriques of 1750:  

It is especially in the theory of curves that one very clearly senses the utility 
of a method as general as that of Algebra. No sooner did Descartes – whose 
inventive spirit shines no less in Geometry than in Philosophy – introduce 
the way of expressing the nature of curves by algebraic equations than the 
face of this theory changed.34 

This is, of course, a regressive reading of the Géométrie; it neverthe-
less truly expresses the potentiality of this second axis of research for 
Descartes. And in fact, in the wake of al-Khayyām – namely in al-Ṭūsī’s 
research on maxima,35 or more generally on the existence of points of inter-
section – one can find the study of certain curves by means of their equa-
tions. Apart from the conics, however, al-Ṭūsī does not clearly distinguish 
between polynomial equation and curve. The concept of equation of a 
curve thus remained limited, and was insufficiently transparent to consti-
tute a program of research. This is, however, precisely the function that it 
acquires with Descartes, thanks to his extension of the study of curves 
beyond the conics, and to his distinction of this class of curves that can be 
studied by means of algebra. The restriction of Descartes’s Géométrie to 
‘geometrical’ curves is the consequence not of a denial of the existence of 
‘mechanical’ curves, but of the generalization of the concept of ‘geomet-
rical’ curve; his exclusion of ‘mechanical’ curves is thus an eminently 
positive act.  

As a powerful tool destined to mark the boundary of algebraic geome-
try, this distinction between the two classes of curves also offers the means 
of establishing another opposition, which is important for Descartes’s 
philosophy. He considers geometrical curves and mechanical curves from a 

 
34 Gabriel Cramer, Introduction à l’analyse des courbes algébriques, Geneva, 

1750, pp. VII–VIII. 
35 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques, vol. I, pp. XVIII–

XXXI. 
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double point of view. As mathematical ideas, they are answerable to the 
criterion of truth defined as clear and distinct representation. Like the geo-
metrical curve, the mechanical curve is an intellectual object accessible to 
thought insofar as it represents. The one as well as the other is indubitably 
true, dependent on self-evidence, which is defined as intellectual clarity 
and distinction. On the other hand, our knowledge of each is not confused 
with our knowledge of the other: indeed, they even oppose one another. 
This opposition is hierarchized: there is, in our knowledge of the geomet-
rical curve, more perfection than in that of the mechanical curve, taking 
into account the construction of its points, the simplicity of the movement 
that generates it, and the rigor of the equation that characterizes it. Add to 
this the cascade procedure, this apodictic chain, regulated by an order of 
reasons that allows one to know the geometrical curve, altogether and 
completely, whatever its degree may be. All of these procedures define 
clear and distinct knowledge mathematically, a knowledge opposed to that 
of mechanical curves, which are, from the second point of view, the object 
of clear knowledge only. It is this cleavage between ‘clear and distinct’ on 
the one hand, and ‘clear’ on the other, which in the end separated the two 
classes of curves by consecrating the exclusion of mechanical curves from 
geometry. Better yet, it is this opposition that isolated geometrical curves.  

Briefly sketched, it is these two movements that seem to govern the 
evolution of Descartes’s Géométrie. The first is oriented to the completion 
of a scientific project conceived six centuries earlier in another climate; the 
second gathers up the beginning of a study of curves in order to create a 
new program, the realization of which betokens the future, the foun-
tainhead of two new currents: that of algebraic geometry, with Cramer and 
Bézout; and that of differential geometry, with the brothers Bernoulli. 

The Géométrie thus illustrates the complexity of the relations between 
tradition and modernity in the 17th century, and bears witness to the diffi-
culty of establishing a dialectic between these notions. The modernity that 
Descartes’s Géométrie represents thus presents itself as the actualization of 
several potentialities inherited from tradition, even as it was a generator of 
new potentialities for the future. But could it have been otherwise? If one 
were to think only in terms of ready-made concepts, one might say that 
continuities and ruptures are mutually inscribed inside each other. Every 
discourse on Descartes’s Géométrie will therefore necessarily be oblique if 
it ignores or neglects the intimate links that root it in tradition, or also the 
new possibilities that inhabit it and effectively are realized only once 
modernity itself has become tradition.  

To read Descartes’s Géométrie is to look upstream towards al-
Khayyām and al-Ṭūsī; and downstream towards Newton, Leibniz, Cramer, 
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Bézout and the Bernoulli brothers. It is then that the Géométrie reclaims 
the place that was always its own: no more than other innovative works 
does it embody a radical beginning; on the same grounds as the others, it is 
a way of reworking and adapting, but also correcting, the traditions that it 
inherited.  
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DESCARTES’S OVALS 

 
 
 
Beginning in the second half of the 18th century, notably with 

d’Alembert and such successors as Kant, the conditions of possibility of 
scientific knowledge were often reduced to the application of mathematics 
to the phenomenon under discussion. As Kant famously proclaimed in the 
‘Prolegomena’ to the Metaphysical Foundations of Natural Science:  

I maintain that in every particular theory of nature, one can find only as 
much proper science as there is mathematics in it.1 

Such a conception could only be elaborated and formulated after the 
development of mechanics by Newton and his successors. In any case, it 
was alien to the scholars of Antiquity, and notably to the dominant philos-
ophy – and the ‘physics’ – of Aristotle. For him, mathematics and physics 
are separate: the former is demonstrative knowledge, while the latter is 
knowledge of becoming. But this opposition of principle is in no way the 
radical break that some commentators, starting with Alexander of 
Aphrodisias, saw in it. Although the question of the application of mathe-
matics to physics was essentially not raised at the time, mathematics nev-
ertheless played two roles: the first, instrumental, was in the ‘poietic’ sci-
ences, namely those that focus on the production of useful objects; the 
second occurred in determining the contours of a phenomenon. Mathe-
matics was thus applied to the rainbow, to the theory of the balance, to the 
configuration of the universe considered as an organon, to mirrors, includ-
ing burning mirrors, etc., that is, to everything that could be considered a 
machine. This application had at least the advantage of allowing one to 
speak mathematically about a localized phenomenon, e.g., about the propa-
gation of rays parallel to the axis of a parabolic mirror, or about the contour 
of the apparent motion of the moon.  

 
1 ‘Ich behaupte aber, dass in jeder besonderen Naturelehre nur so viel eigentliche 

Wissenschaft angetroffen werden könne, als darin Mathematik anzutreffen ist’ (I. Kant, 
Metaphysische Anfangsgrunde der Naturwissenschaft, Frankfurt/Leipzig, 1794, p. viii).  
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This remained the case until the first reform of optics, and more gener-
ally of physics, that Ibn al-Haytham (d. after 1040) undertook. The new 
watchword now becomes ‘to combine mathematics and physics’ whenever 
one tries to study any natural phenomenon. It is in the mathematics of 
material things that resides the possibility of truly knowing them. Ibn al-
Haytham is the first scientist who refuses to consider that determinate 
natural things can be known by concepts alone: for him, true physics is 
necessarily mathematical. To carry out this program in optics, Ibn al-
Haytham was led to break with the ancient tradition of Euclid and Ptolemy, 
for whom the act of seeing was the same as that of illuminating. It was nec-
essary for him first to distinguish clearly between a physics of light and a 
psycho-physiology of light. In the vast extent of his work, the application 
of mathematics to physics takes on several distinct meanings, according to 
not only the conceptual maturity of the discipline, but also the amenability 
of the phenomenon to experimentation. The first meaning pertains to an 
isomorphism of structures, as in the case of geometrical optics, already 
reformed thanks to Ibn al-Haytham. The second meaning involves the 
application of mathematics by means of a third discipline that is itself con-
sidered mathematized: this is what occurs, for example, when in optics one 
relies on a mechanical schema. This application takes place when the disci-
pline is not well elaborated conceptually, as is the case in the physical 
optics of the time. In such an instance, mathematics guarantees the analo-
gies between the third discipline and the phenomena under study: in this 
case, the mechanical schema of violent motion and the physical phenome-
non of propagation. But the application of mathematics can also occur by 
constructing local models when one is dealing with phenomena inaccessi-
ble to direct experimental study, such as the rainbow. Finally, the applica-
tion of mathematics can take advantage of the objectivity of the technical 
object, such as happens, for example, in research on the phenomenon of the 
focalization of light by mirrors, lenses, or simply a phial filled with water. 
However that may be, all these applications – and herein lies the novelty of 
Ibn al-Haytham’s project – must allow the set-up of an experimental situa-
tion, thanks to which one can control the ideal occurrence of the phenome-
non or, failing that, its local occurrence. It is this experimental situation 
that guarantees for the phenomenon under consideration its true plane of 
existence. 

I have on earlier occasions studied the problem of the application of 
mathematics in Ibn al-Haytham’s optics and in many other ancient and 
modern contexts. I now would like to tackle the study of the reciprocal 
situation.  

 



 5. DESCARTES’S OVALS 261 

 

1. It is one thing to study the applications of mathematics to optics, 
their modes, their range, their planes of existence, and the types of experi-
mentation that they underwrite. It is quite another – different although 
related to it – to wonder what optics brought to mathematical research. If 
scholars have often inquired into the mathematical fertility of scientific dis-
ciplines in the cases of astronomy and ancient and classical* statics, they 
have rarely done so for optics during the same period. And yet optics inter-
vened with effectiveness and in several ways in the development of many a 
chapter in mathematics. If one restricts oneself to ancient and classical 
optics, as I will do here, one must consider, among other chapters, the 
geometry of conics (and more generally the theory of curves), projective 
geometry, spherical geometry, and trigonometry in Ibn al-Haytham and his 
studies on the burning sphere.2 

Anaclastics is surely among the branches of optics that made the most 
substantial contributions to the development of mathematics. Research 
carried out during the last three decades has greatly enriched our 
knowledge of the history of this discipline. I will begin by summarizing 
briefly the new historical knowledge before pausing at greater length on the 
example of Descartes’s ovals. 

The book of Diocles3 has made it possible to establish that, beginning 
in the 3rd century BC, an entire tradition of catoptricians succeeded in 
developing the geometry of conic sections in a direction different from that 
of Apollonius. These catoptricians carried out research into the optical 
properties of conic curves and thus provided a kind of ‘characterization’ of 
these curves different from that given by the symptoma and later by the 
equation. The school of Conon of Alexandria already attests to the 
beginnings of this tradition of catoptrics. At the heart of this school, 
Dositheos, who later will write Archimedes after Conon’s death, takes up 
the study of the optical properties of the parabola and the parabolic mirror. 
Among the exact or slightly later contemporaries who continued this work 
were the geometer Pythion of Thasos, a certain astronomer named 
Hippodamos, and – last but not least – Diocles. Particularly noteworthy, 
this research began in the same milieu in which the study of conic sections, 

 
* As explained in the Introduction, I use ‘classical’ to refer to the mathematical 

sciences from the beginning of the 9th century to the beginning of the 17th century. 
2 See the edition, translation, and commentary in R. Rashed, Geometry and 

Dioptrics in Classical Islam, London, al-Furqān, 2005. 
3 Livre de Dioclès sur les miroirs ardents, in R. Rashed, Les Catoptriciens grecs. I: 

Les miroirs ardents, Collection des Universités de France, Paris, Les Belles Lettres, 
2000, first part. 
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the number of the points of their intersections, etc., was the most active, 
that is, around Conon in Alexandria; it is to this activity that the prologue 
to Book IV of Apollonius’s Conics bears witness.4 To recall what this 
involves, let us take up the questions that Diocles treats. He studies the 
parabola starting from the focus-directrix property, with the aim of learning 
about its optical properties. His study, in which he draws on the properties 
of the subtangent and the subnormal, is purely geometrical. Next, he 
examines the focal property, then goes on to consider a chord perpendicular 
to the axis of the parabola, showing that turning the arc around this chord 
generates a parabaloid and that the focus generates a circle whose center is 
the middle of the chord. Knowing its focus and its directrix, Diocles traces 
the parabola by points, and finally endeavors to deduce the symptoma of 
the parabola from the focus-directrix property.  

This type of research does not end with Diocles; it turns up in other 
writings preserved in Greek, such as the Bobbio fragment, and especially in 
the Arabic translations of several Greek treatises. There survives, for 
example, a treatise by a certain Dtrūms, whose study of the parabola and of 
its focal property cannot be reduced to any other. Later, in the 6th century, 
Anthemius of Tralles and Didymos each take up in their own way the study 
of the parabola and of its optical properties.5 In the 9th century, the 
philosopher and mathematician al-Kindī takes up the study of Anthemius, 
with the intention of making it more rigorous.6 

It is in Anthemius’s treatise on The Mechanical Paradoxes and in al-
Kindī’s treatise On Solar Rays that one also finds the studies of the ellipse 
based on its bifocal property. It is precisely from this property that al-
Ḥasan, the youngest of the three Banū Mūsā brothers, develops a complete 
theory of the ellipse as a plane section of the oblique cylinder and examines 
the elliptical section by using the cylindrical projection.7 In his study of the 
ellipse, al-Ḥasan ibn Mūsā indeed relies upon the bifocal definition 
MF + MF′ = 2a (where a is a semi-major axis). Very schematically, these 

 
4 See our edition, Apollonius: Les Coniques, Tome 2.2: Livre IV, Berlin/New York, 

Walter de Gruyter, 2009.  
5 Ibid., pp. 325 ff. 
6 R. Rashed, Œuvres philosophiques et scientifiques d’al-Kindī. Vol. I: L’Optique 

et la Catoptrique d’al-Kindī, Leiden, E.J. Brill, 1997. 
7 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle. Vol. I: 

Fondateurs et commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-
Qūhī, Ibn al-Samḥ, Ibn Hūd, London, al-Furqān, 1996; English translation: Founding 
Figures and Commentators in Arabic Mathematics. A History of Arabic Sciences and 
Mathematics, vol. 1, Culture and Civilization in the Middle East, London, Centre for 
Arab Unity Studies, Routledge, 2012. 
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rough brush strokes summarize the contributions of anaclastics to the 
theory of conics up to the middle of the 9th century. 

In the 10th century, Ibn Sahl, the predecessor of Ibn al-Haytham, who 
has the law of refraction – Snel’s law, so called – adds to the study of 
burning mirrors that of plano-convex and bi-convex lenses. He then writes 
the first known study entirely devoted to the optical properties of the three 
conic curves and invents an instrument for making a continuous drawing of 
these curves. Throughout this study, he is particularly interested in 
determining the plane tangent to a point of the surface generated by the 
rotation of the curve and the unicity of this plane – research that Ibn al-
Haytham will later actively pursue. Ibn Sahl’s treatise thus includes the 
study of the three curves beginning from their focus and from the directrix 
for the parabola, and of the bifocal property for central conics. 

Up to this point, however, the problem is to burn a body by means of 
luminous rays at a given distance. One then chooses the curve in relation to 
the source – whether proximate or distant – of the reflection or of the 
refraction.8 

 
2. To answer the same question seven centuries after Ibn Sahl, and 

although he limits himself to refraction, Descartes invents other curves that 
do not belong to the family of conics: his ovals. Indeed, he wants to know 
on which curve a bundle of rays originating from a given point, refracts 
itself in order to arrive at another point, also given.  

This question is already present in the Excerpta mathematica, which 
antedates 1629, that is, a period in which Descartes already knew the law 
of refraction and was interested in lenses. One finds there a series of essays 
on ovals, which the editor Paul Tannery rightly judged to be ‘a first stab, 
with their ordinary errors and clumsiness, and without having noted any 
definitive results’.9 With the exception of the first essay, which is 
analytical, all the others are synthetic. In the first, therefore, one can hope 
to grasp Descartes’ intention. He begins by writing:  

Given A, B, C on a straight line, to find the curved line that has A as summit, 
AB as its axis, and that is curved in such a way that the rays emanating from 

 
8 See R. Rashed, Geometry and Dioptrics in Classical Islam. 
9 P. Tannery, Mémoires scientifiques, published by J. L. Heiberg and H.-

G. Zeuthen, Toulouse/Paris, Eds. Privat and Gauthier-Villars, 1926, vol. VI: Sciences 
modernes 1883–1904, edited by Gino Loria, p. 333. 



264 PART  I:  ALGEBRA 

point B, after they have undergone a refraction at the latter, continue beyond 
it, as if they had been coming from point C or inversely.10 

He continues:  

I take point N halfway between B and C; let the following be the case: 

NA = a, NB = b, CE + BE = 2a – 2y  and  DA = x.11 

And let x and y be two indeterminate quantities, one of which, remaining 
indeterminate, will designate all the points of the curved line, and the other 
will be determined in the manner according to which the curved line must be 
described. And to find this manner, I look first for the point F, beginning 
from which, taken as a center, I conceive that the circle that touches the 
curve in E is described; next, I say that the line BE multiplied by FC is to CE 
multiplied by BF as <HF is to FG, that is, as> the inclination of the refracted 
ray in a transparent medium is to the inclination of the same <ray> in 
another <medium>.12 

C N B F D A

G

H

E

< r >

< i >

 
Fig. 27 

 
Descartes thus considers a point E of the curve to be determined and 

ED ⊥ AB and he wants the light ray BE to be refracted in E following a ray 
whose extension passes through C. If the circle (F, FE) is tangent at E to 
the curve under consideration, then EF is the normal to this curve at E.13 

 
10 Excerpta Mathematica, in Œuvres de Descartes, ed. by C. Adam and 

P. Tannery, vol. X, Paris, J. Vrin, 1966, p. 310. 
11 The equation CE + BE = 2a – 2y is arbitrary. 
12 Excerpta mathematica, A.T. X, pp. 310–11. 
13 One will find this construction again, but with greater generality, in Book II of 

the Géométrie, in order to determine the tangents of algebraic curves. 
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He draws FH ⊥ EC and FG ⊥ EB. The angle of incidence is BÊF = i and 

the angle of refraction, r, is equal to CÊF . One thus has 
 

sin i = FG
FE

  and  sinr =
FH

FE
, 

therefore 
FH

FG
=

sinr

sin i
. 

 
But in triangle BFE, one has 

sin i
BF

= sin BF̂E
EB  
 

and in triangle CFE, one has 
sin r
CF

= sin BF̂E
EC

. 

 
From this, one deduces that 

sin r
sin i

= EB ⋅CF
EC ⋅ BF

, 

 
whence  

FH
FG

= EB ⋅CF
EC ⋅ BF

. 

 
It follows that this road to determining the curve does not lead to the 

desired result14 or, as P. Tannery has remarked:  

If Descartes had had a method inverse of that of his tangents, he would have 
succeeded in expressing the condition that the normal divide the axis in a 
given ratio. With the only resources at his disposal, however, he certainly 
could no more succeed than if, in ordinary coordinates x and y, he had sought 
the tangent without giving himself the equation.15  

However that may be, if this road leads nowhere, it remains to find out 
how Descartes manages to discover his ovals. To answer this question, it is 
necessary to read what Descartes himself later says about it.  

 
14 Indeed, if one notes in addition that NF = c and FE = d, one has DF = a – c – x 

and the triangle EFD yields EF2 = FD2 + DE2, whence DE2 = d2 – (a – c – x)2. 
Continuing the calculation quickly shows that one gets nowhere. 

15 Mémoires scientifiques, vol. VI, p. 334. 
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Several years later, he indeed returns to the study of ovals, but with a 
whole new rigor, and he gives the procedure for drawing them. But 
contrary to what one might expect, instead of setting this study in its 
natural place, that is, in the Dioptrique, and more precisely in the eighth 
discourse devoted to ‘the shapes that transparent bodies must have in order 
to divert rays through refraction’, it is into the Géométrie that he integrates 
it. This move is all the more surprising since this eighth discourse of the 
Dioptrique seeks to examine the conditions such that a ray originating 
parallel to the focal axis of a central conic passes through one of its foci. 
There, Descartes studies several cases, those of a lens with an elliptical or 
hyperbolic surface, as well as those of lenses with two analogous surfaces, 
or two surfaces, one of which is elliptical and the other hyperbolic. Thus it 
is clearly in this chapter that Descartes should have placed his examination 
of ovals, all the more so since he knew that the ellipse and the hyperbola 
are special cases of the latter. This, however, is not what he does. The only 
reason to which Descartes appeals to justify the absence of his study of 
ovals from the Dioptrique is that of the ‘commodité’, that is, the ease or 
convenience, of his exposition. He writes:  

 And, furthermore, we can still imagine an infinity of other lenses, which like 
the above mentioned, cause all the rays which come from a certain point, or 
tend toward a point, or are parallel, to be exactly changed from one of these 
three dispositions to another. But I do not think I need to speak of them here, 
because I shall be able to explain them afterwards more conveniently in the 
Géométrie […].16 

Surely you will grant me that this insufficiently emphasized displace-
ment is not neutral. At the very least, it implies that, from now on, it is the 
geometric properties of ovals that carry the day, besting the usage that 
optics makes of them. In other words, the displacement of this discussion is 
not governed solely by the ‘convenience’ of the exposition, but by deeper 
reasons. What are they? Descartes does not place his study of ovals ran-
domly in the Géométrie, but precisely at the end of Book 2. He offers no 
explanation for this choice: in his own words and rather abruptly, he ‘adds’ 
this study to the end of the second book. Now the latter is completely 
devoted to the new theory of curves that are admissible in geometry, that is, 
algebraic curves. The latter are either generated ‘organically’ (read: instru-
mentally), according to Descartes, by his proportional compasses, or are 

 
16 La Dioptrique, in Œuvres de Descartes, ed. C. Adam and P. Tannery, vol. VI, 

Paris, J. Vrin, 1965, p. 185; English transl. in P. J. Olscamp, Discourse on Method, 
Optics, Geometry and Meteorology, Indianapolis, 1965, pp. 141–2. 
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obtained mathematically as solutions of the famous problem of Pappus. 
Incidentally, when Descartes found a new curve, he did not fail to verify 
that it was indeed a solution to the problem of Pappus. Thus he demon-
strates that the ‘trident’, that is, the cubic defined by the equation 
y3 − 2ay2 − a2y + 2a3 = axy , is a solution of Pappus’s problem for five 
straight lines.17 

For his ovals, Descartes does not undertake a similar verification, 
which raises a second difficulty for the historian of Descartes the scientist. 
He is satisfied with introducing his ovals in the following terms:  

For the rest, so that you may be aware that considering the curve lines here 
proposed, is not without usefulness, and that they have diverse properties 
which concede nothing [in value] to those of conic sections, I wish to add 
here an explanation of certain ovals, that you will see to be very useful for 
the theory of Catoptrics and Dioptrics.18 

Thus, to the ‘convenience’ Descartes had invoked in his Dioptrique, he 
adds here utility without any intrinsic reason justifying the placement of 
ovals at the end of the second book, and without determining their alge-
braic nature. 

Now we know that, if the most general cubics are indeed solutions of 
Pappus’s problem, the same cannot be said of quartics. Thus, if one limits 
oneself to ovals, one knows that the ovals of Cassini (1680), for example, 
those of the equation, 

 

x2 + y2( )
2

+ 2a2 y2 − x2( ) + a4 − b4 = 0 ,   with a, b > 0 

 
– convex quartics – cannot be defined by Pappus’s problem.19 The verifica-
tion alluded to above for the ovals was therefore vital, but Descartes does 
not even attempt it.  

Our question thus becomes precise: apart from ‘convenience’ and 
‘utility’, what other reasons might have led Descartes to place his ovals at 
the end of the second book of his Géométrie? To answer this question 
requires that first one know the road that led him to discover them.  

 

 
17 See above, ‘The first classifications of curves’. 
18 La Géométrie, A.T. VI, p. 424; English transl. P. J. Olskamp, p. 215 (slightly 

edited). 
19 See above ‘The first classifications of curves’.  
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3. About the path he followed, Descartes says almost nothing. But his 
contemporaries – Fermat and his successors, Huygens,20 Newton,21 de 
L’Hôpital,22 Reyneau,23 etc. – had glimpsed it. According to this tradition, 
Descartes would have discovered his ovals thanks to the inverse method of 

 
20 Christian Huygens, Traité de la lumière, Paris, Gauthier-Villars, 1920, pp. 136–

8. Huygens begins his analysis with these terms: ‘Pour ce qui est de la manière dont 
M. Descartes a trouvé ces lignes (les ovales), puisqu’il ne l’a point expliquée, ni 
personne depuis que je sache, je dirai ici, en passant, quelle il me semble qu’elle doit 
avoir été’ (p. 136). He gives of Descartes’s analysis a description in the same spirit, 
suggested by Fermat’s remark. 

21 Isaac Newton, Philosophiae Naturalis Principia Mathematica, 3rd edn. (1726) 
with variant readings, assembled and edited by Alexandre Koyré and I. Bernard Cohen, 
Cambridge, Mass., Harvard University Press, 1972, vol. I, pp. 344–5. This is what he 
writes: ‘Let A be the place from which the corpuscles diverge, B the place to which they 
should converge, CDE the curved line that – by revolving about the axis AB – describes 
the required surface, D and E any two points of that curve, and EF and EG 
perpendiculars dropped to the paths AD and DB of the body. Let point D approach point 
E; then the ultimate ratio of the line DF (by which AD is increased) to the line DG (by 
which DB is decreased) will be the same as that of the sine of the angle of incidence to 
the sine of the angle of emergence. Therefore the ratio of the increase of the line AD to 
the decrease of the line DB is given; and as a result, if point C is taken anywhere on the 
axis AB, this being a point through which the curve CDE should pass, and the increase 
CM of AC is taken in that given ratio to the decrease CN of BC, and if two circles are 
described with centers A and B and radii AM and BN and cut each other at D, that point 
D will touch the required curve CDE, and by touching it anywhere whatever will 
determine that curve. Q.E.I. 
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Fig. 28 
Corollary I. By making point A or B in one case go off indefinitely, in another case 

move to the other side of point C, all the curves which Descartes exhibited with respect 
to refractions in his treatises on optics and geometry will be traced out. Since Descartes 
concealed the methods of finding these, I have decided to reveal them by this 
proposition.’ (Isaac Newton, The Principia: Mathematical Principles of Natural 
Philosophy, a new translation by I. Bernard Cohen and Anne Whitman, assisted by Julia 
Budenz, Berkeley, University of California Press, 1999, pp. 626–7.)  

22 Le Marquis de l’Hôpital, L’Analyse des infiniment petits, Avignon, 1768, 
p. 183–4. 

23 C. R. Reyneau, Analyse démontrée, 2 vols, Paris, Quillau, 1736–1738, vol. II, 
pp. XXV and 866. 
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tangents. If this turns out to be the case, one gets two results at once: one 
can explain the discovery and one can date the first use of the method. To 
cite only one representative of this tradition, listen to Fermat:  

Next one could look for the converse of this proposition, and, given the 
property of the tangent, find the curve to which this property pertains: to 
which question leads those about the burning lenses proposed by 
M. Descartes end up.24 

In June 1638, Fermat thus affirms, in a different language, that it is a 
problem of integrating a differential equation f(y, y′) = 0, thus giving prior-
ity to Descartes. Later, Newton seems to reach the same conclusion.25 

If we now return to the Géométrie, we note that Descartes distinguishes 
four types of ovals, whose equations and bipolar coordinates (u, v) are 
written 

u + kv = a + kb

u − kv = a − kb

⎫
⎬
⎭

    a + b = d        distance of the poles

                                                            with 0 < k < 1

u − kv = a − kb

u + kv = a + kb

⎫
⎬
⎭

    a − b = d        distance of the poles

 

 
These constitute only two ovals, for the first is identical to the fourth, 

and the second to the third.  
Furthermore, he explains how to construct each of them, point by point, 

by means of a straightedge and compass. Only one example suffices, that 
of the first oval. Even if the citation is a little long, here are Descartes’s 
own words. 

First, having drawn the straight lines FA and AR, which intersect at point A 
(at what angle, it does not matter) I take on one of them the point F at ran-
dom – that is, more or less removed from the point A, according as I want to 
make these ovals greater or smaller – and from this point F as center, I 
describe a circle which cuts FA at a point a little beyond A, such as at point 
5. Then from this point 5, I draw the straight line 56, which cuts the other 
line at point 6, so that A6 is less than A5 in any given ratio we may wish 
(such as that which measures refractions, if we wish to use the oval in 
optics). After this, I also take point G in the line FA, on the same side as 
point 5, and at random – that is, by making the lines AF and GA have 

 
24 Œuvres de Fermat, published by Paul Tannery and Charles Henry, Paris, 1891–

1922, vol. II, p. 162. 
25 See note 22. 
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between them any given ratio I might want. Then I make RA equal to GA in 
the line A6, and from the center G, I describe a circle whose radius is equal 
to R6. This circle will cut the other at the two points [marked] 1, through 
which the first of the required ovals must pass. Then again, from the center 
F, I describe a circle which passes through FA a bit nearer to or farther from 
point 5 – for example, at point 7 – and having drawn the straight line 78 par-
allel to 56, from the center G, I describe another circle whose radius is equal 
to the line R8, and this circle cuts the one that passes through point 7, at the 
points 1,1, which are again points of the same oval. Thus we can find as 
many other points as we may wish, by again taking other lines parallel to 78, 
and other circles with F and G as centers.26 

VG
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Fig. 29 

 
Thus if one takes F and G and poles and if one posits the coordinates of 

point 1  
u = G1  and  v = F1, 

 
one obtains 

u = G1 = R6 = RA – A6 = RA – k A5 = AG – k 5A 

and 
v = F1 = F5 = AF + A5; 

one has u + kv = AG + k AF constant for AG + AF = d, the distance of the 
poles, with 0 < k < 1. 

 
The preceding exposition from the Géométrie leads us to translate our 

initial question thus: is the path that led Descartes to the discovery of his 
ovals that of the inverse method of tangents as Fermat, Newton, and others 

 
26 La Géométrie, A.T. VI, pp. 424–5; English transl. P. Olskamp, p. 216. 
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have suggested? To us the conjecture seems well grounded: let us try to 
establish it.  
 

One considers two points A and B in a plane, and one seeks a curve 
separating two media of different transparency in which A and B are 
respectively located; and such that all of the light rays coming from A are 
refracted towards B. One assumes that the law of refraction and the index 
of refraction k are both known. 

If Mm is tangent at a point M to the curve that is sought, one projects m 
at P on AM and at Q on MB, such that the angle of incidence i is equal to 
Mm̂P  and the angle of refraction r is equal to Mm̂Q . Thus one has 

 

 
Fig. 30 

 

sini =
MP

Mm
,   sin r =

MQ

Mm
, 

 
and the law of refraction is written 

 
(1)  MP = k · MQ. 
 
Also, project M at P′ on Am and at Q′ on Bm. If Mm is infinitely small, 

one can assimilate MP to mP′ and MQ to mQ′. 
Indeed, by Elements III.36, one has  
 

PM
AM

= ′P m
A ′P

  and  QM
QB

= ′Q m
B ′Q

; 
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and 

k =
sin i

sinr
=

PM

QM
=

′ P m

′ Q m
⋅

AM

A ′ P 
⋅

B ′ Q 

QB
. 

 

Now 
AM

A ′ P 
≅ 1, 

B ′ Q 

QB
≅1 when Mm tends to 0. 

Descartes could perfectly well carry out this type of reasoning, which 
was commonly used in the tradition of infinitesimal mathematics. Equation 
(1) then becomes approximately:  

 
(2)  mP′ = kmQ′. 
 
Now mP′ is the increase of AM when one passes from M to m, assimi-

lated to a point of the curve, by ‘adequality’ (adégalité), according to 
Fermat’s expression, whereas mQ′ is the concomitant diminution of BM. 
Equation (2) thus signifies that the infinitesimal variation of z = AM + kBM 
is zero. 

It is easy to deduce that the quantity z is a constant. This result is a par-
ticular case of the inverse method of tangents, that is, the integration of a 
differential equation. Here the equation is particularly simple, since it is 
written z′ = 0. One will have to await the end of the 18th century to feel the 
need to demonstrate that this equation implies the constancy of z (theorem 
of finite increases). 

Now the equation 
 
(3)  AM + k BM = a constant 
 

defines (in bipolar coordinates) a first type of Descartes’s ovals. If the 
curve meets the straight line AB at C between A and B, one has AB = a + b 
where a = AC and b = CB, and the constant of equation (3) is AC + k BC = 
a + kb. 

If the curve meets the straight line AB beyond A, one has on the con-
trary AB = b – a; and if the curve meets AB beyond B, one has AB = a – b. 
In all of these cases, the equation of the oval is written 

 
(4)  AM + k BM = a + kb. 
 
We note that, in the case of the refraction limit for which the angle r is 

zero, equation (4) reduces to AM = a and the oval degenerates into a circle 
of center A. 
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Another possibility must be considered, in which A and B are on the 
same side of the normal to the curve at M (this case does not correspond to 
a physical refraction). mP′ and mQ′ are then the concomitant increases of 
AM and of BM, and equation (2) means that the infinitesimal variation of z 
= AM – k BM is zero. From this, one then deduces that  

 
(4′)  AM – k BM = a – kb, 
 

using the same reasoning as above.  
 
As we have just reconstituted it, Descartes’s procedure shows the first 

appearance of the inverse method of tangents. It rests completely on intui-
tive infinitesimal considerations, without making any use of coordinates, as 
one can easily check in the Géométrie. 

To demonstrate analytically the equations of Descartes’s ovals, one can 
proceed as follows.  

One considers A as the origin and AB as the x-axis of a system of 
orthogonal coordinates. Let AB = d, AM = ρ, BM = ρ′, whence M is a point 
of the plane, with Cartesian coordinates x, y; one therefore has 

 

ρ = x2 + y2 , ′ρ = x − d( )2
+ y2 , 

 
whence 

x = d 2 + ρ2 − ′ρ 2

2a
, y = ρ2 − x2 . 

 

A

M

Bd  
Fig. 31 

 
If φ ρ, ′ρ( ) = 0  is the equation of the sought curve in bipolar coordi-

nates (ρ, ρ′), its equation in Cartesian coordinates is written  
 

(5)  f x, y( ) = φ x2 + y2 , x − d( )2
+ y2( ) = 0 . 

 
A direction vector of the tangent to this curve has as its components  
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δ f
δy

= ′fy   and  −δ f
δx

= − ′fx , 

 
therefore the sines of the angle of incidence and of the angle of refraction 
are given, ignoring the sign, by  

 

sin i = ±
x ′fy − y ′fx

x2 + y2 ′fx
2 + ′fy

2
, sin r = ±

x − d( ) ′fy − y ′fx

x − d( )2
+ y2 ′fx

2 + ′fy
2

. 

 
The sine law is therefore written 
 
(6)   ′ρ x ′fy − y ′fx( ) = ±kρ x − d( ) ′fy − y ′fx( ) . 

 
Now one has 

′fx = δφ
δρ

⋅ δρ
δx

+ δφ
δ ′ρ

⋅ δ ′ρ
δx

= x
ρ

⋅ δφ
δρ

+ x − d
′ρ

⋅ δφ
δ ′ρ

 

 

′fy = δφ
δρ

⋅ δρ
δy

+ δφ
δ ′ρ

⋅ δ ′ρ
δy

= y
ρ

⋅ δφ
δρ

+ y
′ρ
⋅ δφ
δ ′ρ

. 

 
After eliminating identical terms and dividing by yd, equation (6) 

becomes  
 

(7)   δρ
δ ′ρ

= ±k δφ
δρ

. 

 
It is this partial derivative equation that one must integrate. One uses 

the new variables  

u = 1
2

ρ + k ′ρ( ) ,       v = 1
2

ρ − k ′ρ( )  

 

such that ρ = u + v  and ′ρ = u − v
k

. 

If ψ u, v( ) = φ u + v, u − v
k

⎛
⎝
⎜

⎞
⎠
⎟ , one has 

 
δψ
δu

= δφ
δρ

+ 1
k

⋅ δφ
δ ′ρ

  and  
δψ
δv

= δφ
δρ

− 1
k

⋅ δφ
δ ′ρ

. 
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Thus, equation (7) with the plus sign means that δψ
δv

= 0  and, with the 

minus sign, that δψ
δu

= 0 . 

In bipolar coordinates, the equation of the sought curve, φ ρ, ′ ρ ( ) = 0, is 

translated as ψ u, v( ) = 0 ; whence, in the first case (+ sign), u = constant, 

and in the second (– sign), v = constant. Finally, one finds the equations  
 

ρ + kρ′ = a constant = a + kb 
and 

ρ – kρ′ = a constant = a – kb 
 

which define the two types of Descartes’s ovals. 
If one returns to Cartesian equations, the preceding equations become 
 

x2 + y2 ± k x − d( )2
+ y2 = c , 

 
that is, 

1− k2( ) x2 + y2( ) + 2k2xd + c2 − k2d 2( )
2

= 4c2 x2 + y2( ) , 

 
the equation of a bicircular quartic with two connected components that are 
convex curves.  
 

4. Descartes gave this equation neither in his Excerpta Mathematica, 
nor in the Géométrie, even though he easily could have done so: one need 
only take as axes FA and the perpendicular drawn to point 1 onto FA.27 
Descartes gives the curve by a path different from the one he took in his 
Géométrie. The absence of the equation seems to derive less from a weak-
ness than from the very nature of Descartes’s procedure. He had obtained 
his ovals while solving an optical problem; he did not define them by 
equations, but from their infinitesimal properties. Did he think that the 
inverse method of tangents was a third way of obtaining curves, some of 
which are algebraic? In the case studied here, he knew perfectly well that 

 
27 Cf. Commentaires sur la Géométrie de M. Descartes, par le R. P. Claude 

Rabuel, Lyon, 1730, p. 353; The Geometry of Descartes, with a facsimile of the first 
edition, translated from the French and Latin by D. E. Smith and M. L. Latham, New 
York, Dover Publications, 1954, p. 135; J. F. Scott, The Scientific Work of René 
Descartes (1596–1650), London, Taylor & Francis, 1952, pp. 125–6. 
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the curve obtained is algebraic, without needing to make the calculation 
explicit. The result is that he does not try to demonstrate that these curves 
can be obtained as solutions to the problem of Pappus. 

One argument that supports a positive response is found in the answers 
that Descartes gave to questions from de Beaune, and notably in the first, 
the formulation of which is missing from de Beaune.28 It concerns a 
geometrical locus defined by a simple relation, if one can trust Beaugrand’s 
testimony from the fall of 1638. 

At first, it is a problem of tangent construction, which Beaugrand pre-
sents as follows.  

Let A be the apex of the curve, S the middle of AY, E the projection of 
any point M of the curve, XM the tangent at that point; one assumes that 
SE, EA, and ME are in continuous proportion. 

Beaugrand shows that29 

YE

SA
=

AE

XA
,  

which can be rewritten as 

SE
SA

= XE
XA

; Y S A X E

M

 
Fig. 32 

 
S and X are thus harmonic conjugates with respect to A and E. 

Let SA = b, AE = x, EM = y, XE = s, the subtangent; one has 
 

(*)   s =
x 2 + bx

x + 2b
. 

 
The problem thus comes down to finding y from s. It is in this regard 

that Descartes writes to de Beaune on 20 February 1639:  

About your curved lines, you have sent me a demonstration of a property 
that seems so beautiful to me that I prefer it to the quadrature of the parabola 
discovered by Archimedes. For he was examining a given line, whereas you 
determine the area contained by one that is not yet given.30 

He continues:  

 
28 P. Tannery, Mémoires scientifiques, VI, pp. 461–5. 
29 Œuvres de Fermat, IV, p. 109–10. 
30 Correspondance, in Œuvres de Descartes, ed. C. Adam and P. Tannery, vol. II, 

Paris, J. Vrin, 1975, pp. 513–14. 
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I do not believe it is possible to find in general the converse of my rule for 
tangents, nor of the one that Mr. Fermat uses, although the usage is in sev-
eral cases easier than mine. But one can deduce from it a posteriori theorems 
that extend to all curved lines that are expressed by an equation, in which 
one of the quantities x or y has no more than two dimensions, even though 
the other were to have a thousand; and I found almost all of them by 
researching your preceding second curved line; but since I wrote them down 
only in rough drafts that I did not save, I cannot send them to you.31 

In order to solve such a problem, Descartes assigns a priori a form for 
the equation of the sought curve, calculates the subtangent, and tries to 
identify it with the proposed subtangent – s in this case – using the method 
of indeterminate coefficients; finally, he obtains the equation of the curve, 
which is a hyperbola. To clarify his procedure, let us apply this algorithm 
to the case of de Beaune’s problem: 

Let  
y = Axm + Bxm−1 +…+ Mx + L  

 
and  

s =
Ax m + Bx m−1 +…+ Mx + L

mAxm−1 + m −1( )Bx m−2 +…+ M
 

 

and identify with 
x2 + x

x + 2
 with b = 1 in (*) above. 

 
This is impossible, because one will obtain Ax m+1 = mAx m+1 or A = 0; 

m = 1 would yield s = x +
B

A
. 

 
Then let 

y =
Axm + Bxm−1 +…+ Mx + L

x + p
 

 
and 

s =
Axm + Bxm−1 +…+ Mx + L( ) x + p( )

mAxm−1 +…+ M( ) x + p( ) − Ax m +…+ L( )  

 

 
31 Ibid., p. 514. The curves that Descartes has in mind here have equations of the 

form y2 = P(x), where P is a polynomial; they are now called hyperelliptical. Note also 
that Descartes had sought a posteriori certain differential equations that he was trying to 
integrate: notably some of the form 2yy′ = P′(x). 
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and, by identification, one obtains 
 

A = mA – A  and  m = 2, 
 

therefore 

y =
Ax2 + Bx + C

x + p
 

and 

s =
Ax2 + Bx + C( ) x + p( )

2Ax + B( ) x + p( ) − Ax2 + Bx + C( )
. 

 
Identify; one obtains 
 

Ax4 + 2A + B + pA( ) x3 + 2Ap + 2B + pB + C( ) x2 + 2pB + pC + 2C( ) x + 2pC   

 
≡ Ax4 + 2Ap + A( ) x3 + Bp + 2Ap − C( ) x2 + Bp − C( ) x . 

 
The calculation yields B = 0 and p = 1 and one has 
 

y = A ⋅ x2

x +1
, 

 
which is the solution of the problem.  
 

Descartes’s ovals and de Beaune’s first curve are different: the former 
are quartics, whereas the latter is a hyperbola; the former are algebraic, 
whereas the hyperbola, which is also algebraic, belongs to a group of 
problems (those raised by de Beaune) that includes transcendental curves. 
They nevertheless have several points in common. The ovals as well as this 
hyperbola were suggested by optics. Beaugrand, who was an eye witness, 
as it were, claims that the problem of de Beaune was raised during research 
on the determination of the tangent ‘which he [de Beaune] made known 
that he needed for some purposes related to optics’.32 Moreover, all of these 
curves – the ovals as well as those of de Beaune – had been defined by a 
property characteristic of the tangent and not by their equations. Finally the 
method that was followed seems to have been the same for all: the inverse 
method of the tangents. 

 
32 Œuvres de Fermat, IV, p. 110. 
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In order to obtain these curves, which were assumed to be determinate, 
Descartes was thinking, already before 1629, of starting from the properties 
of the tangent drawn to these curves, and not from a property characteristic 
of their points. At this date, did he already have the method of inverse tan-
gents? Probably not yet, but he may already have glimpsed it ‘through a 
glass darkly’, as it were, and intuitively when he was treating ovals. In 
1637, the situation is entirely different. To us it seems that he was indeed in 
possession of this method for obtaining his ovals. But why, then, does he 
not discuss it in the Géométrie when he treats the ovals? Why did he not 
include it among the methods that he had established in order to obtain 
curves?  

When doing history, everyone is aware of how thorny, if not danger-
ous, these negative questions are. But if we are granted the right of rea-
soning about them, we might propose the following explanation: Descartes 
knew that the method of inverse tangents makes it possible to obtain both 
algebraic and transcendental curves. Indeed he applies it himself to de 
Beaune’s second problem, which leads to a logarithmic curve, and it was 
only when he failed that he chose a direct method. In any case, this is what 
transpires from his famous letter of 20 February 1639. This fact would suf-
fice to exclude this method from the Géométrie, which admits only 
‘geometrical curves’. 

But there may be another reasons for not including this method. For 
Descartes, one had to know how to decide a priori if the curve obtained by 
his method was algebraic or not. This would require that one have methods 
for integrating differential equations, and therefore to know the connections 
between differentiation and integration. But nothing indicates that 
Descartes knew of these methods, which others would invent only later. 
Moreover, the fact that he was attached to the subtangent was scarcely con-
ducive to such knowledge. To consider only technique, it is much clumsier 
to manipulate the subtangent than the slope of the tangent. Not until 
Leibniz would this methodological upheaval take place. 

In short, with the inverse method of tangents, Descartes had at his dis-
posal means different from those offered by his compasses and the problem 
of Pappus in order to obtain other curves; but he did not have the technical 
tools to decide a priori if the curve obtained was algebraic or not. He could 
use this method here and there, but not in ‘general’, as he himself states. 
The philosopher of the Discourse on Method certainly could not welcome 
into his Géométrie such a method for obtaining curves. Since he neverthe-
less knew that his ovals are algebraic curves, he therefore introduced them 
at the end of Book 2, but ‘silently’ and with no other explanation. We can 
now understand why.  
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– 6 – 
 

DESCARTES AND THE INFINITELY SMALL 
 
 
 
Prominent among the recurrent questions in the ancient and classical 

history of the philosophy of mathematics are the following: how much 
certainty can be attained by a knowledge of infinity or by a branch of 
knowledge that makes use of infinity or is concerned with infinite 
processes? Can the infinite be rationally known? Is it susceptible of 
rigorous proof?  

These problems surfaced early in the development of both of 
philosophy and the philosophy of mathematics under a variety of guises 
and names. One variously finds references to conception and proof, 
imagination and proof, comprehension and proof. Underlying each of these 
designations, however, is an opposition between demonstration and an act 
of understanding, not merely that of some sensory faculty. Philosophers 
and mathematicians had no difficulty agreeing that anything conceivable or 
understandable could be subjected to proof. But can one subject to proof, 
and thus endow with certainty, what can neither be conceived nor 
understood? Or must it remain forever beyond the reach of all 
demonstration? 

Such were the questions that the mathematicians raised, particularly in 
regard to infinite processes. Geminus (d. c. 70 BC) had done so in 
connection with the asymptote to a hyperbola.1 It could be demonstrated 
rigorously that the asymptote and the curve constantly draw ever closer to 
each other without meeting at infinity. Yet it proved impossible either to 
form any conception of behaviour that was asymptotic at infinity or to 

 
1 Cf. R. Rashed, ‘Al-Sijzī et Maïmonide: Commentaire mathématique et 

philosophique de la proposition II-14 des Coniques d’Apollonius’, Archives interna-
tionales d’histoire des sciences, no. 119, vol. 37, 1987, pp. 263–96; English transl. ‘Al-
Sijzī and Maimonides: A Mathematical and Philosophical Commentary on Proposition 
II-14 in Apollonius’ Conic Sections’, in R. S. Cohen and H. Levine (eds), Maimonides 
and the Sciences, Dordrecht/Boston/London, Kuwer Academic Publishers, 2000, 
p. 159–72; Œuvre mathématique d’al-Sijzī. Volume I: Géométrie des coniques et théo-
rie des nombres au Xe siècle, Les Cahiers du Mideo, 3, Louvain/Paris, Éditions Peeters, 
2004; ‘L’asymptote: Apollonius et ses lecteurs’, Bollettino di storia delle scienze 
matematiche, vol. XXX, fasc. 2, 2010, pp. 223–54.  
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understand it. Following Geminus, Proclus discussed the question at length 
in his Commentary on the First Book of the Elements. Since then, 
mathematicians and philosophers have continued to pursue the matter in 
Arabic, in Latin, and subsequently in various vernaculars (e.g., Jacques 
Peletier, Montaigne, and Francesco Barozzi, to name only three). 

In mathematics, the problem arises when one attempts to deal with 
curves and their asymptotic behaviour without having the means of 
drawing firm conclusions, that is, before the invention of the differential 
calculus. For that, one had to handle operational concepts of continuity, 
limit, and the infinitesimal, at least as something infinitely small, if not as 
the infinitely small part of a variable quantity, that is, as a differential. As 
the Marquis de l’Hôpital, following Leibniz, defined it, ‘the infinitely small 
portion the variable quantity of which continually increases or diminishes’.2 
Not until the 19th century did topology and real number arithmetic provide 
the means of solving the problem definitively. 

As to Descartes, he could scarcely avoid the problem of the 
relationship between proof and conception since he himself had undertaken 
a fresh study of curves and proposed a new classification of them. The 
distinction that he established between geometrical curves and mechanical 
curves served as a powerful tool in demarcating the boundaries of algebraic 
geometry, and consequently in situating his own Géométrie precisely 
within those boundaries. And in philosophy, this same distinction also 
allowed him to point out the contrast between ideas that are both clear and 
distinct and those that are merely clear.3 

As is well known, Descartes introduced an additional item into the 
debate: imagination. In both the Regulae and the Meditations, he embarked 
on a long explanation of the exact role of the imagination and the 
circumstances in which it has a contribution to make. But in the interval 
between these two works, Descartes produced the Géométrie and the 
Dioptrique, after which he carried out his research on the cycloid and the 
logarithmic spiral, that is, on the two new mechanical curves. This 
chronology is important for the history of our problem. Let us first take a 
moment to consider the way in which imagination affects the relationship 
between conception and proof.  

Throughout his works, Descartes constantly emphasizes that 
knowledge is the preserve of the understanding. After all, is not the latter 

 
2 Analyse des infiniment petits, Avignon, 1768, Définition II, p. 2. 
3 Cf. R. Rashed, ‘La Géométrie de Descartes et la distinction entre courbes géo-

métriques et courbes mécaniques’, in J. Biard and R. Rashed (eds), Descartes et le 
Moyen Âge, Études de philosophie médiévale LXXV, Paris, Vrin, 1997, pp. 1–26; trans-
lated above.  
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the faculty to which clear and distinct ideas belong? In his faculty 
psychology, no other faculty, not even the imagination, is equipped on its 
own to attain knowledge that can be recognized as true. For that, it must be 
validated by the understanding. If sensory imagination has a part to play in 
knowing something, it is as an accessory to the understanding depending 
on what the object of knowledge is, that is, according to the degree to 
which the object partakes of extension; hence, ‘in imagination, the mind 
contemplates some corporeal form’, whereas ‘in intellection, it employs 
nothing but itself’4 (Replies to the Fifth Objections). Here is what he wrote 
in the twelfth of his Rules: 

we come to the sure conclusion that, if the understanding deals with matters 
in which there is nothing corporeal or similar to the corporeal, it cannot be 
helped by those faculties, but that, on the contrary, to prevent their 
hampering it, the senses must be banished and the imagination as far as 
possible divested of every distinct impression. But if the understanding 
proposes to examine something that can be referred to the body, we must 
form the idea of that thing as distinctly as possible in the imagination: and in 
order to effect this with greater ease, the thing itself which this idea is to 
represent must be exhibited to the external senses’.5  

Moreover, again in 1643, he was writing to Elisabeth that 

body – that is to say extension, shapes and motions – can be known by the 
understanding alone, but, much better, by the understanding aided by the 
imagination.6 

The fact remains, however, that the role of the imagination is reduced 
and fizzles altogether when the ‘objective reality’ of the idea, a reality that 
results in the understanding’s treating it as an object of knowledge, 
includes the infinite or the infinitely small. Descartes observed that it 
required a particular effort of mind to imagine even something as simple as 
a pentagon, to say nothing of a chiliagon…, and that once an object has 
gone beyond a certain degree of complexity, the imagination is unable to 
cope with it without becoming confused. In exactly the same way, when it 
comes to the process of division, it does not take long to run out of steam. 
In regard to infinity, the issue is quickly settled, since it plays no part in 
Descartes’s Géométrie, only in his metaphysics. The infinitely small in 
mathematics is a different matter. When curves are under discussion, it is 

 
4 Descartes, Œuvres philosophiques, ed. F. Alquié, vol. II, p. 832.  
5 Descartes, Œuvres philosophiques, ed. F. Alquié, vol. I, pp. 141–2; The 

Philosophical Works of Descartes, transl. E. S. Haldane and G. R. T. Ross, Cambridge, 
Cambridge University Press, 1931, vol. 1, pp. 39–40. 

6 Œuvres de Descartes, ed. C. Adam and P. Tannery (A.T.), vol. III, p. 691. 
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indeed there, if only between the lines. As for any assistance that the 
imagination might have provided in this investigation, Descartes apparently 
has no explanation to offer, even though he had encountered the infinitely 
small as early as 1619, and in particular in the research he carried out after 
1637. What Descartes does not say, however, is as important as what he 
says. Let us consider the places where Descartes encountered the infinitely 
small. 

1. The first instance had already occurred in 1619, when Descartes was 
investigating the law of falling bodies, proceeding by means of indivisibles 
and an intuitive notion of limit. Much more important, however, was his 
encounter with the infinitely small during his research on anaclastics, 
sometime before 1629. The problem at hand involves igniting a body using 
light rays at a given distance. In the case of refraction, this task entailed 
determining the curve of lenses – as a function of the source. Descartes had 
examined the problem first (and rather clumsily) in the Excerpta 
mathematica, before taking it up again in the Dioptrique and then in the 
Géométrie. To solve the problem he had to invent new curves: ovals. 
Indeed, he wanted to know on what kind of curve rays originating from a 
given point must refract in order to reach a given point.  

Descartes did not breathe a word about the path that led him to invent 
his ovals. However, such contemporaries and successors as Fermat, 
Huygens, Newton, the Marquis de l’Hôpital, and Father Reynaud, among 
others, guessed completely and precisely what he did. Here is what Fermat 
has to say on the subject in 1638: 

The next step was to look for the converse of the proposition and, the 
property of the tangent being given, to look for the curve that this property 
must fit: this was the question to which Descartes’s questions on burning 
glasses led.7 

In short, Fermat means that Descartes raised the problem of integrating 
a differential equation f y, ′y( ) = 0 , thus acknowledging his elder’s priority 
in discovering the method of inverse tangents. Newton and the other 
mathematicians reached the same conclusion about Descartes’s procedure. 

 
Between 1619 and 1629, then, Descartes had more than once come 

across the infinitely small without, however, pausing to discuss explicitly 
his conception of it. What is more, before 1629, he was already thinking of 
starting from the properties of the tangent drawn to curves assumed to be 
determinate and not from a characteristic property of their points, that is, 

 
7 Œuvres de Fermat, published by Paul Tannery and Charles Henry, Paris, 1891–

1922, vol. II, p. 162. 
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from a property obtained by equation, or by Apollonius’s symptoma for 
conics. Even if at this date he did not yet formally have the method of 
inverse tangents, he nonetheless had an intuitive premonition of it when he 
was working on ovals. Later, in 1637, the situation was altogether different: 
it seems that Descartes was using this method as a means of discovering his 
ovals, which in the Géométrie, however, he was keen to express only in 
algebraic terms. Although once again, he ‘comes forward masked 
(larvatus)’ in the famous letter to de Beaune dated February 20, 1639, he 
does let slip a certain amount of information, as we shall see below.8 

After 1629, we would expect Descartes to be developing and clarifying 
his conception of the infinitely small, while he was investigating curves 
and in particular tangents to curves and the space that curves mark off. On 
the contrary, so far from making his discovery public, during the following 
years (1629–1637), he keeps what he knows to himself and throws an even 
more impenetrable veil over the infinitely small. He had two reasons for 
doing so, one mathematical, the other philosophical. It is to the former that 
we turn first. 

In the years 1628–1629 Descartes sets up the scaffolding that will lead 
to his Géométrie. It was in fact a two-fold project: to work out a 
geometrical theory of algebraic equations, thereby completing a 
programme launched six centuries earlier; and to forge the tools required to 
study algebraic curves by means of their equations. Indeed, he writes: ‘to 
find all the properties of curved lines, it is sufficient to know the 
relationship between all their points and those of the straight lines, and the 
way of drawing other lines that intersect all these points at right angles’.9 
This means that all the properties of geometric curves must be deducible 
from their equations, including the properties, like those of the tangent, that 
involve infinitely small quantities. The equation itself is formed from exact 
ratios. 

All signs point to the fact that, to realize this project, Descartes tried to 
proceed more algebrico and to bracket the procedures that resort to 
infinitesimals. It was therefore necessary to find methods that made it 
possible to get around the latter where necessary, in order to draw only on 
finite algebraic procedures, the only ones that will make it possible to reach 
a knowledge that is sure and exact, i.e., clear and distinct. The most telling 
example of this approach appears in the method of tangents that he presents 
in his Géométrie. As J. Vuillemin correctly notes:  

 
8 Cf. R. Rashed, ‘Les ovales de Descartes’, Physis, XLII.2, 2005, pp. 333–54; 

translated above. 
9 A.T. VI, pp. 412–13. 
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Descartes tolerates no inexactness in the equations of the Géométrie; he 
therefore lets in no procedure, even though it might be empirically fruitful, if 
it is not based on a clear and distinct intuition of the entire equation. Such is 
the case for his method of tangents, which is apparently free of every 
infinitesimal concept – even though it implicitly contains a theory of the 
tangent as a limit of the secant – and rests only on the algebraic equality of 
roots.10 

Descartes is very direct about the importance that he attaches to this 
method:  

And I venture to say that, in this, we have the most useful and the most 
general problem not only that I know, but that I have ever wanted to know in 
geometry.11 

His statement has nothing rhetorical about it; rather, it clearly expresses 
the foundation of his project: henceforth, geometrical curves are defined by 
their equations. It is the latter that make it possible to know their properties 
(namely, that of the tangents at each of their points) and that also determine 
their shape. The remaining task is to invent a method to determine tangents 
and normals. One can easily understand why this declaration and method of 
Descartes unleashed so many commentaries. I shall try to be as concise as 
possible. 

In the Géométrie, where this method appears for the first time, 
Descartes locates tangents by constructing normals. He had invented this 
method in order deliberately to avoid reliance on infinitesimal magnitudes. 
He does not follow the example of De Beaune, who worked directly on 
tangents, but he draws on the method of indeterminate coefficients. Let us 
examine Descartes’s path by starting with the example of the parabola, 
which he had not studied in detail, but by retaining the notation he had used 
for the ellipse, using the very terms he himself employed.12 

(E) is a branch of the parabola of vertex A and axis AG. Let C be any 
point on the curve whose orthogonal projection is point M. We want to find 
the normal to the curve at point C, that is, the straight line PC. 

 
10 J. Vuillemin, Mathématiques et métaphysique chez Descartes, Paris, PUF, 1960, 

p. 62. 
11 A.T. VI, p. 413. 
12 Ibid. 
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Let us suppose PC = s, CM = AB = x, AM = BC = y and PA = v. We 

have y = rx2 by I.11 of Apollonius’s Conics. 
Since Descartes supposes that y ≥ 0 and | v – y | ≤ s, the Pythagorean 

theorem yields 

    x2 = s2 − v − y( )2
 and y = v − s2 − x2 , 

 
whence 

 y = r s2 − v − y( )2( ) = r s2 − v2( ) + 2rvy − ry2  

and  

(*) F(y) = ry2 − 2rv −1( ) y − r s2 − v2( ) = 0 . 

 
The roots of (*) are the ordinates of the points of the curve and they are 

the zero values of the second degree polynomial F. Two possible cases 
arise:  

 
1) Point P is indeed the foot of the normal and the equation F(y) = 0 

therefore admits a double root y0 and the polynomial F is factorisable by 
(y – y0)2 ; therefore F(y) = r(y – y0)2, whence ry2 – (2ry – 1)y – r(s2 – v2) = 
r(y – y0)2. By expanding and identifying the terms, we determine the value 
of v that yields P. This is where Descartes applies what is now called the 
method of indeterminate coefficients.  

2) Point P is not the foot of the normal to the curve at point C; then the 
equation F(y) = 0 has two distinct solutions, which are the abscissas of the 
two points C and E, intersections of the curve (E) and of the circle of centre 
P and radius PC; or, as Descartes puts it, ‘if point P be ever so much nearer 
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to or farther from A than it should be, this circle must cut the curve not only 
at C but also necessarily at another point.’13 

A

C

MP Q

E

 
Fig. 34 

Here Descartes writes: 

but the closer these two points C and E are to each other, the smaller the 
differences between the two roots, and finally the roots are completely equal, 
if they (the points) are both joined as one, that is, if the circle passing 
through C touches the curve CE there without cutting it.14  

In this last case, the circle ‘touches the curve without cutting it’.  
 
To construct the tangent at a given point on a geometric curve involves, 

first of all, constructing the normal to the curve as the radius of a circle 
whose centre is on the axis of the abscissa and which intersects the curve at 
a double point. This method for positioning the tangent would be better 
described as a ‘method for determining the normal’. 

This method is valid for curves defined by algebraic equations and is 
itself formulated in algebraic terms. At first sight, it does not rely on 
infinitesimal notions such as that of extrema. Descartes’s reticence about 
Fermat’s method of tangents is understandable, given his conviction that it 
contaminates the purity of algebra in two respects: firstly, because it rests 
on the method of maxima and minima and embodies the notion of 
‘adequality’, i.e., equality at the limit; or, as Albert Girard expressed it in 
1625, ‘it is not strictly equality as such, but an approximation to 

 
13 A.T. VI, p. 417. 
14 A.T. VI, p. 418 (my underlining). In his book which has acquired the status of a 

classic, Y. Belaval seems to be attaching little weight to this expression when he writes: 
‘[…] the discriminant of the equation in x2 is not an auxiliary quantity, and Descartes 
does not reduce it to zero by taking it to the limit, he simply posits it as zero’ 
(Y. Belaval, Leibniz critique de Descartes, Paris 1960, p. 304). 
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something’.15 Second, Fermat seems not to have maintained the distinction 
between geometrical and mechanical curves, which is so essential to the 
foundation of algebraic geometry. Just like Descartes, he puts forward his 
method of tangents for algebraic curves, which is, however, easy to 
generalize to include mechanical curves, as Fermat would be quick to do. 
Indeed, as early as August 1638, he writes to Mersenne that his method for 
determining tangents was, with modest changes, equally applicable to 
mechanical curves. In 1640, Fermat substitutes the ordinates of the tangents 
for those of the curves, and the lengths of the tangents discovered, for the 
arcs of the curves, which will later allow him to determine the tangents to 
mechanical curves. 

But, if we take a closer look at Descartes’s method, we notice a certain 
internal limitation, as well as the more or less clandestine presence of the 
infinitely small.  

 
1) The method applies within an orthonormal reference frame. 
2) Reliance on the Pythagorean theorem involves squaring in order to 

eliminate the radicals. In this case the degree of the polynomial F 
broadly attains that of the curve. 

3) In factorising by (y – y0)
2, it is necessary to proceed to a certain 

number of identifications; that number exceeds by one the degree of 
polynomial F. 

4) In addition to these internal operational limitations, a theoretical 
difficulty arises in the expression ‘to touch without cutting’, which is 
not characterized by either its clarity or its precision. Did Descartes 
mean that the circle would be in contact with the curve? If so he 
offered no explanation for this concept of contact, which 
mathematicians and philosophers had constantly discussed since 
Antiquity. Did he mean that the circle merges with the curve at point 
C, and that the normal to the circle at this point is also the normal to 
the curve? Be that as it may, Descartes quickly disposed of the 
question. This is why the expression ‘to touch without cutting’ would 
provoke so many fruitful polemics among such successors as Leibniz 
and Jean Bernoulli. In the form in which it presents itself, this concept 
of contact presupposes several others: proximity, neighbourhood, 
approximation…, and therefore the concept of an infinitely small 
difference. Now the lapidary phrase, ‘to touch without cutting’ 
seemingly manages to avoid bringing up the infinitely small and 
related concepts, which are nevertheless present, but masked by 
Descartes’s purely algebraic exposition. 

 
15 Albert Girard, L’Arithmétique de Simon Stevin de Bruges, Leiden, 1625, p. 626.  
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To recapitulate briefly, we can state that Descartes’s method of 
tangents rests mainly on the property of the double point, and on a theorem 
of Apollonius that he rediscovered and generalised. The double point is 
obtained by solving a quadratic equation. The theorem in question is 
Proposition V.31 of Apollonius’s Conics: 

If a straight line is drawn at a right angle to the extremity of a minimal 
straight line drawn to any of the conic sections, the aforementioned 
extremity being the one that is on the conic section, then the straight line 
drawn is tangent to the section.16 

This proposition can easily be generalised to convex curves. 
But how did Descartes arrive at this theorem? He certainly did not 

know the fifth book of the Conics: the 17th-century reception of the book 
confirms beyond a doubt that he had heard not so much as a whisper about 
it. Recall that to establish Proposition V.31, Apollonius had availed himself 
of a group of propositions in his first book, I.31 to I.37, which easily led to 
it. Descartes, who was perfectly conversant with the first book of the 
Conics, probably retraced Apollonius’s path and then generalised the result. 
To Descartes, this would have presented no problem at all. 

One can readily concede that Descartes was in a better position than 
anyone else to understand the limitations of his own method as well as the 
superiority of Fermat’s. Moreover, he had admitted to de Beaune that 
Fermat’s method is easier to apply and to use, but leaves something to be 
desired when it comes to mathematical rigor. The problem then is to find 
out why Descartes was so keen on his method of tangents. 

It would be tempting, if frivolous, to put this preference down to 
authorial pride, or to some quirk in the scientist’s character. It is much 
more a matter of his firm will to exclude – and rightly so – every object 
that was not strictly algebraic and every operation that involves an 
infinitesimal procedure when studying geometrical curves. This bias once 
again obeys two kinds of reasons: mathematical and philosophical. Indeed, 
these curves are distinguished from all others by the simplicity of the 
motions that generate them, by the rigour of the algebraic equations that 
define them and that characterise all of their points without any exception, 
and by the precision of the means that allow one to plot them. There is no 
approximation and no subset of inaccessible points. There is therefore no 
place for either infinitesimal elements or infinitesimal procedures. One 
must take care not to introduce any such objects and procedures in order to 

 
16 Apollonius: Les Coniques, Tome 3: Livre V, historical and mathematical 

commentary, ed. and transl. from Arabic text by R. Rashed, Berlin/New York, Walter 
de Gruyter, 2008, p. 318. 
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preserve algebraic purity, as it were, a purity that Descartes sees as a 
necessary condition of generality. In his view, geometrical algebra treats 
only algebraic magnitudes that are necessarily finite. In this field, the 
understanding makes progress securely and treats no magnitude that it 
cannot grasp. The understanding cannot conceive of a quantity that is at 
once different from zero and yet null; nor can it conceive that two 
quantities whose difference is infinitely small can be equal. These 
conditions are necessary for our understanding of the properties of these 
curves to be clear and distinct. This is what philosophy demands.  

Thus in the famous controversy that opposed him to Fermat, Descartes 
tries to rid the latter’s method of the infinitesimal and to interpret it along 
the lines of of two algebraic equations. After having reviewed Fermat’s 
method, he writes to Mersenne on May 3rd 1638, as follows: 

instead of saying simply: they are equalised (adaequantur), one should have 
said: they are equalised (adaequantur) in such a way that the quantity to be 
found by this equation is certainly unique, when one refers it to either the 
maximal or the minimal quantity, but a unique quantity that comes from the 
two that might be found by means of the same equation, and which would be 
unequal, if they were referred to a <line> smaller than the greatest or greater 
than the smallest.17 

He comes back to this topic once again in June of the same year in a 
letter to Hardy in which he writes: 

This, then, is the foundation of the rule in which there are two equations 
virtually, although it is necessary to mention only the one, because the other 
serves only to erase these homogeneous elements.18 

Consequently it was necessary to banish the infinitely small at the risk, 
as we have seen, of its intruding surreptitiously. 

Such a position was fraught with consequences for Cartesian 
mathematics. Thus, from this point of view, no contribution to the 
emerging research on the rectification of curves would be forthcoming, 
which Descartes justifies when he writes:  

for, though [in geometry] no lines are acceptable that are like strings, that is, 
that become sometimes straight and sometimes curved, because, given that 
the ratio between straight lines and curves is unknown and even, I believe, 
beyond human grasp, one could not conclude from this anything exact and 
certain.19 

 
17 A.T. II, p. 127. 
18 Ibid., p. 173.  
19 A.T. VI, p. 412. 
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It is perhaps for this reason that Descartes did not try to determine the 
length of curves. Such research would indeed have required him to proceed 
by rectification, that is, according to a method that Descartes believed to be 
beyond human understanding. And besides, even in cases in which the 
understanding is satisfied with knowledge that is merely clear, like that of 
mechanical curves, he does not proceed by rectification. Descartes in fact 
notes that the length of the arc of the logarithmic spiral, from its origin to 
its extremity, is proportional to the length of its radius vector from its last 
point. Yet he does not show that this curve is rectifiable (cf. his letter to 
Mersenne dated 12th September, 1638). Make no mistake, however. 
Descartes’s attitude has nothing to do with that of the ancients, who drew a 
distinction between curves and straight lines. It is rather a consequence of 
his own conception of the knowledge of geometric curves and of his 
position with respect to infinitesimals. This conception and position are 
eminently positive if the task at hand is to constitute algebraic geometry, 
but they could only throw up obstacles in the area of infinitesimal analysis. 

But, if the infinitely small has no place in clear and distinct knowledge, 
like that of geometric curves, does it have any role to play in knowledge 
that is merely clear, like that of mechanical curves? We have shown 
elsewhere that, if the knowledge is only clear, it is because of the motions 
that generate these curves, the nature of the equations that define them, and 
the fact that these equations do not characterise all of their points. These 
curves are defined by algebraic differential equations.20 To obtain pieces of 
an answer, we must turn to Descartes’s mathematical writings after 1637. 
Having completed his grand project, Descartes was free from the powerful 
algebraic constraints that he had just felt, and was drawn to mathematical 
research projects in progress, notably those of Roberval and Fermat. He 
was now available. After 1637 he was ready to return, but at a completely 
different level, to the questions of his youth, as well as to others pertaining 
to both mechanical curves and the method of inverse tangents. Tannery21 
and Milhaud have studied his contributions in this domain. J. Vuillemin,22 
and, more recently, Ch. Houzel, have analysed them in detail.23 They have 
all emphasized that, in this work, Descartes manipulates the infinitesimal. 

 
20 See above, ‘Descartes’s Géométrie and the distinction between geometrical and 

mechanical curves’. 
21 P. Tannery, ‘Pour l’histoire du problème inverse des tangentes’, 1904, in 

Mémoires scientifiques, published by J. L. Heiberg and H. G. Zeuthen, 1926, vol. 6, 
pp. 457–77. 

22 G. Milhaud, Descartes savant, Paris, 1921, pp. 162 ff.; J. Vuillemin, Mathé-
matiques et métaphysique chez Descartes. 

23 C. Houzel, ‘Descartes et les courbes transcendantes’, in J. Biard and R. Rashed 
(eds), Descartes et le Moyen Âge, pp. 27–35. 
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Here, I focus on only one question, that of the tangent to the most famous 
mechanical curve in the 17th century, to wit, the cycloid.  

Let us begin by refreshing our memories. The cycloid is the curve 
described by the trajectory of a point M on the circumference of a circle of 
radius R that one imagines to roll (without sliding) on an axis Ox, when the 
circle makes a complete revolution on a straight line segment. Since the 
movement is uniform, then every displacement of the centre of the circle 
along a straight line parallel to the base is equal to the angular variation of 
the circle.24 

 
On May 27th 1638, Descartes sends Mersenne his quadrature of a 

cycloid curve, but his proof is incomplete.25 Two months later, on 27th July, 
he sends him with the complete proof. This is the idea on which the latter 
rests: 

 […] when two figures have the same base and the same height, and when all 
the straight lines inscribed parallel to the base in the one are equal to those 
inscribed parallel to the base in the other at similar distances, the one 
contains as much space as the other.26 

He goes on: 

Since, if all the parts of one quantity are equal to all the parts of another, the 
whole is necessarily equal to the whole; and this is a notion so obvious that, I 
believe, only those possessed of the power to call all things by names that 
are the opposite of their true ones, are capable of denying it, and claiming 
that the conclusion can be only approximate.27 

The tone is firm and bears no resemblance to an approximation; yet 
here, Descartes does not hesitate to appeal to indivisibles, as his 
contemporaries since Kepler and Galileo had done. For such a curve, the 
appeal to the infinitely small is not restricted to the quadrature, but also 
comes into play in the study of the tangent. 

And in fact, scarcely a month later, on August 23rd, Descartes sends 
Mersenne his method for, as he says, ‘finding the tangents to curves 
described by the motion of a roulette’,28 that is, different kinds of cycloid. 

 
24 We have arc NM of the circle equal to segment ON. If t is the measurement of 

angle MCN, the coordinates of point M(x, y) will be x = R t − sin t( )  and 

y = R 1− cost( ) = 2Rsin2 t
2

; and the equation of the cycloid will be y 2R − y( )dx = ydy . 
25 A.T. II, pp. 135–53. 
26 A.T. II, p. 261. 
27 A.T. II, p. 262. 
28 A.T. II, p. 308. 
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This text displays Descartes’s virtuosity in adapting the method applied in 
his Géométrie to mechanical curves. 

The method proposed to construct the tangent to the cycloid consists 
first in determining the normal, as in the case of geometrical curves. In this 
instance, one obtains the normal thanks to the idea of an ‘instantaneous 
centre of rotation’. According to the idea that Descartes forged, the motion 
of the generating circle is infinitesimally likened to a rotation at a given 
instance having as centre the point of contact between the circle and the 
base. This is a beautiful kinematic method, which Descartes would never 
have accepted in his Géométrie. For mechanical curves, one takes the 
liberty of using other methods and rights, including the right of letting the 
imagination roam. Let us pause briefly to examine Descartes’ approach. 

To construct a tangent at point B of the cycloid, one draws BN parallel 
to the base DA, intersecting the generating circle CND at N, which is then 
joined to D, the point of contact between the generating circle and the base. 
From B, BO is drawn parallel to ND; then BO is the normal sought and the 
perpendicular BL is the tangent to the curve at B. We may note that BL is 
parallel to NC, for angle DNC is a right angle. 

B

D

L

N

O

C

A  

Fig. 35 
 
Later in the letter, Descartes constructs in a similar manner the tangent 

to the prolate cycloid and the tangent to the curtate cycloid. He goes on to 
give a demonstration of his method, in which he draws on the concept of an 
instantaneous centre of rotation. He writes: 

If a rectilinear polygon of any kind is rolled along a straight line, the curve 
described by any one if its points will be composed of several portions of 
circles, and the tangents to all the points of each one of these portions of 
circles will cut at right angles the lines drawn from these points to the point 
at which the polygon has touched the base in describing the part concerned.29 

 

 
29 A.T. II, pp. 308–9. 
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In the case of the hexagon that Descartes considers, the following 
figure can represent this procedure: 

O

B

OOO O  
Fig. 36 

 
The curve described by one of the apexes of the polygon as it rolls 

along is therefore formed by a succession of arcs of circles, the centre of 
each of which is the point of contact O between the polygon and the base, 
the point about which the polygon pivots. Consequently the normal of a 
point B on the curve is the straight line BO, the radius of the arc of the 
corresponding circle; it passes through the centre of rotation. All the 
normals to the curve pass respectively through the successive centres of 
rotation. 
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BR = 2 BO

 
Fig. 37 

 
Descartes continues: 

From which it follows, considering the circular roulette as a polygon with an 
infinity of sides, that one can see clearly that it must have the same property, 
that is, that the tangents at each of the points that are on the curve that it 
describes must cut at right angles the lines drawn from these points to the 
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points on the base that are touched by it at the same time as it describes 
them.30 

Descartes justifies his approach thus: ‘Now’, he says, ‘the same thing 
happens to a polygon with a hundred thousand million sides, and 
consequently also to a circle’.31 If indeed the number of sides of a polygon 
is increased indefinitely, what is obtained at the limit is a circle, since the 
length of each side tends to zero. In other words, the circle is a regular 
polygon with an infinite number of sides, each of a length that is infinitely 
short. These infinitely short sides determine the curvature of the curve by 
the angles they form with each other.  

Later in the same letter, Descartes points out that his method also 
applies to the general curves generated by rolling a convex curve with a 
centre of symmetry, like an ellipse, and therefore to certain geometrical 
curves.32 He reminds Mersenne that ‘one must also notice that the curves 
described by roulettes are completely mechanical lines that are among 
those I rejected from my Géométrie; this is why it is no wonder that their 
tangents are not to be found by the rules I set out there’.33 

 
Note therefore that Descartes very naturally combines a strong 

geometrical intuition and a method of infinitesimal reasoning. This type of 
reasoning and the procedures that it uses are of the same kind as those 
employed by Archimedes and the Arab infinitesimalists. Indeed all these 
geometers made use of the infinitely small, because all of them knew that 
the tangent is the limit of the secant; but Descartes did not explicitly bring 
differential notions into consideration any more than his predecessors had. 
He had himself criticised the use of terms like ‘to adequal’ and, like the 
ancients, his infinitely small always had a determinate magnitude that never 
equalled zero.  

If one restricts oneself to such remarks, it will be tempting to assimilate 
Descartes to his predecessors. Indeed, this is what Y. Belaval does when he 
writes: ‘If he is to be fully understood, Descartes should be attached to the 
Greek tradition of mathematical demonstration, which avoided all 
consideration of the infinite as something beyond rational evidence.’34 And 
yet, we have seen that he uses the infinitely small in several forms. And, 
moreover, if Descartes is to be treated as one of the Greek geometers, we 

 
30 A.T. II, p. 309. 
31 Ibid. 
32 A.T. II, p. 312.  
33 A.T. II, p. 313. 
34 Y. Belaval, Leibniz critique de Descartes, p. 302. 
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have no way to explain how he came to use the method of inverse tangents, 
which had attracted him in his youth and to which he would later return. 

Indeed, we have seen that, before 1629, in the Excerpta mathematica, 
in order to obtain a curve, he was thinking of starting from the properties of 
a tangent drawn to this curve, which was assumed to be determinate, and 
not at all from a property that characterised the points of the curve. This 
turning point is of prime importance. Although it is true that Descartes did 
not yet have the method of inverse tangents, he was already glimpsing it 
and grasping it intuitively. By 1637, he had got hold of this method 
employing infinitesimals, thanks to which he discovered his ovals, as I 
believe I have shown.35 

Freed from his algebraic constraints, as we have just seen, after 1638 
he returned to this method in the well-known correspondence about De 
Beaune’s problems: 

I do not believe that it is possible generally to find the converse of either my 
rule for tangents, or that which Monsieur de Fermat uses either, though in 
several cases his is more convenient than mine. But theorems can be 
deduced from it a posteriori that extend to all curves that are expressed by an 
equation, in which one of the quantities x or y has no more than two 
dimensions, even though the other might have a thousand; and I found nearly 
all of them in my earlier search for your second curve; […].36  

Recall that this second curve is logarithmic and therefore belongs to the 
class of mechanical curves. 

Descartes is thus stating that, in order to obtain the aforementioned 
curve, he used the method of inverse tangents, which moreover confirms 
his solution. He states also that, for the time being, he can use this method 
in some cases, but not yet generally. He recalls that he has also used it for 
hyperelliptic curves (i.e., those defined by the equation y2 = P(x), where P 
is a polynomial, and that he had sought a posteriori to solve certain 
differential equations of the form 2y ′y = ′P x( ) . Finally, then, he knows that 
this method enables him to study geometrical as well as mechanical curves, 
but he cannot state a priori the nature of the curve obtained; still less can he 
know a priori whether or not this curve is the solution to Pappus’s 
problem, like some ovals. 

I will not linger here on his solutions to de Beaune’s problems, which 
J. Vuillemin in particular studied. Recall, however, that these solutions led 
Y. Belaval, who denied that Descartes knew this method of infinitesimals, 
to write about his solution to the second problem: ‘No one will dispute that 

 
35 See above, ‘Descartes’s ovals’. 
36 A.T. II, p. 514. 
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in so doing Descartes invented a technique for solving a differential-
equation problem’.37 He goes on: ‘But what conforms to his inventive 
genius is immediately revealed as contrary to his philosophical genius: his 
philosophy stands in the way of his consideration of the infinitesimal.’ All 
things considered, it does not seem to me that the problem grows out of a 
clash between two geniuses; it lies elsewhere. We have just observed that 
one can use the method of inverse tangents to determine both geometrical 
curves (e.g., ovals) and mechanical curves (e.g., the logarithmic curve) 
without being able to tell a priori the nature of the curve. This last 
qualification was enough for Descartes to exclude the method from his 
Géométrie, in which he dreamed of obtaining all curves by using his 
compasses and by solving Pappus’s problem. The method of inverse 
tangents is indeed not a general one, nor does it allow one a priori to detect 
the nature of the curve obtained. The philosopher who wrote the Discourse 
on Method could assuredly not let this method enter his Géométrie, but he 
did not hesitate to apply it outside those bounds, above all to mechanical 
curves. Thus there is not the least contradiction in Descartes’s approach. 
For the study of mechanical curves, it was simply necessary to invent other 
methods that applied to all curves, even if such methods were not purely 
algebraic and resorted to such kinematic notions as the instantaneous center 
of rotation. 

By way of conclusion, we can say that if the infinitely small enters into 
knowledge that is clear and distinct – the kind of knowledge that human 
understanding can have of the objects of algebraic geometry – it is only 
stealthily, without an open invitation. In the course of exposition, terms that 
might draw attention to its unwelcome presence (such as those reminiscent 
of inverse tangents) are avoided, or at least, only touched on hastily, in 
such short-hand expressions as ‘to touch without cutting’. But in the case of 
knowledge that is merely clear, like our knowledge of mechanical curves, 
which is susceptible to gradations and imperfections, the infinitely small is 
entitled to play its part. In both cases alike, Descartes avoids any positive 
discussion of the infinitesimal. Even so, we know from his rejection of 
differential notions, such as Fermat’s ‘adequality’, that he refused to 
consider the infinitesimal as a magnitude that tends to zero. We also know 
that, as much from the ontological as from the logical point of view, the 
understanding can say nothing about either the infinitely large or the 
infinitely small; it can only talk about the ‘indefinite’. 

The position that Descartes took is in no way hostile to the 
infinitesimal. Neither is it contradictory. Contrary to what one sometimes 
reads, Descartes did not rule out the infinitely small. For mathematical as 

 
37 Y. Belaval, Leibniz critique de Descartes,  p. 310. 
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well as philosophical reasons, however, he wished to restrict both the 
domain and the modalities of its use. Indeed, clear and distinct knowledge 
can only be exact and certain. The understanding includes herein both 
extended substance and its modes and, in its rigour, thinks through the 
concept of limit. It is consequently unable to understand the infinitesimal as 
the result of an infinity of repeated divisions of a finite quantity. It can only 
think of the infinitesimal as a limit, for, although it may be capable of 
abstracting such a limit, it is incapable of attributing to it the status of an 
objective and exact quantity – in Descartes’s terms, an algebraic quantity. 
Even so, although the infinitesimal cannot rightfully be considered a 
concept in algebraic geometry, it can still have a place elsewhere in 
mathematics: in the examination not only of mechanical curves, but also 
curves that do not solve Pappus’s problem and about which one cannot say 
a priori whether they are algebraic or mechanical. It is certainly present as 
the limit of the secant, as an indivisible, and implicitly as the infinitely 
small value of a variable magnitude. Moreover, it does not seem to me 
exact to say that it is the presence of the infinitely small that makes the 
knowledge of mechanical curves imperfect: if that knowledge is imperfect, 
it is because of their very constitution, for the reasons already advanced – 
the motions needed to generate them, their differential algebraic equations, 
the inaccessible points. Such are the reasons that excluded these curves 
from algebraic geometry (not from geometry as a whole), but that 
nevertheless legitimized the intervention of the infinitely small. 

 
Finally, if we are to circumscribe fully and rigorously the presence of 

the infinitely small in Descartes’s work and the use to which he puts it, we 
should refrain from judging his methods with the yardstick of Leibniz’s 
infinitesimal method in the form it took after 1675, the date in which he 
invented the differential calculus, and from then blaming Descartes for not 
carrying through a project that was not his. Neither the differential calculus 
nor, a fortiori, its algorithms are to be found in Descartes’s work. 
Conversely, as we have seen, what does appear in his work is the infinitely 
small in a variety of forms and at various theoretical levels. We are on the 
eve of a well-disciplined study of the infinitely small. Last, but not least, 
one should never forget that Descartes was a contemporary of Fermat and 
Wallis and a predecessor of Leibniz and Newton. 
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FERMAT AND ALGEBRAIC GEOMETRY  
 

 
 

Algebraic geometry came to light as a proper chapter of mathematics 
when al-Khayyām (1048–1131) gave himself the theoretical means (meas-
ure, dimension, geometric calculation, etc.) of a two-fold translation: to 
reduce geometrical problems – notably solids and supersolids – to algebraic 
equations, and to solve the latter by the intersection of conic curves. If one 
were to express this double movement in one catch phrase, one might say 
that the birth of algebraic geometry takes place at the conjunction of al-
Khwārizmī’s Algebra, Apollonius’s Conics, and Euclid’s Data. It is not a 
coincidence that al-Khayyām cites only these three books. The other 
research efforts he evokes are those of his predecessors who had already 
trod the same road that he had taken: al-Khāzin, Abū al-Jūd, Ibn ʿIrāq, al-
Qūhī.1 Nevertheless, one can understand nothing about al-Khayyām’s 
action without following the development of algebra during the century and 
a half that separates al-Khwārizmī from al-Khayyām in order to grasp the 
role of the seemingly insurmountable obstacle that the algebraists encoun-
tered: to solve by radicals cubic and irreducible biquadratic equations. We 
also need to understand the impact on the theory of conics itself of the 
numerous new applications of geometrical constructions,2 as well as on the 

 
1
 R. Rashed and B. Vahabzadeh, Al-Khayyām mathématicien, Paris, Librairie 

Blanchard, 1999; English translation: Al-Khayyām mathematician, New York, 
Eisenbrauns, 2000. R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, 
vol. III: Ibn al-Haytham. Théorie des coniques, constructions géométriques et 
géométrie pratique, London, al-Furqān, 2000, Notes complémentaires, 4: ‘Al-Qūhī et le 
lemme à la division de la droite par Archimède’; English translation: Ibn al-Haytham’s 
Theory of Conics, Geometrical Constructions and Practical Geometry. A History of 
Arabic Sciences and Mathematics, vol. 3, Culture and Civilization in the Middle East, 
London, Centre for Arab Unity Studies, Routledge, 2013. 

2 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III. 
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new chapter the continuous drawing of conic curves that al-Qūhī inaugu-
rated.3 

Scarcely one half-century after al-Khayyām, Sharaf al-Dīn al-Ṭūsī4 
gives the new discipline a more analytical stamp. Concerned about demon-
strating the existence of the points of intersection of curves, he elaborates 
the concept of the maximum of an algebraic expression over an interval. 
Henceforth, he is interested in some of the algebraic properties of conic 
curves.  

Some mathematicians – notably Kamāl al-Dīn ibn Yūnus, Athīr al-Dīn 
al-Abharī, etc., and also members of the school of Isfahan in the 19th 
century – followed this tradition of al-Khayyām and al-Ṭūsī without going 
beyond it, however. Only in 1637 and in different climes did new 
foundational acts occur in algebraic geometry. I am, of course, referring to 
Descartes’s Géométrie. In that very same year of 1637, a manuscript 
treatise by Fermat also begins to circulate. Entitled Ad locos planos et 
solidos isagoge, it also focuses on questions of algebraic geometry. Fermat 
will write a sequence of other treatises in this field until he produces his 
famous Dissertatio tripartita (before 1650). 

Faced with this new beginning of algebraic geometry of the 17th 
century, one cannot avoid raising two connected questions: what were the 
relations between the contributions of Descartes and Fermat? Did they rep-
licate, at least in part, the duality between al-Khayyām and al-Ṭūsī, and in 
what sense? Let us begin by briefly recalling the case of Descartes, treated 
more fully elsewhere.5 

In the Géométrie we can indeed recognize two movements that guided 
the evolution of both algebraic geometry and Descartes’s own book. The 
first movement focuses precisely on the completion of al-Khayyām’s pro-
ject: to translate geometrical problems into algebraic equations, then to 
translate the latter into the language of geometry thanks to a genuine geo-
metrical calculus, in order to solve them by the intersection of curves. Both 
here and in al-Khayyām’s book, algebraic geometry presents itself 
essentially as a geometrical theory of algebraic equations. By contrast, the 
second movement collects the beginnings of a study of curves by means of 

 
3
 See R. Rashed, ‘Al-Qūhī et al-Sijzī: sur le compas parfait et le tracé continu des 

sections coniques’, Arabic Sciences and Philosophy, 13.1, 2003, pp. 9–44; and below, 
‘The continuous drawing of conic curves and the classification of curves’.  

4 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques. Algèbre et géométrie 
au XIIe siècle, Sciences et philosophie arabes – textes et études, Paris, Les Belles 
Lettres, 1986, see especially the introduction. 

5 See above, ‘Descartes’s Géométrie and the distinction between geometrical and 
mechanical curves’. 
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their equations in order to turn it into a new program, the full realization of 
which would take place in the future.6  

 
Along the lines of this first movement, Descartes’s Géométrie is 

deployed, as a theory of algebraic equations, as one also encounters it in al-
Khayyām. Moreover, thanks to the Regulae, to the testimony of Beeckman, 
and to the Cogitationes Privatae, we know that in 1619 Descartes was 
already involved with this theory. 

To pose questions about the algebraic geometry of Fermat, is first of all 
to know that he belonged to the tradition outlined by al-Khayyām and 
Descartes. This question is all the more important because it is not rare to 
see his contribution interpreted as the product of a meeting of Viète and 
Apollonius.7 A study of Fermat’s writings, however, shows that he only 
treats this theory of equations much later. This insufficiently emphasized 
fact already brings out a significant difference with al-Khayyām and 
Descartes. And it is indeed true, Fermat’s first work in this area, that of 
1637, distinguishes itself clearly from this tradition of the geometrical the-
ory of algebraic equations: he is essentially concerned with the equations of 
the straight line, of the circle, and of the conic curves. His starting point is 
not the theory of algebraic equations, but research on geometrical loci. To 
understand the contribution of Fermat to this field is first of all to grasp the 
precise significance of this difference and of its impact which requires us 
not to restrict ourselves only to his writings in algebraic geometry. We 
must analyze his first research in geometrical loci. This is his genuine 
starting point.  

 
 

1. THE GEOMETRICAL LOCI AND THE POINTWISE TRANSFORMATIONS  
 
Fermat began his mathematical career by writing The Restitution of 

Two Books on Plane Loci by Apollonius of Perga (Apollonii Pergaei libri 
duo de locis planis restituti = De locis planis). In the Mathematical Collec-
tion, Pappus reproduces certain propositions from this lost book of 
Apollonius. Fermat thus tries to restitute this book. In this case and in other 
similar ones,8 one must not confuse the act of ‘restituting’ and with that of 

 
6 Ibid. 
7
 See for example Michael S. Mahoney, The Mathematical Career of Pierre de 

Fermat 1601–65, Princeton, Princeton University Press, 1973. 
8 For example, compare the reconstitution by Ibn al-Haytham in Book VIII of the 

Conics by Apollonius, in Les Mathématiques infinitésimales, vol. III, Chap. I. 
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‘restoring’. ‘To restore’ is the act of an archaeologist or a historian, which 
Fermat was not, whereas ‘to restitute’ is the act of a mathematician who 
operates according to a criterion of apodicticity. His goal is clear: to invent 
and rigorously demonstrate the propositions that consolidate the ancient 
contribution by surpassing it. And in fact, an examination of The 
Restitution shows that we are not in the same domain as Apollonius, but in 
that of his successors. Let us explain.  

About this Restitution, Fermat writes to Mersenne (on 26 April 1636):  

[…] I have completely restored Apollonius’s treatise On Plane Loci. Six 
years ago I gave to M. Prades, whom you perhaps know, the only copy I had 
of it, written in my own hand. It is true that the prettiest and most difficult 
problem, which I had not yet solved, was missing. Now the treatise is 
complete in every point, and I can assure you that in all of geometry there is 
nothing comparable to these propositions.9 

When citing this letter, scholars often forget to raise two closely related 
questions: what ought one understand by ‘geometry’ and in what sense is 
there ‘nothing comparable to these propositions’? These questions impress 
themselves on us all the more because these propositions seem at first sight 
to be very simple. In a word, where ought one locate the radical novelty 
that Fermat so forcefully claims? Fermat will again take stock of his De 
locis planis scarcely a year and a half later in his first work on algebraic 
geometry. About it, he writes the following in his Ad locos planos et 
solidos isagoge: 

If this discovery had preceded our already long past restoration of the two 
books On Plane Loci, the construction of the theorems of loci would have 
been much more elegant; we nevertheless have no regrets about this work, 
even though it was premature and underdeveloped. Indeed, for scholarship 
there is some advantage in not robbing posterity of works that are still 
intellectually inchoate; a work that is initially simplistic and crude is 
strengthened and grows thanks to new discoveries. It is even important for 
scholarship to contemplate fully the hidden progress of the mind and the 
spontaneous development of the craft.10 

In this beautiful passage, the author warns the reader that between the 
De locis planis and Ad locos planos et solidos isagoge, there are intimate 
connections. Starting from the latter, one could indeed find presented in a 

 
9 M. Mahoney, The Mathematical Career of Pierre de Fermat, p. 112. Emphasis is 

mine. Cf. Œuvres de Fermat, ed. Paul Tannery and Charles Henry, 5 vols, Paris, 1896, 
vol. II, p. 5. 

10 We are referring to Œuvres de Fermat, ed. P. Tannery and C. Henry, vol. II, 
p. 96. 
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more elegant manner the theories included in the former. According to 
Fermat, then, there is a certain continuity between the two treatises; but 
there is also a break caused by ‘a new discovery’. Whatever continuity he 
alleges is in fact broken somewhere, because these two books are not 
written on the same plane and do not treat the same objects. To genuinely 
understand Fermat’s procedure, we must examine more De locis planis and 
situate it first in the history of geometry. Before beginning this inquiry, let 
us recall that Fermat insisted that his book was novel on account of both its 
procedures and its results. Yet there is a significant difference between 
Apollonius and his successors from the 9th century on. The latter, unlike the 
Hellenistic mathematicians, have begun to take as their object the study of 
the transformations of geometrical loci by homothety, translation, 
similarity, and inversion. Tied to this practice are the names of Ibn Qurra, 
Ibn Sinān,11 al-Qūhī, and Ibn al-Haytham,12 to keep the list short. This 
research proved to be of great import for algebraic geometry, as in the case 
of Sharaf al-Dīn al-Ṭūsī.13 Now, this is precisely the research that Fermat 
takes up again in his De locis planis. Moreover, one cannot avoid being 
struck by a similarity between the structure of this book and that of Ibn al-
Haytham’s (d. after 1040) The Knowns. In short and to be clear, what he 
elaborates here is not a geometry in the manner of Apollonius, but another, 
different one. Let us now turn to the De locis planis itself, which is 
composed of two books, as the title announces. As attested by the letter by 
Mersenne cited above, the whole had definitely been completed before 
April 1636, let us say the beginning of 163614 or shortly before. According 
to this same letter, however, the book was almost complete in 1630 because 
only one proposition was missing.  

 
11 See Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: Fondateurs et 

commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-Qūhī, Ibn al-
Samḥ, Ibn Hūd, London, al-Furqān, 1996; English translation: Founding Figures and 
Commentators in Arabic Mathematics. A History of Arabic Sciences and Mathematics,  
vol. 1, Culture and Civilization in the Middle East, London, Centre for Arab Unity 
Studies, Routledge, 2012. R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et 
géométrie au Xe siècle, Leiden, E. J. Brill, 2000. 

12
 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-Haytham, 

London, al-Furqān, 1993; English translation: Ibn al-Haytham and Analytical 
Mathematics. A History of Arabic Sciences and Mathematics, vol. 2, Culture and 
Civilization in the Middle East, London, Centre for Arab Unity Studies, Routledge, 
2012. 

13 Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques (n. 4).  
14

 This is confirmed in another letter to Mersenne dated 15 July 1636. 
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In another letter, sent to Roberval on Monday, 20 April 1637, Fermat 
writes: ‘The second book has been written for eight years already, and 
during this time I gave two copies, one to Mr. Despagnet, a counselor to 
the Parlement of Bordeaux, and the other to Mr. de …’ (vol. II, p. 105). If 
one can trust these remarks – and there is every reason to do so – the 
second book had already been completed in 1629; and if any book was 
incomplete, it must have been book one. In other words, Fermat began this 
work in Bordeaux before 1629 and completed it in 1636. 

But what was Fermat’s goal in this book at this stage of his life as a 
mathematician? At once the simplest and also the most certain way of 
answering is to listen to him. In the preamble to book one, he writes: ‘It is 
this theory (of plane loci), the most beautiful of all geometry, it seems, that 
we have wrenched from oblivion’ (vol. III, p. 3). It is as a geometer, not an 
algebraist, that he intends to develop this geometrical theory of loci. The 
key question is to discover how and with which tools. 

The plan of the book is simple: to take up, one after the other, Pappus’s 
propositions in the translation of Commandino in order to establish and 
extend it, and to provide a critical commentary. Thus the first book begins 
with proposition drawn literally from Pappus:  

If one draws two lines, whether from a given point or from two, whether in a 
straight line, whether parallel, or making a given angle, and finally having a 
given ratio or comprising a given rectangle: if the end of the one is on a 
plane locus given in position, the end of the other will also be on a plane 
locus given in position, in some cases of the same type, in other cases of a 
different one, in yet other cases similarly located in relation to the straight 
line, in yet others contrariwise (vol. III, pp. 3–4). 

Fermat begins by dividing this proposition into eight others and notes 
that ‘each of the latter (can be divided) into many cases’ (vol. III, p. 4). 

The examination of these propositions as well as Fermat’s entire 
approach reveals important facts that have not been emphasized. The 
propositions treat pointwise transformations, an effective tool in the 
research on loci; conversely, one sees a structural similarity between this 
research and that carried out by the mathematicians of the 10th to the 11th 
century, in particular Ibn al-Haytham in his The Knowns. But this research 
on pointwise transformations is new in relation to Hellenistic geometry. To 
appreciate this point, one need only rephrase in another language the 
statements of certain propositions. 

In Proposition 1.1, Fermat shows that the homothetic figure of a 
straight line or a circle is a straight line or a circle. In the case of the 
straight line, his demonstration is fast and sharp. In the case of the circle, 
he offers a construction that satisfies the conditions. In each of these cases, 
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he effectively examines only a negative homothety. But his remark, cited 
above, shows that he deliberately ignores the other cases. Now Ibn al-
Haytham in The Knowns begins in the same way with one difference: he 
treats the circle before the straight line.  

Fermat proceeds in the same manner for the other propositions. 
Proposition 1.2 concerns the transform of a straight line or a circle by 
inversion, a proposition comparable to that of the 10th-century mathe-
matician al-Sijzī.15 In Proposition 1.3, he shows that the figure similar to a 
straight line or a circle is a straight line or a circle, which corresponds to 
Propositions 4 and 5 of The Knowns. In 1.4, he considers the trans-
formation of a straight line or a circle by the composite of an inversion and 
a rotation with the same center. In 1.5, he draws on the composite of a 
homothety and a translation; in 1.6, on the composite of an inversion and a 
translation; in 1.7, on the composite of a similarity and a translation; and in 
1.8 on the composite of an inversion and a rotation.  

This quick glance at the first propositions leaves no doubt about 
Fermat’s intention: to study plane loci – straight lines and circles – by 
means of pointwise transformations. The other propositions of book one of 
De locis planis confirm this intention. Thus Proposition 2, which is the first 
proposition of Ibn al-Haytham’s The Knowns, focuses on the circle as the 
locus of points at a given distance (the radius) from a given point. 
Proposition 3, which corresponds to Proposition 6 of The Knowns, 
establishes the property of the potential arc; the following one corresponds 
to the 10th proposition of Ibn al-Haytham’s book. Proposition 5, which 
corresponds to Propositions 11 and 12 of The Knowns, treats the transfor-
mation of a straight line or circle by a translation. In the first part of 
Proposition 6, which is analogous but not identical to Proposition 20 of The 
Knowns, he treats the determination of the locus of points such that the 
ratio of their distances to two given straight lines is given. The second 
amounts to determining the locus of points such that a certain linear 
combination of their distances to two given straight lines is constant. 
Proposition 7 is devoted to research on the locus of points such that their 
distances to any given number of given straight lines is connected by a 
linear relation whose coefficients are known. This locus is evidently a 
straight line. Fermat calls this proposition ‘very beautiful’ (vol. III, p. 25). 

This quick summary of the content of the first book of De locis planis 
shows indubitably that here Fermat is no longer on the same terrain as 

 
15 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV: Méthodes 

géométriques, transformations ponctuelles et philosophie des mathématiques, London, 
al-Furqān, 2002, Appendix I. 
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Apollonius, but on that of Ibn al-Haytham and the post-Apollonian 
mathematicians. Is it not clear that here he is systematically developing 
certain geometrical transformations – homothety, similarity, inversion, 
translation – and that he determines the transforms of straight lines and of 
circles by the latter? Moreover the structure of this book curiously reminds 
one of that of The Knowns, which apparently had the same project. The 
second book of De locis planis is completely devoted to research on 
geometric loci; always straight lines and circles. This book in effect treats 
three types of problems.  

The first type: one requires that a linear combination of the distances of 
a variable point to given points be a given area. 

The first proposition of the second book illustrates this. Fermat states 
the proposition as follows:  

If some given points are joined by straight lines to one and the same point, 
and the difference of the squares of these straight lines be a given area, the 
point of conjunction will be on a straight line given in position (vol. III, 
p. 27). 

He establishes this proposition by synthesis for two points A and B. 
Next he considers two other cases, the last of which is stated thus:  

If one joins one point to three others given in a straight line, and if the sum 
of the squares of the two straight lines thus drawn exceeds the square of the 
third by a given area, the point will be on a circumference given in position 
(vol. III, p. 28). 

By using a more analytical language, that is, one different from 
Fermat’s, let us consider n points A1, A2, …, An on a straight line D and the 
coefficients λ1, …, λn. We are interested in the locus of points N of the 
plane such that  

 

(1)  Ti

i=1

n

� NAi
2 = c   with c being a given area. 

 
Let ai be the abscissa of Ai for i = 1, … , n and (x, y) the coordinates of 
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Condition (1) is therefore written 
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� � 0 , then (2) is the equation of a circle whose center is on the 

straight line D, with the abscissa  
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and whose radius r is given by 
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This circle is real if the second member is positive, and it is reduced to 

its center, the barycenter of points Ai, when Ti ai U a( )
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of a straight line perpendicular to D at the abscissa point with the ratio  
 

Tiai
2 U c

i=1

n

�

2 Tiai

i=1

n

�
. 

 
As we have seen, Fermat begins by considering the cases with: n = 2, 

λ1 = 1, λ2 = –1, which yields a straight line perpendicular to D at the 
abscissa point  

a1
2 � a2
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Next he considers the case with: n = 3, λ1 = λ2 = 1 and λ3 = –1, which 

yields a circle whose center has the abscissa a1 + a2 � a3 = a  and the square of 
the radius is  

 



310 PART I: ALGEBRA 

c� a1 � a( )2
� a2 � a( )2

+ a3 � a( )2
= c + 2a3

2 + 2a1a2 � 2a1a3 � 2a2a3.   

 
 Fermat’s demonstration is equivalent to the preceding calculation, but 

without using algebra.  
In Proposition 5 of the second book, he treats a problem of the same 

type in which n is any number and all the λi are equal to 1. 
 
In the second proposition – which is the 9th of The Knowns – Fermat 

establishes that the locus of the points equidistant to two given points is the 
mediatrix of these two points (this is Proposition 8 of The Knowns); and 
next that the locus of points, the ratio of whose distances to two given 
points is a circle centered on the straight line joining these two points (the 
circle of Apollonius; this is Proposition 9 of The Knowns). 

It is, moreover, plausible to think that these last propositions inspired 
the foregoing ones, which are extensions of them. 

 
The second type: One requires that a linear combination of the squares 

of the distances from the variable point to given points be a given area 
equal to the product of the abscissa of the variable point by the given 
segment. 

Finally, in the third type, the power of the variable point in relation to a 
given circle is equal to the square of the distance of this point to a given 
point G. If one considers, instead of point G, a second circle, the problem 
becomes the quest for the locus of points E, whose powers in relation to 
two given circles are equal. We know that this locus is the radial axis of the 
two circles; in the problem that Fermat treats, one of the two circles is 
reduced to a point G, so that the locus is the radial axis of the bundle of 
circles containing the circle of diameter AB and of which G is one of the 
limit points (that is, a point-circle).16 

 
Recall that, according to Fermat himself, the second part of the De 

locis planis was completed in 1629. Algebra does not enter into it, even 
though the presentation could at the very least have been lightened by 
drawing on algebraic notation. This entire section is in the style of 
geometrical calculation, with this difference, that the equalities and the 
operations on geometrical quantities are written with the signs of arithmetic 
( =, +, –, …). In the whole of his book, Fermat is doing the work of a 
geometer informed by algebra, along the lines of his distant predecessor 

 
16 Ibid. 
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Ibn al-Haytham. Both men intended to put effort into this field of research 
on geometrical loci, notably by means of pointwise transformations. Thus 
inflected, this research will lend itself to algebraic treatment.  

 
 

2. THE EQUATIONS OF GEOMETRICAL LOCI 
 
In the obituary of Fermat that appeared in Journal des Savants in 

February 1665, that is, less than a month after his death, one reads:  

An introduction to loci, both plane and solid, which is an analytical treatise 
concerning the solution of problems seen before M. Descartes published 
anything on the subject.  

This short passage situates clearly and precisely the Ad locos planos et 
solidos isagoge. The author of the obituary tells us that it is an analytical 
work (that is, algebraic) written independently of Descartes’s Géométrie. 
These two assertions seem to be incontestable. It remains to find out 
precisely what Fermat wanted to accomplish in this work, which he himself 
placed both in continuity and discontinuity with De locis planis. Fermat 
himself answers this question in the preamble of the treatise:  

We therefore subject this theory (of plane and solid loci) to an analysis that 
is proper and peculiar to it, and which opens a general path to research on it 
(vol. III, p. 85).  

Here, there is no ambiguity about the project: to find the equations of 
curves – the polynomial equations and only them – between two unknown 
quantities. Fermat himself phrases it as follows:  

Whenever in a final equation one finds two unknown quantities, one has a 
locus, with the extremity of one of them describing a line that is either 
straight or curved. The straight line is simple and unique in its genus; the 
types of curves are indefinite in number, circle, parabola, hyperbola, ellipse, 
etc. (vol. III, p. 85).  

The treatise is therefore explicitly aimed at finding the polynomial 
equations of curves, which exist in an infinite number of types. But the title 
of the treatise effectively points only to plane and solid loci. Nevertheless, 
for Fermat there is no gap between these two statements, since everything 
reduces to these last two cases. He defines loci thus:  

Whenever the extremity of an unknown quantity that describes the locus 
follows a straight or circular line, the locus is called plane; if it describes a 
parabola, a hyperbola or an ellipse, the locus is called solid; for the other 
curves, one calls it the locus of line. We will add nothing about this last case 
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for knowledge of the locus of line is very easily deduced by means of 
reductions from the study of plane and solid loci (vol. III, p. 85). 

In this treatise at least, Fermat does not attempt to elaborate a general 
theory of curves, unlike Descartes in his Géométrie. He offers neither any 
means of isolating algebraic curves a priori, nor any method of tracing or 
drawing them. Despite his allusions to other loci, the only curves that 
concern him here are those encountered in De locis planis. 

In the Ad locos planos et solidos isagoge, he introduces first the 
concepts of coordinates and of degree:  

To set up the equations, it is convenient to take two unknown quantities 
under a given angle that we will ordinarily assume to be right, and to take as 
given the position and one extremity of one of them; if neither of the two 
unknown quantities exceeds the square, the locus will be plane or solid (vol. 
III, p. 86). 

Fermat begins with the equations of the first degree in x and y, and 
shows that the first degree relation with respect to these coordinates defines 
a straight line. He considers, successively, the case in which the straight 
line passes through the origin of the coordinates, ax = by, then the general 
case in which the straight line passes through a given point on the axis of 
the abscissas, c – ax = by. Note, however, that throughout the demons-
tration, he uses the Euclidean language of the Data, and the similarity of 
triangles. Moreover, he scrupulously respects homogeneity. He shares this 
practice with such predecessors as al-Khayyām and al-Ṭūsī.17 

With the equation of the straight line in hand, Fermat draws from it, he 
writes, ‘the very beautiful proposition that we have discovered by this 
means’; and he proposes the statement that follows without the slightest 
demonstration:  

Given any number of straight lines given in position to which one draws 
from one and the same point, straight lines under given angles; if the sum of 
the products of the straight lines thus drawn by the given ones is equal to a 
given area, the point from which one draws them will be on one of the 
straight lines given in position (vol. III, p. 87). 

Indeed, this is the locus of points M such that 
 

ai

i=1

n

� �  MHi  = constant, 

 
17 He proceeds similarly when he takes Elements VI.26 as an example of searching 

for the maximum. To reduce the research of these algebraists to the Data and the 
Elements on account of this practice is both naive and wrong.  
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with ai the given segments, MHi the segments drawn under the given angles 
to the given lines di, where i = 1, 2, …, n; in a different notation, this is 
rewritten 
 

Ti

i=1

n

� x cos�i + ysin�i U �i( )  = constant, 

 
with ρi being the distance of point M with coordinates (x, y) to the straight 
line di; �i = x cos�i + ysin�i . 

 
Fermat next moves on to the second degree and begins with the 

equation xy = k2, the equation of a hyperbola referred to its asymptotes. 
During this demonstration, he relies on Book II, Proposition 12 of 
Apollonius’s Conics. To this equation, he reduces by translation of the 
asymptotes the equation of the form 

 
k2 + xy = ax + by. 

 
Next he considers the case of a second degree equation homogeneous 

in x and y and finds as the locus of points a straight line. He should, 
however, have found either two or none. 

The next equation that he considers is x2 = ay. He recognizes it as a 
parabola whose latus rectum is a. He is obviously drawing on Proposition 
I.11 of the Conics. By a suitable translation, he reduces this equation to the 
equation k2 – x2 = ay. Likewise the equation k2 + x2 = ay yields a parabola.  

Fermat then takes up the case in which x2 and y2 are both present in the 
equation. For example, r2 – x2 = y2 yields a circle if the ordinates are 
perpendicular to the axis of the abscissas. To this equation he reduces all 
those that contain x2 and y2 with the same coefficient, and in addition, terms 
in x and y as well as a constant term; to do so, he uses a suitable translation 
on the abscissas and on the ordinates.  

Next, he gives the general equation of the circle starting from the 
preceding equation with a change of axes:  

 
(a + x)2 + (b + y)2 = R2 with R2 = r2 + a2 + b2; 

 
he then points out:  

Using a similar reasoning, one will reduce to it all similar equations. By 
means of this procedure, we have established all the propositions of the 
second book of Apollonius On plane loci, and we have demonstrated that the 
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first six take hold for any points whatsoever, which is rather remarkable and 
was perhaps unknown to Apollonius (vol. III, p. 92). 

Next Fermat gives the equation of the ellipse under the form r2 � x2

y2
= k , 

k being a given ratio. Here too, is a direct application of Proposition I.12 of 
the Conics. He explains that one can reduce to this equation all cases in 
which the coefficients of x2 and of y2 are not equal – while sharing the same 
sign if they are in the same member – or else the case in which the angle of 
the ordinates is not right. In the contrary case, one has a circle. 

He goes on to consider the equation of the hyperbola in the form 
r2 + x2

y2
= k , k being a given ratio. Here, too, he applies Proposition I.13 of 

the Conics.  
Fermat reduces to this equation all those where x2 and y2 appear with 

coefficients having contrary signs eventually associated with terms of 
lower degrees. 

The last case that he treats is the most difficult: terms in x2, y2 and in xy 
appear in the equation of the second degree along with terms of lower 
degrees.  

He treats 
r2 – 2x2 = 2xy + y2; 

 
by adding x2 to each side, he makes (x + y)2 appear; one obtains 

 
r2 – x2 = (x + y)2 = Y2; 

 
one thus has a new ordinate Y and a new axis of abscissa and the equation 
represents an ellipse. 

In other words, perhaps under the influence of Diophantine analysis, 
Fermat intends to bring out the square of a linear form, in order to reduce it 
to the preceding cases. 

The general equation is written 
 
(1) αx2 + 2βxy + γy2 + δx + εy + θ = 0 
 

yielding 
 

(2) (αγ – β2) x2 + (βx + γy)2 + γδx + γεy + γθ = 0. 
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The quantity βx + γy = Y is posited as a new ordinate relative to an axis 
βx + γy = 0; depending on the sign of αγ – β2, the equation 

 
(αγ – β2) x2 + Y2 + (γδ – βε)x + εY + γθ = 0 

 
represents an ellipse or a hyperbola in the new coordinate system (x, Y). 

We have just witnessed an example of a change of coordinate axes, and 
Fermat tells us, this reduces ‘to a triangle of a given species’ (vol. III, 
p. 95). 

‘As the crowning point of this Treatise’, Fermat states a problem 
analogous to that of Pappus in which one seeks the locus of points such that 
a linear combination of squares of their distances to straight lines be a 
constant. This locus is obviously a conic.  

The reading of the Isagoge brilliantly shows us its intimate connections 
with the De locis planis. Despite his allusion to an indefinite number of 
geometrical loci, Fermat in fact treats only the loci encountered in the latter 
book: straight line, circle, conic section. One might add that his systematic 
use of the method of translation of coordinate axes, of multiplication of 
coordinates of numerical factors, is nothing but an algebraic translation of 
the method of pointwise transformations that he puts to work in the De 
locis planis. It is in this sense that the Isagoge continues the De locis 
planis. But, whereas in the latter, Fermat is concerned with the geometrical 
properties of these loci as well as their transformation, in the former his 
main effort consists in defining these same loci by their equations. Better 
yet, he presents this translation in a manner deliberately ordered by the 
degrees of these equations. Finally, his exposition gradually evolves in 
order to characterize plane and solid geometrical loci. Herein, it seems to 
me, resides the novelty of the Isagoge. 

To understand Fermat’s procedure and the extent of his project in the 
Isagoge is to grasp his intention and therefore the exact meaning of ‘this 
discovery’ to which he refers and that allowed him to move from the De 
locis planis to the Isagoge. One might think that his intention here would 
have been to translate Apollonius’s Conics into Logistica speciosa of 
Viète. This seems an oversized conjecture in which to dress the Isagoge 
project. If this had indeed been Fermat’s aim, one should find in the 
Isagoge the propositions of the Conics translated one after the other in 
algebraic terms. Such an algebraic translation of these geometrical loci – a 
partial one at least – had been carried out six centuries earlier with the 
precise goal of studying the intersection of conic sections, with the goal of 
elaborating a geometrical theory of algebraic equations of the first three 
degrees. To elaborate such a theory, one begins, following the example of 
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al-Khayyām, with an a priori determination of all the forms of these 
equations, a determination aimed at designating for each one the two 
curves that suit it. In the Isagoge, however, a completely different project 
appears: if one translates each locus into a polynomial equation with two 
unknowns, it is essentially to characterize the curve. Everything indicates, 
moreover, that the role of the polynomial equation is restricted to this 
characterization insofar as Fermat does not yet use it to deduce other 
properties of the curve. 

Finally, one might think that Fermat’s inspiration in the Isagoge 
originates in an intuitive grasp of the relations between Diophantine 
analysis and polynomial equations with two unknowns. We know that he 
was interested in Viète’s algebra in relation to Diophantine analysis; it is 
clearly the latter, both for the concepts and for the notations, that plays the 
role of intermediary between Viète’s algebra and the research in which 
Fermat was engaged, starting with the Ad locos planos. The Isagoge is thus 
the product of this combination.  

Under these conditions, how ought one situate the Isagoge in the 
history of algebraic geometry? Considered from upstream, it is at once 
ahead of and behind the corresponding part of al-Ṭūsī’s work. Both men 
translate the locus by means of a polynomial equation; but whereas al-Ṭūsī 
undertakes this translation to determine the positive roots of algebraic 
equations, Fermat does so for its own sake in an algebraic study of 
geometrical loci. Nevertheless, al-Ṭūsī already used the equation to deduce 
certain properties of the curve: the existence of a maximum for example – 
which Fermat does not do. Seen from downstream, so to speak, the Isagoge 
remains well on this side of Descartes’s Géométrie. Whereas the latter 
attempts to elaborate a theory of algebraic curves and to equip himself with 
the means to obtain it (the distinction between mechanical and geometrical, 
for example), Fermat seems to be dealing with a problem that is still 
specific.  

 
 

3. SOLUTION OF EQUATIONS BY THE INTERSECTION OF TWO CURVES 
 
A little later, Fermat adds to the Isagoge an Appendix completely 

devoted to the question: ‘How the solution of solid problems can be 
deduced from what we have said, and in an elegant manner’ (vol. III, 
p. 96). The date of this Appendix is important for two reasons; it marks 
Fermat’s encounter with the geometrical theory of algebraic equations, 
which is missing from the Isagoge, and it raises the question of his 
acquaintance with Cartesian research in this domain, and particularly with 
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the Géométrie. It is important to remember that in 1619 Descartes had 
already begun to focus on the solution of some cubic equations by using 
the intersection of conic curves. Also, in 1628 he had divulged his solution 
of all solid problems by this means, and he had taken up in the Géométrie 
both this solution and the theory that undergirds it. It would be surprising if 
Fermat had heard not the slightest echo of this Cartesian research before he 
received a copy of the Géométrie in December of 1637. Moreover, Fermat 
did not discuss this Appendix in his correspondence until his letter of 16 

February 1638 to Mersenne.18 One final remark of considerable interest: 
like Descartes in the Géométrie, Fermat claims that, for cubic and 
biquadratic equations, one can restrict oneself to a parabola and a circle. 
Incidentally, this restriction is a novelty that goes beyond al-Khayyām, who 
first elaborated this theory of equations. 

Since it was drafted after the Isagoge but before the beginning of 1638 
(and therefore probably before the end of 1637), the Appendix was 
apparently able to benefit, whether directly or indirectly, from Descartes’s 
research on the theory of equations. The idea expressed in the Appendix is 
the following:  

The most convenient is to determine the question by means of two loci 
equations, because two line-loci given in position mutually intersect, and the 
point of intersection, which is given in position reduces the matter of the 
indefinite to proper terms (vol. III, pp. 96–7).  

 
Fermat immediately gives a first example: 
 

x3 + bx2 = bc2,  
 

which he reduces to x2 + bx = by (equation of a parabola) and to c2 = xy 
(equation of an equilateral hyperbola). The solutions of the equation are 
therefore given by the abscissas of the points of intersection of the two 
curves. Fermat writes ‘the method will be the same for all cubic equations’ 
(vol. III, p. 97). For the biquadratic equations, he considers the example: 
x4 + b3x + c2x2 = d4 which, by setting x4 equal to d4 – b3x – c2x2, he reduces 

to c2y2, whence x2 = cy (equation of a parabola) and y2 =
d 4 � b3x

c2
� x2

 
(equation of a circle). The roots are therefore given by the abscissas of the 
points of intersection of a parabola and a circle.  

 
18 ‘I would be very pleased to know what Mr. de Roberval and Pascal think of my 

Topical Isagoge and of the Appendix, if they have seen them both’ (vol. II, p. 134). 
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He notes that ‘this same procedure can be used to solve all biquadratic 
equations; for, by the method of Viète (Cap. I: De emend.), one can make 
the affected term of the cube disappear, and by putting the unknown 
biquadratic term on one side, and all the remaining terms on the other, one 
will solve the question by means of a parabola and a circle or a hyperbola’ 
(vol. III, pp. 97–8). 

Next he returns to the classical problem of inserting two mean 
proportionals and he finds anew the construction that Eutocius attributed to 
Menaechmus. He gives a first solution using a parabola and a hyperbola, 
and a second solution using two parabolas. And he reminds the reader that 
these two solutions appear in Eutocius’s commentary on Archimedes’ 
Sphere and Cylinder. 

Fermat then comes to one of the central points of the Appendix: ‘the 
construction of all cubic and biquadratic problems by means of a parabola 
and a circle’ (vol. III, p. 99). He explains that, in order to solve a fourth- 
degree equation, one must first eliminate the cubic term. 

Fermat explains his method with an example that in no way diminishes 
its generality. He consider the biquadratic equation  

 
x4 – a3x = b4 

 
which is rewritten 

x4 = a3x + b4 = f(x). 
 
Assume 

g(x) = (x2 – c2)2 = x4 – 2c2x2 + c4 = f(x) – 2c2x2 + c4. 
 
Let us also assume 

2c2 = n2 and g(x) = n2y2,  
 

whence 
    x2 – c2 = ny   (the equation of a parabola). 
 

Moreover 
g(x) = a3x + b4 – 2c2x2 + c4, 

 
whence 

    c4

n2
� x2 +

a3x + b4

n2
= y2

 
(the equation of a circle). 
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Fermat reminds the reader that his method is general and works for the 
biquadratic equation, provided that one eliminate the third-degree term and, 
for the cubic equation, provided one eliminate the second-degree term. This 
technique of affine transformation was known and practiced since al-Ṭūsī. 

Like Descartes, Fermat reduces the solution of cubic and biquadratic 
equations to the intersections of parabolas and circles. But in neither the 
Isagoge nor the Appendix does he say anything about the cubic curve itself. 
Moreover, like Descartes but unlike al-Ṭūsī, he does not go on to discuss 
the existence of the points of intersection.  

 
 
4. THE SOLUTION OF ALGEBRAIC EQUATIONS AND THE STUDY OF 

ALGEBRAIC CURVES  
 
Much later, Fermat turns to the study of equations of algebraic curves. 

He enters through the wide gate, by way of a critique of the classification 
of equations and of curves proposed by Descartes in his Géométrie. To 
attack the Cartesian classification, however, is to reconsider several ideas 
in the discipline. The issue is to know in which direction such an approach 
could modify the project itself.  

 Fermat presents his critique in two texts with a polemical tone. In the 
first and by far the more substantial, he challenges the Cartesians. From his 
tone and word choice, one can infer that Descartes was no longer alive. It 
was therefore after 1650 that Fermat writes his fundamental treatise, the 
Dissertatio tripartita. The second text is a letter that Fermat addresses to 
Digby, picking up the same ideas as those of the Dissertatio, sometimes in 
equivalent phrasings.19 In the first lines of the Dissertatio, he addresses the 
Cartesians as follows:  

It seems paradoxical to say that, even in Geometry, Descartes was only a 
man; but to recognize this, let the most subtle Cartesians check to see if there 
is not an imperfection in their master’s distribution of curved lines into 
certain classes or degrees, and whether one does not need to adopt a 
classification that is more satisfactory and conforms more to the true laws of 
geometrical Analysis (vol. III, p. 109). 

At first sight, then, the Dissertatio presents itself as a book against 
Descartes. Nevertheless, a deeper examination brings us face to face with 

 
19 Rediscovered by J. E. Hofmann, this letter is reproduced and translated in Pierre 

Fermat: La Théorie des nombres, text translated by P. Tannery, introduction and 
commentary by R. Rashed, Ch. Houzel and G. Christol, Paris, Blanchard, 1999, 
pp. 491–7. 
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the treatise in which one can feel the impact of Descartes’s Géométrie most 
strongly and most massively. Is this a paradoxical situation? Not at all, 
since this treatise is a critical commentary of several of Descartes’s ideas. 
In short, this is a text written in relation to Descartes and against him. Now 
in similar cases, it sometimes happens that one attributes more in order to 
criticize more and, by thus skewing the criticized propositions, the critique 
goes off target. It seems that Fermat did indeed fall into this trap. But for 
our purposes, it matters much more to learn the fate of the Cartesian 
project, and of algebraic geometry more generally, once they came into the 
hands of someone highly trained up to that point in the study of the 
equations of loci, namely, the hands of Fermat. 

We alluded earlier to the two projects that together constituted research 
in algebraic geometry from al-Khayyām to Descartes: to solve equations by 
means of curves, and to study the curves by means of their equations. The 
execution of these projects had already led al-Khayyām, and especially al-
Ṭūsī to distinguish two classes of equations and to raise questions about 
both the possibility and the means of reducing these equations the one to 
the other. It was at this point that mathematicians distinguished between the 
equations of plane problems and those of solid problems, and proceeded to 
reduce biquadratic equations to cubic equations. It was thus known that 
plane problems are translatable into equations of the first two degrees, and 
that a second-degree equation reduces to one of the first degree by means 
of an auxiliary construction using the straightedge and compass.20 

 
It was also known that solid problems can be translated by cubic and 

biquadratic equations in order to reduce the biquadratic equation to the 
cubic equation, and that one solves cubic equations with the intersection of 
two second-degree curves. In Chapter IV of his De emendatione 
æquationum, Viète proposed a method called ‘the climactic paraplerosis’ 
and Descartes presented an equivalent procedure, of which Fermat claimed 
that ‘Descartes plagiarized it (from Viète)’.21  

 
20 Indeed, the equation x2 + bx = c  reduces to x + b

2

⎛
⎝
⎜

⎞
⎠
⎟

2

= c − b2

4
; the point is to 

construct the square root of c − b2

4
, that is, the mean proportional between the unit length 

and c − b2

4
. These equations of the first two degrees therefore do not present the slightest 

problem. 
21 Pierre Fermat: La Théorie des nombres, p. 495. The methods of Viète and 

Descartes amount to the following derivation: Given 
x4 + a1x

3 + a2x2 + a3x + a4 = 0 . 
(Cont. on next page) 
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In all of this Fermat concedes that he is following Descartes and his 
predecessors when they distinguish between planes, solids, and supersolids, 
when they translate them by means of equations, and finally when they 
seek a solution involving the straightedge and compass for planes, use 
conic sections for solids, or proceed by means of curves of a higher degree 
for supersolid. Fermat believes he is still following Descartes when he 
writes:  

                                         

(Cont.) Granting that x = t �
a1

4
, it follows that 

 

t 4 + a2 �
3a1

2

8

�

V
W

X

Y
Zt2 + a3 �

a1a2

2
+

a1
3

8

�

V
W

X

Y
Zt + a4 �

a1a3

4
+

a1
2a2

16
�

3a1
4

256
= 0 ; 

 
given 

t 4 + at2 + bt + c = 0 , 
 

where 

a = a2 �
3a1

2

8
, b = a3 �

a1a2

2
+

a1
3

8
, c = a4 �

a1a3

4
+

a1
2a2

16
�

3a1
4

256
. 

 
One then finds the coefficients u, v, v′ such that 
 

t 4 + at2 + bt + c = t2 + ut + v( ) t2 �ut + v '( ) = t 4 + v + v '�u2( ) t2 + u v '� v( ) t + vv ' . 

 
One must then have v + v′ – u2 = a, u(v′ – v) = b, vv′ = c; assuming that u ≠ 0, one 

has 

v + v ' = a + u2, v '� v =
b

u
,
 
 

therefore 

v ' =
1

2
a + u2 +

b

u

�

�
�

�

�
� , v =

1

2
a + u2 �

b

u

�

V
W

X

Y
Z

 
and vv ' =

1

4
a + u2( )

2
�

b2

u2

�

V
W

X

Y
Z  =c; 

 
assuming that u2 = w , one obtains the following equation in w:  
 

w3 + 2aw2 + a2 � 4c( )w� b2 = 0 . 

The solution of this cubic equation yields the value u2 = w , whence u, then v and 
v′. In order to obtain t one must solve two second degree equations. 

For the case in which u = 0, one has b = 0 and the equation is rewritten (t2)2 + at2 + 
c = 0, which is quadratic in t2. 
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Likewise the analyst will in the manner of Viète or of Descartes, albeit with 
a bit more difficulty, be able to reduce the bicubic equation to the 
quadratocubic or, in other words, the sixth-degree equation to the fifth- 
degree equation (vol. III, p. 110). 

It is precisely at this stage that, even as he follows Descartes, Fermat 
separates himself from the latter. He writes:  

But, concerning the fact that, in the aforecited cases in which there is only 
one unknown quantity, the equations of even degree are reduced to equations 
of the immediately inferior odd degree, Descartes stated with confidence 
(page 323 of the Géométrie that he published in French) that it was 
absolutely the same for equations with two unknown quantities. For such are 
the equations that constitute curved lines; now in these equations, not only 
does the reduction or lowering in question not work, as Descartes claimed, 
but also analysts will recognize it to be impossible (vol. III, p. 110–11). 

Here we are in the thick of a polemic and therefore at the heart of 
Fermat’s research. He defends two theses against Descartes. First of all, he 
claims that one can always reduce an equation of one variable of degree 
2n + 2 to an equation of degree 2n + 1. He concedes that Descartes thought 
this indeed to be so, but with this crucial difference that the latter wrongly 
believed that the rule is also valid for the equations of algebraic curves. To 
put the point in terms that were unknown to Fermat, Descartes would have 
confused a principal ring and a factorial ring. A reading of the Géométrie, 
however, does not seem to vindicate Fermat.  

[…] there is a general rule, writes Descartes, for reducing to a cube all the 
difficulties of the square of the square, and to the sursolid (x5) all those of the 
square of the cube, in such a way that we need not consider [the higher ones] 
more composite than the lower.22 

 The text of Descartes evidently develops shy of Fermat’s commentary 
on it. In contrast, one finds a later critique, justified this time, from the pen 
of Jacques Bernoulli, concerning the lowering of the sixth power to the 
fifth.23 Perhaps Fermat drew inspiration from Descartes’s statement in 
order to go much farther and to offer such a general formulation, which 
from Galois’s theory we now know to be incorrect: the symmetrical group 
of degree 2n + 2 does not generally contain a subgroup with the index 
2n + 1. 

 

 
22 Ed. Adam-Tannery, vol. VI, pp. 395–6; transl. Olscamp modified, p. 195. 
23

 Jacques Bernoulli, Opera, 1744, vol. II, pp. 676–7. 
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Did the author of the Géométrie believe that the reduction was possible 
for algebraic curves, as Fermat maintained? Here again, it seems that the 
latter forces somewhat Descartes’s thought. This is what Descartes himself 
writes:  

[…] I have constructed all plane problems by the intersection of a circle with 
a straight line, and solid problems also by the intersection of a circle with a 
parabola, and finally in the same way all problems which are only one 
degree more complex by making a circle intersect with a line which is only 
one degree more complex than the parabola; we have only to follow the 
same method in order to construct all problems that are more complex, to 
infinity. For in the matter of mathematical progression, once we have the 
first two or three terms, it is not difficult to find the others.24 

Although they were not justified, the critiques that Fermat formulated 
made it possible for him to distinguish two classes of algebraic equations: 
those that are ‘constitutive of curved lines’, and those with one unknown. 
Long concerned, as we have seen, with the equations of geometrical loci, 
Fermat mobilizes this distinction in order to define curves by their 
equations, and much more sharply than his predecessors had done. By so 
doing, he contributes to the realization of Descartes’s project. 

Next, Fermat states that every equation of degree 2n + 1 or of degree 
2n + 2 is solved by the intersection of curves of degree n + 1. Here, we are 
on the road that leads to the reciprocal of Bézout’s theorem. Later, in 1688, 
Jacques Bernoulli will state that, for an equation of degree less than or 
equal to n2, two curves of degree n are sufficient;25 and he notes in 
particular that cubics would allow for the solution of equations up to the 9th 
degree.  

The method that Fermat proposes to solve equations of degree 2n + 1 
or of degree 2n + 2 draws singularly upon Diophantine analysis. To my 
knowledge, no one before him had used the techniques of this analysis in 
algebraic geometry. Here are the rules of his method. 

1° One reduces the equation to an even degree, that is, one reduces the 
equation of degree 2n + 1 to the degree 2n + 2, by multiplying by a linear 
factor, if necessary.  

2° One eliminates the first-degree term in order to put the equation in 
the form  

 

 
24 Olscamp translation, p. 269; ed. Adam-Tannery, vol. VI, p. 485. 
25 Jacques Bernoulli, Animadversio in geometriam cartesianam et constructio 

quorundam problematum hypersolidorum, Acta Eruditorum, June1688, pp. 323–30; and 
see Opera, vol. I, pp. 343 ff. 
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  (1) x2n+2 + a1x
2n+1 +…+ a2nx2 = p, with p � 0 . 

 
3° One looks for a squared expression such that, when set equal to the 

left side of (1), it brings about the maximum simplification on the side with 
the highest powers of x; thus 

 
x2n+2 + a1x

2n+1 +…+ a2nx2 = xn+1 + b1x
n +…+ bn�2x3 + an�1xy( ) . 

 
We can determine the coefficients b1,…, bn�2( )  so as to eliminate all the 

terms up to xn+2  inclusive. The term x2n+2  disappears on its own. Next, one 

takes b1 =
a1

2
, 2b2 + b1

2 = a2, b3 + b1b2 =
a3

2
,…  

 
Having carried out the simplification, the remaining term with the 

highest degree is xn+2y . But since x2 is a coefficient, the result can be 
written in the form  

 
an�1

2 y2 + yPn x( ) +Qn x( ) = 0 , 

 
in which P and Q are two polynomials of, at most, degree n. This is the 
equation of the first curve. The second curve of degree n + 1 has as the 
equation 

y = Rn x( ) +
p

x
, 

 
in which Rn is a polynomial of degree n.  

At least theoretically, therefore, the two curves are easy to construct. 
But it remains to be noted that, in the equation of the first curve, the 
ordinate of y appears only in degree 2, and in degree 1 in the equation of 
the second curve. Moreover, according to Bézout’s theorem, these two 
curves have (n + 1)2 points in common; there are therefore n2 – 1 excess 
solutions that do not correspond to roots of the proposed equation. These 
solutions coincide with the point at infinity that is common to the two 
curves in the direction of the y-axis. 

Without a doubt, the origins of Fermat’s procedure here lies in 
Diophantine analysis. It is a technique to which he himself appeals in order 
to eliminate the higher powers, as one can read in the Inventum novum. 
Diophantus had already appealed to this procedure in his Arithmetic: it is 
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the method of chords.26 Note, however, that in contrast to Diophantus, 
Fermat begins with an equation in one unknown. At the end of the 10th 
century, the mathematician al-Karajī proceeded in this fashion to extract 
the square root of a polynomial assumed to be a perfect square. Whereas 
for him, the indeterminate in it represented the sequel of the development 
he was seeking, for Fermat it is the ordinate of a curve’s moving point. 

To illustrate his method, Fermat provides two examples. He begins by 
treating a 6th-degree equation and defines two cubic curves to construct its 
solutions. Next, he considers an 8th-degree equation and defines curves of 
the 4th degree. He concludes this inquiry by recalling the goal that he was 
pursuing all along:  

We thus have the solution and the exact and simplest possible construction 
of the problems of Geometry by loci originating, as the case may be, from 
curves of various species and appropriate to these problems. The analyst 
will, however, be free to vary these curves provided that he always stays in 
the class that is natural for the problems, by solving those of the 8th and 7th 
degree by curves of the 4th; those of 10th and 9th by curves of the 5th; those of 
the 12th and 11th by curves of the 6th and so on indefinitely with a uniform 
method (vol. III, p. 116). 

This important text, which suggests that Fermat saw farther than he 
said he did, concludes with a critique of Descartes. In short, research on the 
solutions of algebraic equations takes place by means of the intersection of 
curves, provided that these are of the smallest possible degree. Better yet, 
the degree of these curves increases uniformly with the degree of the 
equation. The general rule is that, for an equation of degree 2n + 2, the 
degree of each of the two curves is n + 1. Moreover, says Fermat, ‘the 
analyst will be free to vary these curves’. Even if this freedom is limited by 
the preceding conditions, he believes – this is the important point – that for 
‘an infinity of special cases’, as he states,27 one can find curves of 
considerably lower degree. As an example, he gives a problem intimately 
tied to the very beginnings of algebraic geometry: the insertion of mean 
proportionals between two given magnitudes. The challenge now is to 
insert any number whatever of mean proportionals. The first example he 
brings up is that of six mean proportionals between two segments a and b. 

Fermat thus had to solve the equation 
 

x7 = a6b; 

 
26 Diophante: Les Arithmétiques, Tome III: Livre IV, text established and translated 

by R. Rashed, Collection des Universités de France, Paris, Les Belles Lettres, 1984. 
27 Vol. III, p. 117. 
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using the same method, he makes the two members equal to x4y2b, and 
obtains the two curves x3 = by2 and x2y = a3, from which two parabolas are 
easy to construct.  

He goes on to consider the insertion of 12 means, and solves the 
equation  

x13 = a12b, 

 
by making the two members equal to x8y4b, whence x5 = y4b and x2y = a3; 
he starts over and makes the two members equal to x9y3b, whence  

 
x4 = y3b  and  x3y – a4; 

 
that is, two curves of only the fourth degree.  

He continues by discussing the insertion of 30, 72, … means. The 
method is the same, and he knows it is general. This is how it works. To 
insert p mean proportionals, it is necessary to solve  

 
     xp = k,  where k ≠ 0. 

 
We can assume that p is a prime number; otherwise, as Fermat 

indicates, it is reducible to an equation of lower degree. Let us apply the 
same method and make the two members of the equation equal to  

 
xqr yr ; 

 
the exponents are chosen from the lowest possible degree. One thus has 
two curves defined by  

x p−qr = yr   and  xqy = k
1
r , 

 
respectively of degrees sup (p – qr, r) and q + 1. 

In all the examples that Fermat treats, p – 1 = 6, 12, 30, 72, is therefore 
the product of two successive integers q and q + 1, which allows one to 
choose r = q; one then has sup (p – qr, r) = q + 1, the degree common to 
the two curves  

xq+1 = yq ,  xqy = k
1
q . 

 
If p�1= n2 , one can then take q = n – 1 and r = n, which leads to the 

curves with the equations of, respectively,  
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 xn+1 = y2  and xn�1y = k
1
n , 

 
of degree n + 1 and n respectively. 

Fermat then returns to his ever-present preoccupation: to determine the 
ratio between the degree of the equation and that of the curves. He thinks 
he can show that this ratio can be as large as one wishes. He writes:  

There is no difficulty in finding a procedure allowing one to construct a 
problem the degree of which may be in a ratio larger than any given ratio 
with the degree of the curves that serve to solve it (vol. III, p. 120). 

Now, according to the preceding, if p is a prime of the form n2 + 1, this 

ratio is n2 +1

n +1
. But it is not yet known if there exists an infinity of prime 

numbers of this form. Fermat justifies this infinity by means of his 
conjecture; ‘the numbers obtained by adding unity to the successive 
squares that one forms by starting from 2 are always prime’, that is, that the 
numbers of the form 22� +1 will be prime. Since Euler, however, we know 

that this conjecture is wrong, because 225

+1( )  is divisible by 641. 

As one can clearly see, the goal of the Dissertatio is to find 
constructions for the solutions of algebraic equations by means of curves of 
the smallest possible degree. Fermat hopes that the degree of auxiliary 
curves increases more slowly than the degree of the equation to be solved. 
Here we are still far from Bézout’s theorem about the intersection of 
algebraic curves; the systematic study of algebraic curves by means of their 
equation is not yet the order of the day. 

 
We have just followed succinctly Fermat’s road in algebraic geometry. 

We have yet to raise the question of the exact significance of the path that 
leads from Fermat’s De locis planis to the Dissertatio. Perhaps we will 
then be in a position to place Fermat’s contribution in his historical 
perspective. The question is all the more important because some will 
interpret this pilgrimage in terms of an encounter between Apollonius and 
Viète, between the Conics and the Logistica speciosa. It is true that, at first 
glance, Fermat’s first research efforts on the equations of loci corroborate 
such an interpretation, but the latter soon reveals itself to be insufficient for 
whomever wishes to understand Fermat’s acts and aims. After all, this 
encounter between the Conics and algebra – the founding act of algebraic 
geometry – had already occurred six centuries earlier when the 10th-century 
mathematicians al-Māhānī, al-Qūhī, and Abū al-Jūd set to work on the 
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edification of this new chapter in mathematics, which al-Khayyām 
systematized in the 11th century. Now Fermat’s contribution does not 
reduce to that of al-Khayyām. We believe that we have demonstrated that, 
if there was an encounter, it was between the writings of Descartes, notably 
his Géométrie, and a geometry in renewal, a geometry concerned with the 
transformations of the loci of points (notably straight lines and conics) of 
Diophantine analysis cultivated by both Fermat’s predecessors and by 
himself. Viète was no doubt present but mainly through his notation and 
his research in Diophantine analysis. It is therefore the confluence of these 
three traditions that makes it possible to shed light on the unfolding of 
Fermat’s research and to appreciate the direction that it took. Indeed, to 
forget only one of these traditions is a recipe for the complete 
miscomprehension of Fermat’s contribution.  

As we have seen, research on the pointwise transformation of loci 
began well before Fermat, in the writings of Ibn al-Haytham in particular, 
as his book The Knowns attests. In contrast to his predecessor, however, 
Fermat was not planning to develop merely one chapter in a geometry 
undergoing renewal; as he gradually advanced, thanks to his research he 
wanted to uncover all the equations of loci, notably of conics. It is precisely 
this orientation that prepared his work in algebraic geometry. That is, when 
under the influence of Descartes, he devoted himself to the theory of 
equations and algebraic curves. This encounter with Descartes made it 
possible for Fermat to innovate in the field. He was then in a position to 
build a bridge between two domains that heretofore had been separate, in 
order to make progress on bringing to fruition what had been Descartes’s 
project. Let us explain.  

Before Fermat, no one had related Diophantine analysis to algebraic 
geometry. Certainly Fermat himself does not give a geometrical 
interpretation of Diophantine analysis. Thus for him, for example, a 
method like that of the chord, on which he often relies and that he borrows 
from Diophantus’s Arithmetic, has no geometrical content. By contrast, he 
uses Diophantine methods to pursue his research in algebraic geometry, as 
we have already noted. Now this innovation distinguishes him from his 
predecessors as well as his contemporaries. In other words, as long as the 
curves that one studied algebraically were essentially reducible to conics 
alone, nothing demanded an explicit rapprochement between algebraic 
geometry and Diophantine analysis. This is precisely the situation of al-
Khayyām and even of al-Ṭūsī. By contrast, the mathematicians who were 
interested in Diophantine analysis outside of this tradition of algebraic 
geometry, either on account of their context or out of personal interest, 
obviously could not imagine such a rapprochement. In effect, they were 
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interested in the development either of abstract algebraic calculation (Abū 
Kāmil, al-Karajī, Bombelli, Viète...) or in number theory (al-Khunjandī, al-
Khāzin, Fibonacci in his Liber quadratorum, al-Yazdī…). It is Descartes 
who offers the conditions of possibility for this development: effectively 
the possibility of treating generally equations of any degree, and of treating 
more clearly and more algebraically an entire class of curves. It is therefore 
thanks to Descartes and to his theory of algebraic curves that Fermat was 
able to insert the Diophantine methods in algebraic geometry. It is precisely 
this investment that allowed him to go farther than Descartes himself in 
bringing the latter’s own project to fruition.  

Finally we point to another road that we have not discussed here, and 
that leads from al-Ṭūsī to Fermat: analytical research in algebraic geometry 
– that is, the study of curves by means of their equations. This research 
touches on maxima, minima, and the contacts of tangents.  
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 EUCLIDEAN, NEO-PYTHAGOREAN  
AND DIOPHANTINE ARITHMETICS: NEW METHODS  

IN NUMBER THEORY 
 

 
 

1. CLASSICAL NUMBER THEORY  
 
Beginning in the 9th century, there existed two very distinct kinds of 

arithmetic in Arabic. The first was called ḥisāb (calculation). In the books 
of ḥisāb, the authors examine successively the decimal system, the sexage-
simal system, elementary operations, the extraction of square, cubic, and 
even higher roots, some elements of algebra, the computation of areas and 
volumes, etc. The second kind of arithmetic constituted a domain that was 
inherited from Hellenistic mathematicians and was subsequently extended 
and transformed, notably under the effect of algebra. This arithmetic often 
presents itself either under its Greek name – al-arithmāṭīqī – when it 
concerns neo-Pythagorean arithmetic; or as ‘the arithmetic books’ (al-
maqālāt al-ʿadadiyya), when it concerns Books VII, VIII and IX of the 
Elements; or also with the name of Ṣināʿat al-ʿadad – the art of number or 
the arithmetic art – when it is concerned with Diophantus’s Arithmetic. 
Moreover, we know that before the end of the 9th century, one could read 
excellent translations of not only Euclid’s Elements, but also the Introduc-
tion to Arithmetic of Nicomachus of Gerasa and the first seven books of 
Diophantus’s Arithmetic. Note, however, that as time passed the bounda-
ries between these two types of arithmetic became more and more porous. 
In other words, in treatises of ḥisāb one finds some elements of the other 
arithmetic, of Greek origin, which treats primarily the properties of inte-
gers. The latter is our focus here. 

 
Arithmetic research in Arabic thus belongs to two traditions: that of 

Euclidean and neo-Pythagorean arithmetic, and that of Diophantine analy-
sis. Beginning in the 10th century, number theorists constantly mingled 
these two traditions. But it will be impossible to understand the extension 
and transformation of this arithmetic research if one forgets to gauge at 
every moment the impact of algebra. The introduction of algebraic 
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concepts and methods in every case led to the transformation of one or the 
other chapter of number theory.  

1.1. Euclidean and neo-Pythagorean arithmetic  

Before the middle of the 9th century, mathematicians had access to two 
translations of Euclid’s Elements, and to one translation from the Syriac of 
Nicomachus of Gerasa. A little later, they would have at hand Thābit ibn 
Qurra’s (d. 901) famous translation of the latter book, as well as his revi-
sion of the third translation of the Elements by Ḥunayn ibn Isḥāq. The three 
books of the Elements constituted not only a source, but also a model for 
research, as we will see shortly in the first new contribution, namely that of 
Thābit ibn Qurra. The Introduction to Arithmetic, for its part, yielded topics 
for research. It is true that, as far as the objects of arithmetic were con-
cerned, mathematicians saw no difference between these books, and for 
very good reasons. For them, the differences lay in the expositions, on the 
one hand, and in the methods, on the other. Indeed, it is in Euclid’s books 
that one finds a theory of parity and a theory of the multiplicative proper-
ties of integers: divisibility, prime numbers, etc. For Euclid, an integer is 
nevertheless represented by a line segment, which representation is essen-
tial to the demonstration of propositions. Whereas the neo-Pythagoreans 
shared this concept of integer and focused mainly on the study of these 
very same properties or others derived from them, yet in their methods and 
their goals, they distinguished themselves from Euclid. Whereas the latter 
proceeded by means of demonstrations, the former used induction as their 
only tool. For Euclid, moreover, arithmetic had no purpose outside of itself 
whereas, for Nicomachus, it served philosophical and even psychological 
ends. Mathematicians and philosophers such as Ibn al-Haytham and 
Avicenna clearly saw this difference of method. The first wrote:  

The properties of numbers exhibit themselves in two ways: the first is by 
induction, for, if one follows the properties of numbers one by one, and if 
one distinguishes them, in distinguishing and considering them, one disco-
vers all of their properties. This is shown in the work al-Arithmāṭīqī <The 
Introduction to Arithmetic of Nicomachus>. The other way that exhibits the 
properties of numbers proceeds by means of demonstrations and deductions. 
All the properties of number grasped by demonstration are contained in 
these three books of <Euclid> or in what is based on them.1  

The philosopher Avicenna makes the same point when he writes in the 
volume of his al-Shifāʾ devoted to arithmetic:  

 
1 Sharḥ muṣādarāt Uqlīdis, ms. Istanbul, Feyzullah, no. 1359, fol. 213v. 



 1. EUCLIDEAN AND NEO-PYTHAGOREAN ARITHMETICS 335 

the treatise of the Elements has delivered numerous foundations for the 
science of numbers, and this art (neo-Pythagorean arithmetic) depends on 
these foundations when one learns it.2 

For the mathematicians and philosophers of this era, the point at issue 
was indeed a difference between methods of demonstration and between 
the two presentations (the one appears axiomatic and demonstrative, 
whereas Nicomachus is assertoric and proceeds by example); it was not a 
difference between the objects of arithmetic. One can therefore understand 
why some mathematicians, and even those of Ibn al-Haytham’s stature, 
proceeded sometimes by induction, as a function of the problem at hand; so 
it happens, as we shall see below, that Ibn al-Haytham discusses the 
‘Chinese theorem’ and Wilson’s theorem. Conversely, whereas mathemati-
cians of the first rank and some philosophers (notably Avicenna) paid no 
attention to the philosophical and psychological goals that Nicomachus had 
assigned to arithmetic, others – second-tier mathematicians, philosophers, 
physicians, encyclopedists, etc. – took an interest in this arithmetic. Its 
history thus dissolves into the history of high literate culture in Islamic 
society, and extensively overflows the confines of this study. We therefore 
deliberately restrict ourselves to the role that arithmetic played in the 
development of number theory as a discipline. 

Research on number theory in the Euclidean and Pythagorean sense 
began early, before the end of the 9th century. It was contemporaneous with 
Thābit ibn Qurra’s translation of Nicomachus’s book and with his revision 
of the translation of Euclid’s Elements. Indeed, Thābit ibn Qurra himself 
initiated this research in number theory by elaborating the first theory of 
amicable numbers.3 This fact has been familiar to historians thanks to 
F. Woepcke’s work in the 19th century,4 but its true significance only 
became clear very recently, when we established the existence of an entire 
tradition that Thābit ibn Qurra inaugurated in the purest Euclidean style 
and that culminated several centuries later in al-Fārisī (d. 1319), thanks to 
his application of algebra to the study of the first elementary arithmetic 
functions. This tradition is studded with many names: al-Karābīsī, al-
Anṭākī, al-Qubayṣī, Abū al-Wafāʾ al-Būzjānī, al-Baghdādī, Ibn al-
Haytham, Ibn Hūd, al-Karajī ..., to list only a few of them. Since we 
obviously cannot provide a detailed description in the few pages devoted to 

 
2 Ibn Sīnā, Al-Shifāʾ, al-Ḥisāb 2, ed. Ibrāhīm Madkūr, Cairo, 1985, p. 17. 
3 See below ‘Thābit ibn Qurra and amicable numbers’. 
4 See notably his 1852 article, in which he summarizes Ibn Qurra’s Opuscule: 

‘Notice sur une théorie ajoutée par Thābit Ben Korrah à l’arithmétique spéculative des 
Grecs’, Journal Asiatique, 4e série, vol. 20, 1852, pp. 420–9; reprinted in Études sur les 
mathématiques arabo-islamiques, Frankfurt-am-Main, 1986, vol. I, pp. 257–66. 
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this theory, we will therefore attempt merely to sketch the movement to 
which we have just alluded. 

1.2. Amicable numbers and the discovery of elementary  
arithmetic functions  

At the end of Book IX of the Elements, Euclid presents a theory of 
perfect numbers in which he demonstrates that the number n = 2p (2p+1 – 1) 
is perfect – that is, equal to the sum of its proper divisors – if (2p+1 – 1) is 
prime. But neither Euclid nor Nicomachus nor any other Greek author had 
tried to elaborate an analogous theory of amicable numbers. Thābit ibn 
Qurra therefore decides to construct that theory. 

Indeed, he writes in his treatise Fī istikhrāj al-aʿdād al-mutaḥābba (On 
the Determination of Amicable Numbers): 

For perfect numbers of the two types we have mentioned, Nicomachus 
described a method for determining them, but he did not prove it. As to 
Euclid, he described the method of determining them and demonstrated it 
with care in the arithmetic books of his Elements; and he placed them at the 
end of what he had reached in the latter, leading some to think that this was 
the end-point at which he aimed and the ultimate goal of these books. 

As to amicable numbers, I found no one who mentioned them or took 
the trouble to devote himself to them. Now that the subject has come to my 
mind and that I have determined a demonstration about them, I should not 
like – in light of what has been said – to lose it by failing to establish it. I 
will do so once I have introduced the lemmas necessary for the task.5 

He goes on to state and to demonstrate in pure Euclidean style what, to 
date, is the most important theorem for these numbers, the theorem that 
today bears his name.  

Call σ0(n) the sum of the aliquot parts of the integer n (the proper divi-
sors of n), and σ(n) =σ0(n) + n the sum of the divisors of n; and recall that 
two integers a and b are said to be amicable if σ0(a) = b and σ0(b) = a.  

 
Ibn Qurra’s theorem: 

For n > 1, assume p
n
 = 3 · 2n – 1, q

n
= 9 · 22n-1 – 1; if p

n–1
, p

n
, and q

n
 are 

prime, then a = 2np
n–1

p
n
 and b = 2nq

n
 are amicable. 

 
5 See R. Rashed and C. Houzel, ‘Théorie des nombres amiables’, in R. Rashed 

(ed.), Thābit ibn Qurra. Science and Philosophy in Ninth-Century Baghdad, Scientia 
Graeco-Arabica, vol. 4, Berlin/New York, Walter de Gruyter, 2009, pp. 77–151, at 
pp. 90–2. Cf. Woepcke, ‘Notice’, 1852, pp. 423–4. 
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We must emphasize that Ibn Qurra’s demonstration rests on a proposi-
tion equivalent to Elements IX.14, which reads: ‘If a number is the least 
that is measured by prime numbers, it will not be measured by any other 
prime number except those originally measuring it’.6 In other words, the 
smallest common multiple of prime numbers has no prime divisors other 
than these numbers. He next exploits the properties of the geometric pro-
gression of reason 2. 

Now the history of the arithmetic theory of amicable numbers from Ibn 
Qurra to the end of the 18th century at least is limited to an invocation of 
this theorem, and to its transmission by later mathematicians, and the 
computation of pairs of these numbers. From a very long list of mathemati-
cians writing in Arabic, we highlight the names of al-Anṭākī, al-Baghdādī, 
al-Karajī, Ibn Hūd, al-Tanūkhī, and al-Umawī.7 By their chronological and 
geographical diversity, these few names sufficiently prove the wide diffu-
sion of Ibn Qurra’s theorem, which in 1638 would reappear in Descartes’s 
work. Both the latter and his Arabic predecessors, however, seem to take 
for granted that Ibn Qurra’s method was exhaustive.  

As to calculating pairs of amicable numbers, Ibn Qurra appears not to 
take the trouble to compute any pair beyond (220, 284), not because he was 
incapable of finding any, but because this Euclidean mathematician had 
little interest in such calculations. An analysis of his treatise, however, 
shows that he had also calculated the pair (17296, 18416). Three-quarters 
of a century later, al-Anṭākī (d. 987) likewise seems not to have calculated 
other pairs. It is the algebraists who notably undertake this calculation. 
Thus one finds the pair (17296, 18416), nowadays named for Fermat, in al-
Fārisī in the East, in the milieu of Ibn al-Bannāʾ in the West, and in al-
Tanūkhī and many other mathematicians of the 13th century. Al-Yazdī later 
calculates the so-called ‘pair of Descartes’, (9363584, 9437056).8 

 
6 The Thirteen Books of Euclid’s Elements, translated with introduction and 

commentary by T. L. Heath, New York, Dover Publications, 1956, vol. 2, p. 402 (with 
subjunctive changed to indicative). 

7 See R. Rashed, ‘Matériaux pour l’histoire des nombres amiables et de l’analyse 
combinatoire’, Journal for the History of Arabic Science, 6, 1982, pp. 209–78; 
‘Nombres amiables, parties aliquotes et nombres figurés aux XIIIe et XIVe siècles’, 
Archive for History of Exact Sciences, 28, 1983, pp. 107–47; and ‘Ibn al-Haytham et les 
nombres parfaits’, Historia Mathematica, 16, 1989, pp. 343–52; repr. in id., Optique et 
mathématiques. Recherches sur l’histoire de la pensée scientifique en arabe, Variorum 
Reprints, Aldershot, 1992, XI. 

8 See below, ‘Al-Yazdī and the equation
i
2x

i =1

n

∑ = 2x ’. 
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Although this historical summary is the most complete to date, it 
nevertheless remains both truncated and blind: indeed, it omits both the 
role that research on amicable numbers played for the whole of number 
theory and the intervention of algebra in the latter. Without lingering on the 
works to which we have alluded above, let us present this intervention of 
algebra. The famous natural philosopher and mathematician, Kamāl al-Dīn 
al-Fārisī, composed a Tadhkirat al-aḥbāb fī bayān al-taḥāb (Memoir to 
Friends to Demonstrate Amicability), in which he plans deliberately to 
demonstrate Ibn Qurra’s theorem algebraically. This act drove him to 
conceive the first arithmetic functions and to give himself the training that 
led him to state for the first time the fundamental theorem of arithmetic. 
Al-Fārisī also developed the combinatory means necessary for this inquiry, 
and thus an entire body of research on figurate numbers. In short, his 
concern is now the elementary theory of numbers such as one encounters it 
again in the 17th century.  

Indeed, throughout his report, al-Fārisī accumulates the propositions 
necessary to characterize the first two arithmetic functions: the sum of an 
integer’s divisors and the number of these divisors. The report begins with 
three propositions, the first of which states: ‘Every composite number is 
necessarily decomposable into a finite number of prime factors, of which it 
is the product’.9 In the other propositions, he tries to demonstrate  
– admittedly rather clumsily – the unicity of the decomposition.  

In contrast to Ibn Qurra’s book, al-Fārisī’s exposition does not begin 
with a proposition equivalent to Euclid IX.14, to say nothing of IX.14 
itself. Instead, the author enunciates in turn the existence of a finite decom-
position into prime factors and the unicity of this decomposition. Thanks to 
this theorem and combinatorial methods, one can determine completely the 
aliquot parts of a number, that is, in al-Fārisī’s very own words, in addition 
to the prime factors, ‘every number composed of two of these factors, of 
three of these factors, and so on, to every number composed of all the fac-
tors minus one’.10 

Following these propositions, al-Fārisī examines the procedures of 
factorization and the calculation of aliquot parts as a function of the num-
ber of prime factors. The most important result in this area is surely the 
identification of combinations and figurate numbers. Henceforth, every-
thing is in place for the study of arithmetic functions. A first group of pro-
positions pertains to σ(n). Even though al-Fārisī in fact treats only σ0(n), 

 
9 R. Rashed, ‘Matériaux pour l’histoire des nombres amiables’, p. 264. 
10 Ibid., p. 261. 
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one sees that he recognizes σ as a multiplicative function. Among the pro-
positions in this group, the following appear: 

(1)  If n = p1p2, with (p1, p2) = 1, then 

σ0 (n) = p1σ0 (p2) + p2σ0 (p1) + σ0 (p1)σ0 (p2), 
 

which shows that he knew the expression 

σ(n) = σ(p1) σ(p2). 
 
(2) If n = p1p2, with p2 prime and (p1, p2) = 1, then 

σ0 (n) = p2σ0 (p1) + σ0 (p1) + p1. 
 
(3) If n = pr, where p is prime, then 

σ0 (n) = pk

k=0

r −1

∑ =
pr −1

p −1
. 

 
Until recently, these three propositions were attributed to Descartes. 
 
(4) Finally, al-Fārisī tries unsuccessfully, as one can readily under-

stand, to establish an effective formula for the case in which n = p1p2, with 
(p1, p2) ≠ 1. 

 
A second group includes several propositions about the function τ(n), 

the number of divisors of n. 
 
(5) If n = p1p2 … pr, with p1, …, pr distinct prime factors, then the 

number of aliquot parts of n, written τ0(n), is equal to  

1 +
r

1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  +  …  +  

  r

r −1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ,  

a proposition attributed to the Abbé Deidier (1739). 
 
(6) If n = p1

e1 p2
e2 …pr

er , then 

τ (n) = ei +1( )
i=1

r

∏  

and τ0(n) = τ(n) – 1, a proposition credited to John Kersey and to 
Montmort. 
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Finally, al-Fārisī demonstrates the theorem of Thābit ibn Qurra. 
Indeed, he simply needs to show that  

 
σ(2npn–1 pn) = σ(2nqn) = 2n[pn–1 pn + qn] = 9 · 22n-1(2n+1 – 1). 

 
This brief analysis of al-Fārisī’s report displays the flowering of a new 

style planted in ancient soil, namely number theory. Indeed, without leav-
ing Euclidean terrain, the mathematicians of the 13th century did not hesi-
tate to draw on the contributions of algebra, most notably combinatorial 
analysis. And this tendency again came to the fore when mathematicians 
such as al-Fārisī and Ibn al-Bannāʾ studied figurate numbers, as we have 
seen above.11 

1.3. Perfect numbers  

If, by their work on amicable numbers, mathematicians were trying 
also to characterize an entire class of integers, they were pursuing the same 
goal by studying perfect numbers. From the mathematician al-Khāzin, we 
know that his 10th-century colleagues were raising questions about the 
existence of odd perfect numbers, still an unsolved problem at the time. Al-
Khāzin writes: ‘Among those who ponder <abundant, deficient and perfect 
numbers>, the following question emerged: whether or not there exists a 
perfect number among the odd numbers’.12 At the end of this century and 
at the beginning of the next, al-Baghdādī obtained some results about these 
very numbers.13 Thus he stated: ‘if σ

0
(2n) = 2n – 1 is prime, then 1 + 2 + ... 

+ (2n – 1) is a perfect number’, a rule attributed to the 18th-century 
mathematician J. Broscius. Ibn al-Haytham,14 a contemporary of al-
Baghdādī’s, made the first attempt to characterize this class of perfect 
numbers by trying to demonstrate the following theorem: 

 
 

 
11 See pp. 153–4 and below, pp. 346 ff. 
12 A. Anbouba, ‘Un traité d’Abū Jaʿfar al-Khāzin sur les triangles rectangles 

numériques’, Journal for History of Arabic Science, 3.1, 1979, pp. 134–78, esp. p. 157. 
13 R. Rashed, Entre arithmétique et algèbre. Recherches sur l’histoire des 

mathématiques arabes, Paris, Les Belles Lettres, 1984, p. 267; English transl. The 
Development of Arabic Mathematics: Between Arithmetic and Algebra, Boston Studies 
in the Philosophy of Science 146, Dordrecht/Boston/London, 1994. 

14 R. Rashed, ‘Ibn al-Haytham et les nombres parfaits’; and Les Mathématiques 
infinitésimales du IXe au XIe siècle, vol. IV: Méthodes géométriques, transformations 
ponctuelles et philosophie des mathématiques, London, al-Furqān, 2002. 
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Given an even number n, the following conditions are equivalent: 
1° if n = 2p(2p+1 – 1), with (2p+1 – 1) prime, then σ0(n) = n; 

2° if σ0(n) = n, then n = 2p(2p+1 – 1), with (2p+1 – 1) prime. 
 
We know that 1° is nothing but Proposition IX.36 of Euclid’s 

Elements. Ibn al-Haytham therefore attempts to demonstrate in addition 
that every even perfect number has the Euclidean form, a theorem that 
Euler will prove definitively. Note that, just as Thābit ibn Qurra had done 
for amicable numbers, Ibn al-Haytham does not try to calculate any perfect 
numbers beyond those that the tradition already knew and had transmitted. 
This would become the computational job of a class of lesser mathemati-
cians closer to the tradition of Nicomachus of Gerasa, such as Ibn Fallūs 
(d. 1240) and Ibn Malik al-Dimashqī, among many others.15 From their 
writings, we learn that the mathematicians of the time knew the first seven 
perfect numbers.  

1.4. Equivalent numbers 

In their research into distinguishing various classes of numbers, the 
mathematicians took an interest in what they called ‘equivalent numbers’ 
(mutaʿādila). Indeed, in the book of Abū Manṣūr ʿAbd al-Qāhir ibn al-
Ṭāhir al-Baghdādī (d. 1037), one encounters the following problem about 
these numbers: ‘Given a number, find two numbers such that the sum of 
each of their parts is equal to that given number.’ The point is to find the 
reciprocal image by σ0 of the given number a. Here, in his own words, is 
al-Baghdādī’s solution:  

Subtract one from the given number and divide the remainder into <a sum> 
of two prime numbers, and then into <a sum> of two other prime numbers, 
and so on as far as one can divide it into two prime numbers. Next, we mul-
tiply the two parts in the first division, the one by the other; we multiply the 
two parts in the second division, the one by the other; and we proceed 
likewise for the third division, the fourth, and what follows; <the sum> of 
the parts of these products is equal to the given number.16 

Two integers a and b are said to be equivalent if σ0(a) = σ0(b). The 
problem that al-Baghdādī set himself can be translated thus:  

Given an integer a, to find all the equivalent numbers linked to a, that 
is, to find the class of integers defined by σ 0

−1(a) . Al-Baghdādī proceeds as 

 
15 See R. Rashed, ‘Ibn al-Haytham et les nombres parfaits’. 
16 Kitāb al-Takmila, ms. Istanbul, Laleli 2708, fol. 79r. 
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follows: to find  pi, qi  prime (i = 1, 2, …)  such that a = 1 + pi + qi 
(i = 1, 2, …); one obtains 

σ 0
−1(a) = pi  qi{ } = bi{ }  

 
and the bi are equivalent numbers.  

It is obvious that  
           σ0(bi) = σ0(pi qi) = a    (i = 1, 2, …). 
 
Al-Baghdādī gives the example of a = 57; (p1 = 3, q1 = 53), (p2 = 13, 

q2 = 43), whence b1 = 159, b2 = 559; and thus gives only two elements of 
the reciprocal image.  

Many other mathematicians will take up this line of research. Thus al-
Zanjānī in his book ʿUmdat al-ḥisāb17 repeats the same definitions, takes 
up the same example, and finally gives  

σ0
−1(57) = 159,  559,  703{ } . 

The treatises of arithmetic (ḥisāb) will take up this discussion after that 
of perfect and amicable numbers. Thus, Muḥammad Bāqir al-Yazdī (d. c. 
1637) in his ʿUyūn al-ḥisāb (The Fountains of Arithmetic) follows his 
famous calculation of the pair of amicable numbers attributed to Descartes 
with his study of equivalent numbers. He writes:  

We separate any even number into a <sum of> two prime numbers once, 
then into a <sum of> two other prime numbers, and we take their products. 
For example, we divide 16 into three and thirteen and take their product; and 
once into five and eleven, and we take their product; we obtain the two 
numbers 39 and 55, which are equivalent; the sum of the parts of each is 
seventeen.18 

1.5. Polygonal numbers and figurate numbers 

In his Introduction to Arithmetic, Nicomachus of Gerasa treats polygo-
nal numbers and provides a table to generate them. Here is his table, such 
as it appears in Ibn Qurra’s translation, but without the column of units:  

triangular number 1 3 6 10 15 21 28 36 45 
square number 1 4 9 16 25 36 49 64 81 
pentagonal number 1 5 12 22 35 51 70 92 117 
hexagonal number 1 6 15 28 45 66 91 120 153 
heptagonal number 1 7 18 34 55 81 112 148 189 

 
17 Ms. Istanbul, Topkapi Saray, no. 3145, fols 1v–84r, at fol. 70v. 
18 Ms. Istanbul, Süleymaniye, Hazinesi no. 1993, fols 1v–120v, at fols 68v–69r. 
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Triangular, square, pentagonal, hexagonal and heptagonal numbers are 
determined respectively by the following sums: 

 
1

2
k k +1( )

k =1

n
∑ ; k2

k =1

n
∑ ;  

1

2
k 3k − 1( )

k =1

n
∑ ;  k 2k −1( )

k =1

n
∑ ;  

1

2
k 5k − 3( )

k =1

n
∑ . 

 
Nicomachus probably knew the rule for generating the table above, 

which can be rewritten  
pn

r = pn−1
r + p1

r−1 , 
 

where pn
r  is the element of the nth line and of the rth column. 

The authors of treatises on arithmetic integrated these results into their 
works, notably al-Baghdādī, Avicenna, Ibn al-Bannāʾ, and al-Umawī, to 
mention only a few. This arithmetic research would soon expand in two 
directions. On the one hand, mathematicians took a systematic interest in 
various sums of integers. This is the approach both of the algebraists (al-
Karajī and his successors in particular), and of the Archimedeans for the 
calculation of the areas of curved surfaces and of the volumes of solids 
with curved surfaces.19 In contrast to Nicomachus and his successors, these 
mathematicians now attempted to demonstrate the formulas. On the other 
hand, using combinatorial methods, the algebraists went farther and began 
to study figurate numbers.  

Thus treatises of algebra (e.g., Abū Kāmil’s, al-Samawʾal’s) 
established expressions20 such as 

k2

k =1

n
∑ =

1

3
n3 +

1

2
n2 +

1

6
n,    k3

k =1

n
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4
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2
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1

4
n2 . 

 
For his part, Ibn al-Haytham demonstrated 
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5
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n, 

 
using a slightly archaic complete induction. Indeed, his method is valid for 
any integer power without requiring any additional concepts. The general 
law that he identified for the calculation of sums of integers n raised to any 
power is rewritten  

n +1( ) ki

k =1

n
∑ = k i+1

k =1

n
∑ + ki

k =1

p
∑( )

p=1

n
∑ , 

 
19 See below ‘The Archimedeans and infinitesimal problems’.  
20 R. Rashed, The Development of Arabic Mathematics, pp. 69–76. 
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so that Ibn al-Haytham could calculate the sum of the ith powers of n first 
integers.21 

Recall first that the study of figurate numbers requires prior knowledge 
of the arithmetic triangle and of elements of combinatorial analysis, which 
the algebraists of the late 10th century already possessed,22 as well as a 
genuinely combinatorial interpretation of these elements, which appears in 
Naṣīr al-Dīn al-Ṭūsī at least.23 Kamāl al-Dīn al-Fārisī therefore goes on to a 
systematic study of figurate numbers of any order. To generate these num-
bers, al-Fārisī states in an equivalent manner the relation  

Fp
q = Fk

q−1

k =1

p

∑ ,  

where Fp
q  is the pth figurate number of order q, F1

q =1. 
Using this relation, he constructs the following table by way of 

example:  

their numbers
the sums

 
 1st 

2 

2nd 

3 

3rd 

4 

4th 

5 

5th 

6 

6th 

7 

7th 

8 

8th 

9 

9th 

10 

10th 

11 

1st 1 3 6 10 15 21 28 36 45 55 66 

2nd 1 4 10 20 35 56 84 120 165 220 286 

3rd 1 5 15 35 70 126 210 330 495 715 1001 

4th 1 6 21 56 126 252 462 792 1287 2002 3003 

5th 1 7 28 84 210 462 924 1716 3003 5005 8008 

6th 1 8 36 120 330 792 1716 3432 6435 11440 19448 

7th 1 9 45 165 495 1287 3003 6435 12870 24310 43758 

8th 1 10 55 220 715 2002 5005 11440 24310 48620 92378 

9th 1 11 66 286 1001 3003 8008 19448 43758 92378 184756 

10th 1 12 78 364 1365 4368 12376 31824 75582 167960 352716 

 
Al-Fārisī then presents an expression equivalent to  
 

Fp
q =

p + q −1

     q

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

 
21 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle. Vol. II: Ibn 

al-Haytham, London, al-Furqān, 1993, p. 182; English translation: Ibn al-Haytham and 
Analytical Mathematics. A History of Arabic Sciences and Mathematics, vol. 2, Culture 
and Civilization in the Middle East, London, Centre for Arab Unity Studies, Routledge, 
2012, p. 148. 

22 See the chapter ‘Algebra and linguistics’, above 
23 See the chapter ‘Philosophy of mathematics’, below. 
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and thus establishes a link between the figurate numbers of any order and 
the combinations. 
 

To these theoretical domains in Arabic mathematics, one could add a 
multitude of results that fit the bloodline of Nicomachus’s arithmetic, 
results that were developed by arithmeticians or algebraists, or simply to 
meet the needs of other practices, such as magic squares or games of 
arithmetic. This adds up to a considerable body of results that extend or 
demonstrate what was already known and that is simply too vast to cover 
here. One would have to read the arithmetic works of such arithmeticians 
as al-Uqlīdisī, al-Baghdādī, al-Umawī, etc.; such algebraists as Abū Kāmil, 
al-Būzjānī, al-Karajī, al-Samawʾal; and such philosophers as al-Kindī, Ibn 
Sīnā, al-Juzjānī, etc., among a hundred others. 

1.6. The characterization of prime numbers 

One of the main axes of research in number theory has been the 
characterization of numbers: amicable, perfect, equivalent. It is therefore 
not surprising that mathematicians returned to prime numbers with an 
analogous task in mind. This is precisely what Ibn al-Haytham does when 
solving the problem known as the ‘Chinese remainder’.24 Indeed he wants 
to solve the system of linear congruences  

 
x ≡ 1 (mod ii) 

 
x ≡ 0 (mod p), 

 
where p is prime and 1 < ii ≤ p – 1. 

In the course of his inquiry, he gives a criterion for determining prime 
numbers, now the so-called theorem of Wilson: 

 
If n > 1, the following two conditions are equivalent: 
   1°  n is prime 
   2°  (n – 1) ! ≡ –1 (mod n), 

where, in Ibn al-Haytham’s words:  

[...] this property is necessary for every prime number, that is, for every 
prime number, which is a number that is a multiple only of one, if one 

 
24 R. Rashed, ‘Ibn al-Haytham et le théorème de Wilson’, Archives for History of 

Exact Sciences, 22.4, 1980, pp. 305–21; repr. in The Development of Arabic 
Mathematics, p. 247. 
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multiplies the numbers that precede it by the others in the way we have 
specified, and if one adds one to the product, then if one divides the sum by 
each of the numbers that precede the prime number, only one remains, and if 
one divides by the prime number, nothing remains.25 

Studies of this system of congruences reappear in part among the suc-
cessors of Ibn al-Haytham in the 12th century, for example, in al-Khilāṭī in 
Arabic and Fibonacci in Latin.26 

 
 

2. INDETERMINATE ANALYSIS 
 

The first Arabic research on indeterminate analysis – or Diophantine 
analysis, as it is called nowadays – was very probably undertaken by Abū 
Kāmil (c. 830–900) in the middle of the 9th century, that is, approximately 
a generation after al-Khwārizmī. It was Abū Kāmil who first conceived of 
indeterminate analysis as a chapter in the new algebra that his predecessor 
had invented.  

We will therefore begin with the Algebra of Abū Kāmil, first to trace 
rational indeterminate analysis, in order to show next how it became a 
chapter of algebra, before coming back to the description of what was 
recently recognized as a fact: the constitution of integer Diophantine analy-
sis in a certain sense against the algebraists, as an integral part of number 
theory.  

2.1. Rational Diophantine analysis 

Abū Kāmil’s project is clear; as he writes:  

We now explain many indeterminate problems that some arithmeticians call 
sayyāla (‘fluid’); by this, I mean that one can determine many true solutions 
with convincing deductions and a clear method; some of these problems 
circulate among the arithmeticians according to certain types (bi-al-abwāb), 
without their having established the cause from which they proceed. I solved 
some of these by means of a true principle and an easy and very useful 
procedure.  

Abū Kāmil continues: 

We also explain a large part of what the arithmeticians have defined in their 
books and that they treated by chapters*, by algebra and by deduction, so 
 
25 On the Solution of a Numerical Problem, in R. Rashed, The Development of 

Arabic Mathematics, p. 250. 
26 Ibid., pp. 244–5. 
* Implied: categories of problem. 
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that he who reads and examines it truly understands it and is not satisfied 
with simply reciting by heart and imitating its author.27  

This text is of capital importance, both historically and logically. It 
attests to the existence of research in Diophantine analysis at the time of 
Abū Kāmil. The arithmeticians who undertook this inquiry devoted the 
word sayyāla to designating indeterminate equations, which thereby were 
separated out from the set of algebraic equations. Still according to Abū 
Kāmil’s text, we know that these arithmeticians were satisfied by giving 
statements about certain types of these equations and the algorithms to 
solve them, but without worrying about either the reasons for them or the 
methods needed to establish them. But who are these arithmeticians? We 
cannot yet answer this question on account of the loss of the writings of 
many still active algebraists, such as Sind (Sanad) ibn ʿAlī, Abū Ḥanīfa al-
Daynūrī, Abū al-ʿAbbās al-Sarakhsī… 

In his Algebra, therefore, Abū Kāmil plans not to be satisfied with a 
scattered exposition but to provide a systematic one, in which methods 
appear in addition to both problem and solution algorithms. It is true that in 
the last part of Algebra, Abū Kāmil treats 38 Diophantine problems of the 
second degree, 4 systems of indeterminate linear equations, other systems 
of determinate linear equations, a set of problems that are reducible to 
arithmetic progressions, and a study of the latter. This set corresponds to 
Abū Kāmil’s double goal: to solve indeterminate problems, and also to 
solve by means of algebra problems that the arithmeticians were then trea-
ting. Note that it is in Abū Kāmil’s Algebra that one encounters – to my 
knowledge – for the first time an explicit distinction between determinate 
and indeterminate problems. Now the examination of these 38 Diophantine 
problems does not only reflect this distinction; he shows in addition that 
these problems do not follow each other haphazardly, but according to an 
order that Abū Kāmil indicated implicitly. Thus the first 25 pertain to one 
and the same group, for which Abū Kāmil gives a necessary and sufficient 
condition to determine positive rational solutions. Let us take only two 
examples. The first problem in this group28 is rewritten 

 
x2 + 5 = y2. 

 

 
27 Kitāb fī al-jabr wa-al-muqābala, ms. Istanbul, Beyazit Library, Kara Mustafa, 

379, fol. 79r. See Abū Kāmil, Algèbre et analyse diophantienne, édition, traduction et 
commentaire par R. Rashed, Berlin/New York, Walter de Gruyter, 2012, p. 579. 

28 Abū Kāmil, Algèbre et analyse diophantienne, p. 581. 
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Abū Kāmil proposes to give two solutions from among an infinity of 
rational solutions, according to his own statements. He then posits 

 

             y = x + u    with u2 < 5 

 
and takes successively u = 1, u = 2. 

 
Another example of the same group is Problem 19,29 which is rewritten 
 

8x – x2 + 109 = y2. 
 

Abū Kāmil then considers the general form 
 
(1)          ax – x2 + b = y2 
 

and writes:  

If you come across problems analogous to this problem, multiply half the 
number of roots by itself and add this product to the dirham (i.e. units); if the 
sum can be divided into two parts each of which has a square root, then the 
problem is rational and has innumerable solutions; but if the sum cannot be 
divided into two parts each of which has a square root, then the problem is 
irrational and without solutions.30 

This text, which is particularly important in the history of Diophantine 
analysis, gives the sufficient condition for determining positive rational 
solutions of the preceding equation. The latter is rewritten  

 

y2 + a
2

− x( )
2

= b + a
2( )

2

; 

 

now set x =
a − t

2
, one has  

(2)          y2 + t
2( )

2

= b + a
2( )

2

, 

 
and the problem is thus reduced to dividing a number into two squares, that 
is Problem 12 of the same group, which Abū Kāmil has already solved.  
 

 
29 Ibid., pp. 616–21. 
30 Ibid., p. 617. 
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Indeed, suppose that 

b + a
2( )

2

= u2 + v2 , 

 
with u and v rational. Abū Kāmil sets 

y = u + τ 

t = 2 (kτ – ν); 
 

he substitutes these in (2) and finds the values of y, t, and then x. Thus he 
knows that, if one of the variables can be expressed as a rational function 
of the other, or in other words, if one can have a rational parametrization, 
one has all the solutions; whereas if the sum leads us to an expression the 
root of which cannot be evaluated, there is no solution. Put another way, 
which was unknown to Abū Kāmil, a second-degree curve has no rational 
point, or is birationally equivalent to a straight line.  

The second group is composed of thirteen problems – 26 to 38 – which 
are impossible to parametrize rationally. Or in language unknown to Abū 
Kāmil, they define all the curves of type 1. For example, Problem 3131 is 
thus rewritten 

x2 + x = y2, 

x2 + 1 = z2, 
 

which defines a skew quartic, a curve of type 1 in the coordinate space, 
(x, y, z). 

 
The third group of indeterminate problems is composed of systems of 

linear equations, such as Problem 39,32 for example, which is rewritten 

x + ay + az + at = u, 
bx + y + bz + bt = u, 
cx + cy + z + ct = u, 
dx + dy + dz + t = u. 

 
Focusing this interest on indeterminate analysis, which led to Abū 

Kāmil’s contribution, stimulated another event: the translation of 
Diophantus’s Arithmetic. Thus, during the same decade Abū Kāmil was 
writing his Algebra in the Egyptian capital, Qusṭā ibn Lūqā in Baghdad 

 
31 Abū Kāmil, Algèbre et analyse diophantienne, p. 643. 
32 Ibid., pp. 654–63. 
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was translating seven books of Diophantus’s Arithmetic. The event was 
crucial, both for the development of indeterminate analysis and for the 
techniques of algebraic calculations. We have shown that the Arabic ver-
sion of Diophantus’s Arithmetic is composed of three books that are also 
found in the Greek text that has come down to us, and of four books lost in 
Greek, and that the translation used terminology invented by al-
Khwārizmī.33 The translator not only gave to the Arithmetic an underlying 
algebraic interpretation, but also even gave to Diophantus’s book the title 
Ṣināʿat al-jabr (The Art of Algebra). Now the Arabic version of the 
Arithmetic stimulated studies and commentaries. We now know that four 
commentaries on it existed, three of which have not yet been found. From 
the ancient biobibliographers, we know that Qusṭā ibn Lūqā himself 
commented on three books of the Arithmetic,34 that Abū al-Wafāʾ al-
Būzjānī wanted to demonstrate the propositions, probably the algorithms of 
Diophantus. In his Fakhrī, al-Karajī commented on four books of the 
Arithmetic;35 his successor al-Samawʾal also commented on Diophantus. 
Of these four commentaries, only that of al-Karajī came down to us; but we 
believe that these are not the only commentaries on Diophantus. Beyond 
these commentaries, however, the algebraists in their various writings dis-
cussed indeterminate analysis, the status of which would change with al-
Karajī. 

Al-Karajī himself treated Diophantine analysis in three works, only 
two of which have come down to us. He studied indeterminate analysis in 
al-Fakhrī, prior to commenting on Diophantus in that book. He then 
returned to the subject in al-Badīʿ, recalling in his introduction to this book 
his initial work in al-Fakhrī. He composed a third treatise along with these 
two, but it has not yet been found. As he noted in al-Fakhrī, it was a book 
‘on al-Istiqrāʾ [indeterminate analysis]’ which he had written in the Persian 
province of Rayy.36 

 
33 R. Rashed, ‘Les travaux perdus de Diophante. I’, Revue d’histoire des sciences, 

27, 1974, pp. 97–122; ‘Les travaux perdus de Diophante. II’, ibid., 28.1, 1975, pp. 3–
30; Diophante, Ṣināʿat al-jabr (L’Art de l’algèbre), ed. Roshdi Rashed, Cairo, 1975, 
pp. 13 ff; and Diophante, Les Arithmétiques, text established and translated by Roshdi 
Rashed, 2 vols, Paris, Les Belles Lettres, 1984, vol. III. 

34 Les Arithmétiques, ed. R. Rashed, pp. 10–11. 
35 See F. Woepcke, Extrait du Fakhrī, traité d’algèbre, Paris, 1853; reprinted in 

Études sur les mathématiques arabo-islamiques, Frankfurt-am-Main, 1986, vol. I, 
pp. 267–426; and Diophante, Les Arithmétiques, ed. R. Rashed, Notes complémen-
taires. See also R. Rashed and C. Houzel, Les Arithmétiques de Diophante: Lecture 
historique et mathématique, Berlin, New York, Walter de Gruyter, 2013.  

36 F. Woepcke, Extrait du Fakhrī, p. 74; Woepcke’s reading of bi-al-tattary must 
be corrected to bi-al-Rayy. 
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To understand al-Karajī’s contribution to indeterminate analysis, one 
must keep in mind his renewal of algebra, a point that we have emphasized 
earlier. Indeed, al-Karajī developed indeterminate analysis not only as one 
of the chapters of algebra, but also as one of the means for the latter to 
extend algebraic calculation. Al-Karajī writes that Diophantine analysis ‘is 
the pivot of most calculations, and that it is indispensable to all of the 
chapters’.37 Thus, after having studied polynomials with square roots and 
the way of extracting these roots, one moves on to algebraic expressions 
that have square roots only in potentiality. This is the main object of ratio-
nal Diophantine analysis, according to al-Karajī, and this is the sense in 
which it is constituted as a chapter of algebra. The method, or rather the 
methods, are those required to reduce the problem to an equality between 
two terms, the powers of which allow us to obtain positive rational solu-
tions. Henceforth, Diophantine analysis is christened with a proper name, 
al-istiqrāʾ, a term that also includes the emphasized duality, for it desi-
gnates a chapter as well as a method or set of methods. The term al-istiqrāʾ 
is derived from the verb istaqrā, which meant ‘to consider or to examine 
successively the various cases’, before it took on the technical sense of 
indeterminate analysis. In al-Fakhrī, al-Karajī gives the following 
definition: 

al-istiqrāʾ in calculation is when you encounter an expression of one type or 
of two types, or of three successive types (that is, algebraic powers) that is 
not a square literally but is such according to the meaning, and you want to 
know its square root.38  

In al-Badīʿ, al-Karajī repeats the same definition and adds: ‘I say that 
al-istiqrāʾ is the relentless pursuit of expressions until you find what you 
were looking for’.39 

A simple reading of al-Karajī’s explanations and of the chapters he 
devoted to indeterminate analysis in his two books shows a certain break 
with his predecessors; al-Karajī’s style is different, not only from that of 
Diophantus, but also from that of Abū Kāmil. In contrast to Diophantus, al-
Karajī does not give ordered lists of problems and of their solutions, but he 
organizes his exposition in al-Badīʿ around the number of terms compo-

 
37 L’Algèbre. Al-Badīʿ d’al-Karajī, Manuscript of the Vatican Library Barberini 

Orientale 36,1, edition, with introduction and notes by Adel Anbouba, Publications of 
the Lebanese University, Section of Mathematical Studies II, Beirut, 1964, p. 8. 

38 Al-Fakhrī, ms. Istanbul, Köprulu, no. 950, fols 1v–151r; cf. F. Woepcke, Extrait 
du Fakhrī, p. 72. 

39 Ed. Anbouba, p. 62. 
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sing the algebraic expression and the difference between their powers. In 
successive paragraphs, for example, he considers: 

 
ax2n ± bx2n–1 = y2, ax2n + bx2n–2 = y2, ax2 + bx + c = y2. 

 
His successors will, moreover, borrow this principle of organization. It 

is therefore clear that al-Karajī’s goal was to give a systematic exposition 
of the subject. On the other hand, he takes farther the task begun by Abū 
Kāmil, which consists in extracting as much as possible the methods for 
each class of problems. In al-Fakhrī, al-Karajī does not want to give a deep 
exposition of Diophantine analysis as he understands it, since, as noted, he 
had already devoted a book to it, and he would later return to it in al-Badīʿ. 
In al-Fakhrī, he merely recalls the principles of this analysis, indicating 
that they notably pertain to the equation 

 
(1)    ax2 + bx + c = y2,      a, b, c ∈  Z, 
 

in which the trinomial in x is not a square, before turning finally to other 
classes of problems, most of which are indeterminate. These different 
classes are presented as classes of problems organized from the simplest to 
the most difficult, in order to ‘satisfy him who wants to do exercises (al-
murtāḍ)’.40 These are in fact classes of exercises aimed at familiarizing the 
reader with the procedures ‘that direct the problem according to the expres-
sion of the inquirer to one of the six canonical forms in order to determine 
the unknowns from the knowns, which is what calculation substantially 
is’.41 In these five classes of problems, al-Karajī makes no pretense to any 
originality, and borrows most of the problems from Books II, III, IV of 
Diophantus’s Arithmetic, a few problems from Book I – as noted in some 
detail earlier42 – and more than half of the problems studied by Abū Kāmil. 
One also encounters other problems that al-Karajī himself may have raised, 
since they do not appear in these two authors. 

It is in al-Badīʿ, which, by his own admission Abū Kāmil writes for an 
audience more informed and better practiced than the one for which he 
wrote al-Fakhrī, that al-Karajī gives a systematic exposition of the chapter 
on Diophantine analysis. Thus, after having discussed the types mentioned 
above, al-Karajī returns to equation (1). He then considers the case in 
which a (respectively c) is a square, and proposes a change of variable 

 
40 Al-Fakhrī, ms. Köprulu 950, fol. 54r. 
41 Ibid. 
42 Diophantus, Ṣināʿat al-jabr (L’Art de l’algèbre), ed. R. Rashed, pp. 14–19. 
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y = ax  ± u  (respectively y = c ± ux  ). Note that he begins by giving 
the general formulation before moving on to examples. He then brings up 
the form 

ax2n + bx2n–1 + c = y2 

 

and proposes to reduce it to (1). 
Next, Al-Karajī treats the expression in which the exponents do not 

follow each other in sequence, such as  
 

ax2 – c = y2, 
 

where a and c are nonsquare, but 
c

a
 is square. He proposes the change of 

variable  

y = ux − c
a

. 

 
Here too, he recalls that by division one can reduce the form 
 

ax2n – cx2n–2 = y2  

 

to the previous form.  
Al-Karajī then studies the equations of the form  
 

ax2 + c = y2, 
 

and gives two examples, the first with a = 3, c = 13, and the second with 
a = 2, c = 2; he points out that, in the two examples, one has a + c = k2. He 
nevertheless proposes respectively the parametrizations y = u and y = ux, 
and obtains 

x2 =
u2 − c

a
 and x2 =

c

u2 − a
, 

 
which scarcely moves the solution of the problem forward. In commenting 
on this fact in the French introduction to his critical edition of al-Badīʿ, 
A. Anbouba correctly states:  

But it is clear that al-Karajī does not know about Book VI of Diophantus, 
which gave the solution to the question, (1) in the case in which a + c is 
equal to a square (the Lemmas 1 and 2 of the Arithmetic pertaining to VI:12 
and 13); (2) in the case in which one knows a particular root (lemma 
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pertinent to VI:15). We have very nearly convinced ourselves that al-Karajī 
knew neither Books V and VI of the Arithmetic, nor the end of Book IV.43 

Al-Karajī studies many other problems, notably the double equality. 
Let us simply note the problem 

x2 + a = y2 
 

x2 – b = z2, 
 

which defines a curve of type 1 in the coordinate space (x, y, z). 
The successors of al-Karajī not only commented on his work, but tried 

to go beyond it on the path that he had cleared: to extend al-istiqrāʾ to cer-
tain cubic equations, and to bring out the methods. Thus, in his al-Bāhir, 
al-Samawʾal comments on al-Badīʿ, and includes in his definition of al-
istiqrāʾ equations of the form  

y3 = ax + b. 

 
Al-Samawʾal then claims that, if one of the values of the right side is 

cubic in form (that is, that it can have a cubic root), the equation will 
always have solutions. Note that al-Samawʾal considers the case in which 
a = 6, b = 10; now for this value of a, whatever the value of b, the equation 
has a solution, since one has y3 ≡  y (mod 6); but, if a = 7, then the equation 
y3 = 7x + 2 has no solution. 

He then considers the equation 
 

y3 = ax2 + bx, 
 

that is, the case in which none of the terms in the right-hand member is in 
the position of form 3k. Al-Samawʾal then proposes to find a cubic number 
m3 such that one of the following two conditions is verified: 
 

am3 +
b

2
⎛ 
⎝ 

⎞ 
⎠ 

2

= z2   or  bm3 +
a

2
⎛ 
⎝ 

⎞ 
⎠ 

2

= z2 . 

 

This does not advance the solution of the problem, but rather trans-
forms it into another problem that is no simpler. 

Now is not the time to follow up on the works of al-Karajī’s successors 
in works of rational Diophantine analysis; suffice it to note that henceforth 

 
43 L’Algèbre. Al-Badīʿ d’al-Karajī, ed. Anbouba, p. 44. 
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the latter will be a part of every important treatise on algebra. Thus, from 
the first half of the 12th century, al-Zanjānī borrows most of the problems 
of al-Karajī and of the first four books of the Arabic version of 
Diophantus’s Arithmetic: Ibn al-Khawwām collects some thirty problems, 
most of which are indeterminate, as a challenge to mathematicians. At least 
one third of these problems are impossible if restricted to rational numbers. 
Among these problems one finds Fermat’s equation for n = 3 (x3 + y3 = z3); 
some of them are reproduced in the big commentary on the latter’s algebra 
by Kamāl al-Dīn al-Fārisī. This interest in indeterminate analysis will have 
a long life, and works will relentlessly be devoted to it until the 17th 
century (with al-Yazdī); contrary to what historians of this episode affirm, 
they will not die out with al-Karajī. 

2.2. Integer Diophantine analysis 

The translation of Diophantus’s Arithmetic not only was essential for 
the development of rational Diophantine analysis as a chapter of algebra, 
but also contributed to the development of integer Diophantine analysis as 
a chapter, not of algebra, but of number theory. Indeed, in the 10th century, 
one witnesses for the first time the constitution of this chapter, not only 
thanks to algebra, but also against it. The study of Diophantine problems 
was indeed approached by requiring on the one hand that one obtain inte-
ger solutions, and on the other that one proceed by demonstrations of the 
same as Euclid’s in the arithmetic book of the Elements. What made pos-
sible the beginning of the new Diophantine analysis was this explicit com-
bination – for the first time in history – of the numerical domain restricted 
to positive integers interpreted as line segments, of algebraic techniques, 
and of the insistence on demonstration in the pure Euclidian style. As one 
can readily appreciate, the translation of Diophantus’s Arithmetic offered 
these mathematicians not so much methods as certain problems in number 
theory that were formulated therein, which they did not hesitate to syste-
matize and to examine for their own sake, contrary to what one observes in 
Diophantus. Such are, for example, the problems involved in representing a 
number as the sum of squares, congruent numbers, etc. In short, one 
encounters here the beginning of the new Diophantine analysis in the sense 
in which one finds it developed later in Bachet de Méziriac and Fermat.44 It 
is rather surprising that such an event has escaped the notice of historians, 

 
44 See R. Rashed, ‘L’analyse diophantienne au Xe siècle: l’exemple d’al-Khāzin’, 

Revue d’histoire des sciences, 32.3, 1979, pp. 193–222; repr. in Entre arithmétique et 
algèbre, pp. 195–225; English transl. in The Development of Arabic Mathematics, 
pp. 205–37. 
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even of those who had some knowledge of these mathematicians’ works.45 
Faced with this lacuna, other historians of mathematics could only relegate 
number theory in Arabic mathematics to the doldrums. Perhaps the main 
reason for ignorance of this chapter lies in the absence of a historical pers-
pective which would have shown that this research in integer Diophantine 
analysis was the work not of one mathematician, but of an entire tradition 
that – besides al-Khujandī and al-Khāzin – included al-Sijzī, Abū al-Jūd 
ibn al-Layth, Ibn al-Haytham, as well as later mathematicians such as al-
Samawʾal, Kamāl al-Dīn ibn Yūnus, al-Khilāṭī, al-Yazdī... 

The 10th-century authors themselves emphasized this innovation. Thus 
one of them after having given the principle of generation of rectangular 
triangles in numbers, writes:  

This is the foundation of knowledge of the hypotenuses of primitive right 
triangles. I have not found this mentioned in any of the books of the 
ancients, and none of those among the moderns who wrote books of arith-
metic gave an exposition of it, and I know that this was revealed to none of 
my predecessors.46 

According to this anonymous report, as to others from al-Khāzin, who 
was one of the founders of this tradition, mathematicians have introduced 
the fundamental concepts of this new analysis: that of the primitive right 
triangle (aṣl al-ajnās), that of the generator, and especially that of repre-
senting the solution in relation to a certain module. It is true that the new 
domain is organized around the study of numerical rectangular triangles 
and of congruent numbers, as well as a variety of problems in number 
theory linked to these two topics.  

After having introduced the foundational concepts for the study of 
Pythagorean triangles, the author of the anonymous text cited above won-
ders about the integers that can be the hypotenuses of these triangles; that 
is, the integers that one can represent as the sum of two squares. He states 
in particular that every element of the series of primitive Pythagorean 
triples is such that the hypotenuse belongs to one of these two forms: 
5 (mod 12) or 1 (mod 12). Like al-Khāzin after him, he notes, however, 
that some numbers in this series (49 and 77, for example) are not the 
hypotenuses of such triangles. The same author knew likewise that certain 
numbers of the form 1 (mod 4) cannot be the hypotenuses of primitive 
rectangular triangles.  

 
45 R. Rashed, ‘Nombres amiables, parties aliquotes et nombres figurés aux XIIIe–

XIVe siècles’; reprinted in Entre arithmétique et algèbre, pp. 259–99; English transl. in 
The Development of Arabic Mathematics, pp. 275–319.  

46 R. Rashed, ‘Diophantine Analysis in the Tenth Century: al-Khāzin’, pp. 209–10. 
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As to al-Khāzin, he next provides the analysis of the proposition that 
was demonstrated only by synthesis in the Elements, Lemma 1 to Proposi-
tion X.29, namely: 

 
Given (x, y, z) a triple of integers such that (x, y) = 1, and x is even. The 

following conditions are equivalent 
 
1° x2 + y2 = z2, 
 
2° there exists a pair of integers p > q > 0; (p, q) = 1 with p and q of 

opposite parities, such that x = 2pq, y = p2 – q2, z = p2 + q2. 
 

Al-Khāzin then solves the equation47  
 

x2 =  x1
2 +  x2

2  +  … +  xn
2 . 

 
His reasoning is general, even though he stops with the case of n = 3. 

He then considers two fourth-degree equations: 
 

x2 + y2 = z4  and  x4 + y2 = z2. 
 
Without pausing longer on these studies of numerical triangles by al-

Khāzin and later by Abū al-Jūd ibn al-Layth, let us turn to the problem of 
congruent numbers, that is, the solutions of the system  

 
x2 + a = y1

2 , 
(1) 

x2 − a = y2
2 . 

 
The author of the anonymous text had provided the identities  
 

(2)       u2 + v2( )2
± 4uv u2 − v2( ) = u2 − v2 ± 2uv( )2

 

 
that make it possible to solve (1) if a = 4uv (u2 – v2). These identities can 
be deduced directly from the following equation:  

 
z2 ±  2xy = (x ± y)2; 

 

 
47 R. Rashed, ‘Diophantine Analysis in the Tenth Century: al-Khāzin’, pp. 213–16. 
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indeed, by substituting 

x = u2 – v2,  y = 2uv,  z = u2 + v2, 
 

one obtains (2). 
Al-Khāzin then demonstrates the following theorem:  
 
Given a natural integer a, the following conditions are equivalent: 
 
1° system (1) admits a solution; 
 
2° there is a pair of integers (m, n) such that 
 

m2 + n2 = x2, 

2 mn = a; 
 

under these conditions, a is of the form 4 uv(u2 – v2). 
 
It was also in this tradition that the study of the representation of an 

integer as the sum of two squares was undertaken. Thus, al-Khāzin devotes 
several propositions of his report to this study. During this important 
research, he displays a direct knowledge of, on the one hand, Proposition 
III.19 of Diophantus’s Arithmetic – and thus of the Arabic version of this 
book – and, on the other, of the identity already encountered in ancient 
mathematics 

(p2 + q2) (r2 + s2) = (pr ± qs)2 + (ps   ∓  qr)2. 

 
Al-Khāzin also tries to find integer solutions of the system of 

Diophantine equations, such as ‘to find four different numbers, such that 
their sum is a square, and that every sum of two of them is a square’,48 that 
is 

x1 + x2 + x3 + x4 = y2, 

            xi + xj = zi j
2      i < j( )  

4

2

⎛

⎝
⎜

⎞

⎠
⎟  equations

⎡

⎣
⎢

⎤

⎦
⎥ . 

These mathematicians are also the first to raise the question of impos-
sible problems, such as the first case of Fermat’s theorem. Indeed, it has 
long been known that al-Khujandī tried to demonstrate that ‘the sum of two 
cubic numbers is not a cube’. Now, according to al-Khāzin, al-Khujandī’s 

 
48 Ibid., pp. 227–9. 
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demonstration is flawed.49 A certain Abū Jaʿfar also tries to demonstrate 
the following proposition:  

It is impossible that the sum of two cubic numbers be a cubic number, 
whereas it as possible that the sum of two square numbers be a square num-
ber; and it is impossible that a cubic number be divisible into two cubic 
numbers, whereas it was possible for a square number to be divisible into 
two square numbers.50 

Abū Jaʿfar’s demonstration is also flawed. Although this demonstration 
was not established until Euler, the problem nevertheless constantly 
preoccupied Arab mathematicians who later stated the impossibility of the 
case x4 + y4 = z4 . 

Research on integer Diophantine analysis and notably on numerical 
rectangular triangles did not end with its originators in the first half of the 
10th century. On the contrary, their successors took it up in the same spirit 
during the second half of the same century and at the beginning of the next, 
as is attested by the examples of Abū al-Jūd ibn al-Layth, al-Sijzī, and Ibn 
al-Haytham. Later, others pursued this research in one way or the other, 
such as Kamāl al-Dīn ibn Yūnus. Let us pause briefly on the writings of 
Abū al-Jūd and al-Sijzī.  

In a treatise on numerical rectangular triangles, Abū al-Jūd ibn al-
Layth takes up the problem of forming the latter, of the conditions neces-
sary for the formation of primitive triangles, and especially establishes 
tables to inscribe, starting from pairs of integers (p, p + k), with k = 1, 2, 
3..., the sides of the triangles obtained, their areas, and the ratio of these 
areas to the perimeters. At the end of his treatise, he also returns to the pro-
blem of congruent numbers.  

 
In a treatise entitled Solution by means of a universal method of the 

numerical problem that is: how to find two square numbers the sum of 
which is a square number51 his junior al-Sijzī elaborates the geometrical 
foundations of this theory of numerical rectangular triangles. These foun-
dations indeed had to be consolidated so that one could establish by means 
of the geometry of integers and without exception, the propositions and the 
algorithms. This ideal is accessible only if the domain of investigation is 
restricted to quadratic problems. It is precisely at this field that al-Sijzī 

 
49 Ibid., p. 231. 
50 Ibid., p. 233. 
51 See R. Rashed, Œuvre mathématique d’al-Sijzī. Vol. I: Géométrie des coniques 

et théorie des nombres au Xe siècle, Les Cahiers du MIDEO, 3, Louvain/Paris, Peeters, 
2004, Chap. II. 
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aims his treatise, firmly intending to find, as he says, a ‘universal method’. 
Thus he devotes all of the first part of the treatise to establishing the gene-
ral case, namely, the Diophantine equation  

 
(*)          v2 = x1

2  +  … +  xn
2 . 

 
His procedure consists in searching for the smallest integer t such that 
 

2vt = z2 
 

from which he draws 

v + t( )2
= x1

2 +…xn
2 + t2 + z2 , 

 
and thus finds a number that is the sum of (n + 2) squares. He shows that, if 
one can solve the cases n = 2 and n = 3, one can solve the general case.  

In effect, al-Sijzī proves the following proposition by means of a 
slightly archaic finite complete induction: 

 
(Pn): for every n, there exists a square that is the sum of n squares.  
Thus, he demonstrates first the case p2, that is 
 

x2 + y2 = z2 
 

by analysis and synthesis. His analysis in effect amounts to showing geo-
metrically that 

y2 = (z – x) (z + x); 
 

in his synthesis, he takes the even term, that is y2, 
 

y2 = 2kb(2a), 
 

then z + x is even and one has 

z – x = 2kb  and  z + x = 2a, 
 

and one finds 
z = a + 2k–1b  and  x = a – 2k–1b; 

 
thus, one finds a solution for every k such that k > 0, 2k–1b < a, that is, 
y2 > 22kb2,  y > 2kb,  y2 = 2k+1ab in particular, if b = 1, then  
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y2 = 2k+1 a,   2 ≤ 2k < y, 
 

hence one has one solution if y is divisible by 2 and y > 2; three solutions if 
y is divisible by 4 and y > 8, and, more generally, 2h – 1 solutions if y is 
divisible by 2h and y > 22h+1. 

Thus, for this case, al-Sijzī demonstrates in several ways that, for n = 2, 
there exists a square that is the sum of two squares. 

For the case p3, that is, 
 

x2 + y2 + z2 
= t2, 

 
al-Sijzī introduces a condition that makes the construction less general, 
namely, t = x + y. He then shows that, if one has pn, then one has pn+2; 
whence a recurrence for n even and a recurrence for n odd. 

Al-Sijzī gives a table, up to n = 9, that we reproduce here. 
 

 
 

One sees that this table is constructed by means of al-Sijzī’s rule of 
recurrence. 

 

33 1089 484 4 36 1484 3636

36

44

55 3025 100 900 225 400400 64 900

36 36 3611 121 4414
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10010 36 64

Table: example of squares 
successively composed of squares

line of the square  originating 
in the sum of squares line of the separate 

squares

line:

compositio
n of a 

square sta
rtin

g 

from squares 

successiv
ely

square from 
two squares

square from 
three squares

square from 
four squares

square from 
five squares

square from 
six squares

square from 
seven squares

square from
eight squares

square from 
nine squares



362 PART  I:  ARITHMETIC 

Fragment from the Anthology of Problems in number theory52 

To find a number such that, if one adds to it a known number, one will 
have a square, and if one subtracts the same number from it, it becomes a 
square.  

Assume that the known number is the number AK. Divide it into two 
halves at B. Multiply AB by itself, namely BC. Add to the latter always 1, 
namely BG. If to the numbers BC and BG, we add the number AK, one 
obtains the square CG, for BD and BE, which are the complements, are 
equal to AK. If from them [the numbers BC and BG] we subtract BD and 
BE, that is, IH, HB, HA, BG, since HB is twice, the remainder is CH, which 
is a square. 

Example: AK is 10. To find a number such that if one adds 10 to it, and 
if one subtracts 10 from it, one gets a square. 

 
Divide 10 into two halves. One has AB, 5; multiply it by itself, one has BC, 
25. Add to this BG which is 1. If we add to it BE, BD – five, five –, one 
gets 36, which has a root. If we subtract from it IH, which is four, and HA, 
which is four and the double of HB, which is two, one has sixteen, which 
has a root. Q.E.D. 
 

 

In his Anthology of Problems, al-Sijzī tries to solve the following 
Diophantine problem (double equation): 

x + a = y1
2

x − a = y2
2

⎧
⎨
⎪

⎩⎪
 

 
52 Œuvre mathématique d’al-Sijzī. Vol. I: Géométrie des coniques et théorie des 

nombres au Xe siècle, pp. 456–7. 
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The solution, established geometrically, corresponds to the following 

algorithm: one calculates 
a

2
, squares it, and adds a unit square. To this sum, 

one adds the number a = 2 × 
a

2
, or else one subtracts the same number 

from the sum. One obtains the perfect squares 
a

2
+1⎛ 

⎝ 
⎞ 
⎠ 

2

 and 
a

2
−1⎛ 

⎝ 
⎞ 
⎠ 

2

. 

Note that during the demonstration, al-Sijzī makes a segment equal to a 
surface. Indeed he introduces the unit of length, 1, such that a = a × 1, in 
order to interpret the segment a as a rectangle. The nonhomogeneous 
character of the problem makes this detour necessary. Al-Sijzī’s solution is 
not the most general. One finds the general solution in algorithmic form in 

Diophantus 2.11; recall that it consists in decomposing 
a

2
 into two factors 

u, v and in taking x = u2 + v2, y1 = u + v, y2 = u – v. 
As we have just seen, al-Sijzī’s solution is in the spirit of Book II of 

Euclid’s Elements.  

2.3. Arithmetic methods in number theory 

As one can ascertain, the works of Abū al-Jūd ibn al-Layth and al-Sijzī 
in integer Diophantine analysis are indeed in the tradition of al-Khāzin: 
they borrow the main problems from him and reinforce after a fashion the 
geometrical methods of proof, all of which firmly establishes its diver-
gence from algebra and from rational Diophantine analysis. Moreover, in 
the tradition of al-Khāzin and his predecessors, beyond the deliberate use 
of the Euclidean language of segments to make demonstrations in this 
field, they occasionally drew on arithmetic arguments like that intended to 
show that every element in the sequences of primitive Pythagorean triples 
is such that the hypotenuse is of one of the two forms 5 (mod 12) or 1 (mod 
12). Now it is precisely in this direction that Diophantine analysis seems to 
have moved already in Arabic mathematics, before fully taking this route 
with Fermat. Instead of using the language of geometry, the goal was to 
proceed by purely arithmetic means. We do not yet know precisely when 
this important change of direction took place, but we see it in the works of 
the later mathematicians. So it is that al-Yazdī devotes a short report to the 
solution of the same Diophantine equation (*) by purely arithmetic means; 
in it he studies the different cases as a function of the parity of the xi and he 
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systematically uses a calculation equivalent to the congruences modulo 4 
and modulo 8.53 

 
Several results from the work of these mathematicians were trans-

mitted and reappear in Fibonacci’s Liber quadratorum and sometimes in 
his Liber abaci. It is, however, Fermat’s invention of the method of infinite 
descent in 1640 that will breathe new life into this chapter.54 
 

 
53 See below, ‘Al-Yazdī and the equation 

i

2

x
i=1

n

∑ = 2

x ’.  

54 See below. 
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ALGORITHMIC METHODS  
 
 
 
Like their Egyptian and Babylonian predecessors, the Greek mathema-

ticians who carried out arithmetic research invented procedures that one 
can nowadays call algorithmic. One can make the same point about 
Chinese and Indian mathematics, as well as many others. Needless to say, 
these are not algorithms in the strong technical sense in which logicians 
and programmers use the term; rather, they are procedures that, without 
being formalized, consist of rules that make possible efficient calculation. 
In addition, this procedure is iterative in the case of approximations. 
Consider Pythagorean arithmetic,1 the so-called arithmetic books of 
Euclid’s Elements,2 and Diophantus’s Arithmetic.3 With the exception of 
the anthyphairesis, these procedures were neither formulated nor named. 
Since they were embedded in the calculations themselves, these procedures 
came to light only thanks to the historian’s research. One good example is 
the algorithmic method that Diophantus applied to the solution of many 
indeterminate problems: the ‘method of chords’ in modern translation. 
Clearly, if historians want to locate and to unveil most of the algorithms of 
ancient mathematics, they cannot avoid some form of interpretation.  

Outside of arithmetic, however, the appeal to algorithmic methods was 
very rare. To be sure, Babylonian astronomers had already used linear 
interpolation, which also appears in Ptolemy. But the fact remains that, in 
Greek mathematics, algorithmic activity was concentrated in the domain of 
arithmetic. Schematically, this was the situation before al-Khwārizmī 
entered the scene.4 Unprecedented development in the invention and 

 
1 J. Vuillemin, Mathématiques pythagoriciennes et platoniciennes, Paris, Librairie 

A. Blanchard, 2001. 
2 J. Itard, Essais d’histoire des mathématiques, collected and introduced by 

R. Rashed, Paris, Librairie A. Blanchard, 1984. 
3 Diophantus, Les Arithmétiques, transl. and commentary by R. Rashed, 2 vols, 

Paris, Les Belles Lettres, 1984. 
4 R. Rashed, Al-Khwārizmī: Le commencement de l’algèbre, Paris, Librairie A. 

Blanchard, 2007; English transl. Al-Khwārizmī: The Beginnings of Algebra, London, 
Saqi Books, 2009.  
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application of algorithmic procedures followed in his wake. Indeed, by 
comparison with Hellenistic mathematics, Arabic mathematics after al-
Khwārizmī reveals a profusion of algorithmic methods, which show up just 
about everywhere: in arithmetic in the ancient understanding of the term 
(the ‘science of calculation’ or ḥisāb), but also in algebra, astronomy, and 
even optics.5 The number of algorithmic methods and the frequency of 
their usage are such distinctive characteristics of Arabic mathematics that 
they already impressed the 19th-century historians. Indeed, precisely this 
characteristic led some historians who were too subservient to Greek 
‘geometrism’ to label Arabic mathematics computational. 

We must now explore the reasons behind this development, the forms 
that it took, and the new research that it stimulated. One of the main rea-
sons, as we have recently noted, is the birth of algebra. It was algebra that 
integrated algorithmic approaches into the heart of mathematics, that is, as 
a demonstrative approach and not merely as a solution procedure. This is a 
genuine epistemic mutation, one that henceforth creates a cleavage in the 
history of algebraic methods. Let us pause to reflect on this development. 

It is one thing to propose a calculation procedure, a finite set of rules 
that are applied to one problem after the other; it is quite another to state 
this finite set of rules independently of any particular instance in order to 
apply it to a class of problems that are determined a priori. In both cases, 
the goal is, of course, to obtain either a true solution or an effective calcu-
lation. Only in the second case, however, can one speak of an algorithm 
that is not yet formalized, as was already the case with al-Khwārizmī. 
Indeed, after having defined the primitive terms of the theory of equations 
of the first two degrees, he determines by combinations of these terms all 
the equations that must be studied. It is then that he states the operational 
rules, the application of which makes possible the solution of all these 
equations in a finite number of steps. These rules allow him in particular to 
fill in the spaces that were deliberately left open by the givens. The algo-
rithmic method or the algorithm is not presented as a simple solution pro-
cedure, but it is such in fact, insofar as it constitutes an integral part of the 
theory of algebraic equations of the first two degrees. Now this new con-
cept requires another: as one part of a theory, the algorithm must be 
demonstrable, or at least justifiable. It is precisely this requirement that 
al-Khwārizmī took up when he wanted to demonstrate the algorithm 
geometrically, that is, by means of a theory completely devoid of specifics 
associated with the algorithm.  

 
5 Cf. below. 
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After al-Khwārizmī, algebra continuously renewed and extended 

itself,6 simultaneously bringing in its wake the development of algorithmic 
methods. Thus the development of the algebra of polynomials, in the tradi-
tion that we have called ‘the arithmetization of algebra,’ provided theoreti-
cal means that proved indispensable for algorithmic research.  

With al-Karajī and his successors, one witnesses the generalization of 
the Euclidean division algorithm to polynomials.7 An algorithm was 
invented to extract the square root of a polynomial. The use of tables (to 
write down the coefficients of polynomials and to carry out arithmetic 
operations on them by displacing the table’s rows and columns) made it 
possible to manipulate these algorithms easily and effectively.8 Mathemati-
cians in this tradition invented many other algorithms as they were trying to 
develop algebraic calculation. And in the other, geometrical tradition of 
algebra, additional algorithms were also developed to meet the needs of the 
theory of equations, notably the solution of numerical equations. 

  
Thus algebra evidently not only contributed a new status to algorithmic 

methods within mathematics, but also fertilized research on algebraic and 
numerical algorithms. The main concern now was to justify the algorithm 
in terms of either a general theory, or an ad hoc one, as Sharaf al-Dīn al-
Ṭūsī would do. 

Astronomy would also participate in this movement, most notably from 
the middle of the 9th century. Note, however, that this development was 
itself the consequence of a transformation within the discipline, namely the 
combination of observational astronomy with a mathematical approach to 
astronomical theory. Such an orientation forces one to take up the problem 
of interpolation: mathematical astronomers thus invented algorithmic 
methods to solve the problems involved in interpolating trigonometric 
functions. The number of these algorithms and the mathematical means put 
in place to invent them raised new questions, such as the problem of com-
paring various algorithms to each other in order to find the one with the 
optimal performance. Al-Bīrūnī and al-Samawʾal, for example, would put 
much effort into precisely this problem. The theoretical justification of 
algorithms and the comparison among them to find the best are not only 
two new themes in mathematical research, but also two specific differences 
that mark a distinction between finite calculatory procedures and 

 
6 See above. 
7 Al-Samawʾal, Al-Bāhir en Algèbre d’al-Samawʾal, edition, notes and introduction 

by S. Ahmad and R. Rashed, Damascus, 1972, pp. 22–8 of the French introduction. 
8 Ibid., pp. 28–34. 
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non-formalized algorithms. These domains were the birthplace of the algo-
rithms that interest us here. After all, every finite calculatory procedure is 
only one interpretation away from assimilation to an algorithm. Thus, 
without the aforementioned differences, the history of algorithms would 
overlap with that of mathematics itself. 

 
 

1. NUMERICAL EQUATIONS  
 
In the chapter devoted to algebra, we already alluded to the use, by al-

Khwārizmī and his successors, of algorithms to solve algebraic equations. 
Elsewhere, one sees other algorithms put to use for algebraic calculation. 
Our focus here is exclusively on algorithms invented to solve numerical 
equations – the ‘pure’ and the ‘affected’, to use the terminology of the 17th 
century, that is, those respectively of the form 

 

(1)  xn = Q, where n ≥ 2 and Q is a natural integer, 

and 

(2)  ai

i=0

n

∑ xn−i = 0 , where ai ��Z, a0 = 1, an ≠ 0. 

1.1. The extraction of roots 

The first issue at hand is the very ancient problem of extracting the 
roots of an integer or rational number, notably the square and cube roots, 
before the means of extracting the nth root had been invented. In Greek and 
Arabic mathematics, this invention goes back to al-Karajī, who was the 
first to establish the binomial theorem. It is therefore after al-Karajī, at the 
end of the 10th century, that mathematicians will elaborate algorithmic 
methods to solve equation (1). Without going into many details, let us 
retrace the stages in the history of these solutions.  

As far back as one can go in the history of Arabic mathematics, one 
finds algorithmic methods for extracting square and cubic roots. One such 
is of Hellenistic origin (Hero of Alexandria, Theon of Alexandria), whereas 
others are presumably Indian, and yet others originated with the Arabic 
mathematicians themselves. Whatever the remote or proximate origins of 
these algorithmic methods, they were integrated into another mathematics 
that gave them a new reach by modifying their meaning. So it is that, from 
the 9th century to the 17th at least, every book of decimal arithmetic (ḥisāb) 
or of algebra included a discussion of the extraction of square and cubic 
roots, and sometimes more generally of the nth root of an integer. If we 
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emphasize these facts, it is to avoid privileging works such as those of 
Kūshyār, al-Nasawī or Ibn al-Ḥaṣṣār. The advantage these authors usually 
enjoy is purely circumstantial: their names appear in the writings of histori-
ans simply because their works have been translated into a European lan-
guage. Our first task will therefore be to retrace at least the most salient 
points of the tradition to which these works belong, for these are neither the 
most advanced nor the most profound. Some manuscript texts we have dis-
covered will be of particular value in this undertaking. For obvious reasons, 
the exposition below cannot touch on all of these ‘algorithms’; we there-
fore discuss only the most important. 

Let us begin with al-Khwārizmī. In a book of arithmetic that remains 
lost and is presently known only from the effects of its Latin translation, al-
Khwārizmī proposed, as the mathematician al-Baghdādī (d. 1037) tells us, 
a formula to approximate the square root of an integer N. If we let 
N = a2 + r, where a is an integer, this formula is written 

(1)  N = a + r
2a

. 

Al-Baghdādī cannot avoid mentioning that this is an approximation by 
excess,9 which is far from being satisfactory, as one can readily confirm by 
trying to find √2 and √3. 

Contemporaneously with al-Khwārizmī, the Banū Mūsā’s book On the 
Measurement of Plane and Spherical Figures10 gave another expression 
that would later be called ‘the rule of zeros’, and easily generalized to 
extract the nth root. The expression is 

(2)  Nn = 1
mk

N  mnkn  

where m and k are any two integers. 
Letting m = 60 and n = 3 yields the expression of the Banū Mūsā. This 

rule is found in most books of arithmetic. To give only three examples, it 
appears in the Fuṣūl written by al-Uqlīdisī in 952 to extract square and 

 
9 Al-Takmila, ed. A. S. Saidan, Kuwait, 1985, p. 76. 
10 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle. Vol. I: 

Fondateurs et commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-
Qūhī, Ibn al-Samḥ, Ibn Hūd, London, al-Furqān, 1996, p. 56; English translation: 
Founding Figures and Commentators in Arabic Mathematics. A History of Arabic 
Sciences and Mathematics, vol. 1, Culture and Civilization in the Middle East, London, 
Centre for Arab Unity Studies, Routledge, 2012, p. 69; cf. also the Latin translation in 
M. Clagett, Archimedes in the Middle Ages, Madison-Philadelphia, 1964, vol. I, p. 350 
and his commentary on p. 367. 



370 PART  I:  ARITHMETIC 
 

cubic roots,11 in the Takmila of al-Baghdādī for the cubic root,12 and in the 
Treatise of Indian Arithmetic by al-Samawʾal (1172/3) for the nth root. 

Everything suggests that mathematicians then wanted to find better 
approximation formulas. Thus al-Uqlīdisī in the aforementioned treatise 
gives, among other expressions, 

(3)  N = a + r
2a +1

, 

which will later be called the ‘conventional approximation’, with 2a + 1 as 
‘the conventional denominator’, according to the expressions of Naṣīr al-
Dīn al-Ṭūsī and later al-Kāshī. 

Al-Baghdādī gives the ‘conventional approximation’ for the cubic root 
of N, if we let N = a3 + r, where a is an integer 

(4)  N3 = a + r
3a2 + 3a +1

. 

 
To avoid getting lost in the details, we leave aside the plethora of for-

mulas that the various mathematicians give both to extract the square and 
cubic roots and to approximate these roots. We will, however, pause on 
two contributions from the late ��th century that are linked despite their 
very unequal significance, namely two that eventually lead to the algorithm 
of Ruffini-Horner. In his Arithmetic, Kūshyār ibn Labbān applies this 
algorithm, which is very probably of Indian origin. We now know that Ibn 
al-Haytham not only knew this algorithm, but also tried to give it a mathe-
matical justification. Here we present an exposition of his general 
approach, but in language that differs from his. 

Given the polynomial f(x) with integer coefficients and the equation 

(5)  f(x) = N. 
 
Let s be a positive root of this equation, and assume (si), i ≥ 0, a 

sequence of positive integers such that the partial sums 

si

i=0

k

∑ ≤ s ; 

one states that the si are parts of s. 
 
11 Al-Uqlīdisī, Al-Fuṣūl fī al-Ḥisāb al-Hindī, ed. A. S. Saidan, 1st ed., Amman, 

1973, p. 218 and 313–14; 2nd ed., Alep, I.H.A.S., 1986. English transl., The Arithmetic 
of al-Uqlīdisī, translated and annotated by A. S. Saidan, Dordrecht/Boston, D. Reidel, 
1978. 

12 Al-Baghdādī, al-Takmila, ed. A. S. Saidan, pp. 76–80 and pp. 84–94. 
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It is evident that the equation 
 
(6)  f0(x) = f(x + s0) – f(s0) = N – f(s0) = N0 
 

has as roots those of equation (5) minus s0. 
 
For i > 0, let us form by recurrence the equation 
 
(7) fi(x) = f(x + s0 + ... + si) – f(s0 + ... + si)  
 
   = [N – f(s0 + ... + si-1)] – [f(s0 + ... + si) – f(s0 + ... + si-1)] = Ni; 
 

thus, for i = 1, for example, one has 
 
  f1(x) = f(x + s0 + s1) – f(s0 + s1) = [N – f(s0)] – [f(s0 + s1) – f(s0)] 
 
  = N0 – [f(s0 + s1) – f(s0)] = N1. 
 
The method, which is named ‘Ruffini-Horner’ even though Ibn al-

Haytham applies and justifies it and Kūshyār uses it, offers an algorithm 
that allows one to obtain the coefficients of the ith equation from the coeffi-
cients of the (i – 1)th equation. Herein lies the main idea of this method.13 

Let us begin with the extraction of the nth root, which one finds already 
in the 12th century, if not earlier. One has 

 
f(x) = xn; 

 
if one knows the arithmetical triangle and the binomial formula, which, as 
noted above, al-Karajī14 produced in the 10th century, there is no need to 
know Horner’s table. The coefficients of the ith equation will then be  

 

  
n

k

⎛

⎝
⎜

⎞

⎠
⎟  s0  +  ... +  si−1( )n−k     for k = 1, … n 

 
13 See our study of Ibn al-Haytham’s extraction of the square and cubic roots in Les 

Mathématiques infinitésimales du IXe au XIe siècle. Vol. II: Ibn al-Haytham, London, al-
Furqān, 1993, Appendix; English transl. Ibn al-Haytham and Analytical Mathematics. 
A History of Arabic Sciences and Mathematics, vol. 2, Culture and Civilization in the 
Middle East, London, Centre for Arab Unity Studies, Routledge, 2012. 

14 See ‘Algebra and its unifying role’, above. 
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(8)    and 

  Ni = Ni−1 −
n

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

n

∑  s0  +  … +  si−1( )n−k
si

k . 

 
After these preliminary remarks, let us return to Ibn al-Haytham and 

Kūshyār for the square and cubic roots. Let 
 

f(x) = x2 = N;  
 

one then has two cases: 
 
First case: N is the square of an integer. Let us assume that the root has 

the form 
s = s0 + ... + sh,  with si = σi 10h–i (0 ≤ i ≤ h). 

 
The task of the 11th century mathematicians is first to determine h and 

the numbers σi. The formulas at (8) are rewritten 
 

2 (s0 + ... + si–1), 1, Ni = Ni–1 – [ 2(s0 + ... + si–1) si + si
2 ]. 

 
One then determines σ0 by inequalities  
  

σ 0
2  102h ≤ N < σ 0 +1( )2

·102h  

 
and σ1, … , σh by  

σ i =
Ni

2 s0  +  … +  si−1( )  · 10h−i
. 

 
In these expressions, one calculates the Ni for (1 ≤ i ≤ h), beginning 

from Ni–1, by subtracting from it [ 2 s0  +  … +  si−1( )si + si
2 ]. For i = h, one 

finds Nh = 0. 
 
Second case: N is not the square of an integer. Ibn al-Haytham uses the 

same method to determine the integer portion of the root and goes on to 
give as the formula of approximation that of al-Khwārizmī and that of the 
‘conventional approximation’, which are written, respectively, in this 
notation 
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s0  +  … +  sh( ) +
Nh

2 s0  +  … +  sh( )
 

and 

s0  +  … +  sh( ) +
Nh

2 s0  +  … +  sh( ) +1
. 

 
He thus not only describes the algorithm, like Kūshyār, but also 

attempts to give the mathematical reasons for it, by justifying the fact that 
these two approximations bracket the root. 

To extract the cubic root of an integer, the procedure is analogous. Let 
 

f(x) = x3 = N;  
 

here also two cases transpire.  
 
First case: N is the cube of an integer. In this case, s0 is determined 

such that s0
3 < N . Just like his contemporaries, Ibn al-Haytham then sets 

s1 = s2 = ... = sh = 1. 
The coefficients of the ith equation are rewritten 
 

3(s0 + i)2, 3(s0 + i), 1, Ni = Ni–1 – [3 (s0 + (i – 1))2 + 3(s0 + (i – 1)) + 1]. 
 
If Ni is the cube of an integer, there is some value of i such that Nk = 0; 

that is, such that (s0 + k) is the root one seeks. Like his contemporaries, Ibn 
al-Haytham describes in every detail the different steps of the algorithm. 

 
Second case: N is not the cube of an integer. Ibn al-Haytham also gives 

two formulas that are symmetrical to those already mentioned for the 
extraction of the square root, and that are rewritten 

 

s0  +  … +  sh( ) +
Nh

3 s0  +  … +  sh( )2  

and 

s0  +  … +  sh( ) +
Nh

3 s0  +  … +  sh( )2
+ 3 s0  +  … +  sh( ) +1

 ; 

 
in the latter, one recognizes the ‘conventional approximation’. 

Acquired at the beginning of the 11th century, the whole of the preced-
ing methods and results recur not only among the contemporaries of these 
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mathematicians, but in the majority of the many subsequent treatises of 
arithmetic. These include – among many others – the treatises of al-Nasawī 
(the successor of Kūshyār), of Naṣīr al-Dīn al-Ṭūsī, of Ibn al-Khawwām al-
Baghdādī, of Kamāl al-Dīn al-Fārisī, etc.15 

 
Since they knew the arithmetic triangle and the binomial formula, as 

we have often emphasized, mathematicians encountered no major difficul-
ties in generalizing the preceding methods or in formulating the algorithm 
for the case of the nth root. In fact, although they are now lost, we know 
that attempts such as these had already taken place in the 11th century, with 
al-Bīrūnī and al-Khayyām. Testifying to their activities, the ancient bibli-
ographies contain the titles of the works they devoted to this research, but 
these remnants say nothing about the mathematicians’ methods. It is in his 
contribution of 1172/3 that al-Samawʾal not only applied the so-called 
Ruffini-Horner method to extract the nth root of a sexagesimal integer, but 
also formulated a clear concept of approximation.16 For this 12th-century 
mathematician, ‘to approximate’ is to know a real number by means of a 
series of known numbers such that the latter differs from the number by a 
quantity as small as the mathematician wishes. The point is therefore to 
measure the interval between the irrational nth root and a sequence of 
rational numbers. After having defined the concept of approximation, al-
Samawʾal begins by applying the so-called Ruffini-Horner method to the 
example  

f(x) = x5 – Q = 0, 
 

with Q = 0 ; 0, 0, 2, 33, 43, 3, 43, 36, 48, 8, 16, 52, 30. 
 

This method survived into the 12th century and appeared in many other 
treatises of ‘Indian arithmetic’, as they were then called. Even later, it 

 
15 See H. Suter, ‘Über das Rechenbuch des Alī ben Ahmed el-Nasawī’, Bibliotheca 

Mathematica, III, 7, 1906/7, pp. 113–19; al-Nasawī, Nasawī Nāmih, ed. Abū al-Qāsim 
Qurbānī, Tehran, 1973, pp. 65 ff. of the Persian introduction to the edition, and 8 ff. of 
the reproduction of the published Arabic text; Naṣīr al-Dīn al-Ṭūsī, ‘Jawāmiʿ al-ḥisāb 
bi-al-takht wa-al-turāb (Arithmetic Complete, by Board and Dust)’, ed. A. S. Saidan, al-
Abhath, XX, 2, June 1967, pp. 91–164 and 3, Oct. 1967, pp. 213–29, at pp. 141 ff. and 
266 ff.; Ibn al-Khawwām, Al-Fawāʾid al-bahāʾiyya fī al-qawāʿid al-ḥisābiyya, ms. 
British Library, Or. 5615, fols 7v and 8r). 

16 See R. Rashed, ‘Nombres amiables, parties aliquotes et nombres figurés aux 
XIIIe-XIVe siècles’, Archives for History of Exact Sciences, 28, 2, 1983, p. 107–47; 
English translation, The Development of Arabic Mathematics: Between Arithmetic and 
Algebra, Boston Studies in the Philosophy of Science 146, Dordrecht, 1994, pp. 275–
319. 
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would surface among the predecessors of al-Kāshī, in al-Kāshī himself, and 
among his successors as well as. To cite only his example, in his Key of 
Arithmetic, he solves 

f(x) = x5 – N = 0, 
 

with N = 44 240 899 506 197. 
The point is that this is a well-known and diffused method since the 

12th century, at least among Arabic mathematicians. Far from being unique, 
there are many others, all based on knowledge of the binomial theorem, 
without requiring any appeal to Horner’s algorithm. We also want to 
emphasize the multiplicity and the diffusion of these methods, which cir-
culated not only in the fundamental treatises of arithmetic, but also in those 
of second-rate commentators and mathematicians. Suffice it to cite one 
random example taken from among many authors who have never before 
been studied. The case is that of al-Aḥdab of Kairouan (Kirwan), who lived 
before 1241 and commented on the text of Abū al-Majd ibn ʿAṭiyya, a 
second-tier mathematician also from Kairouan. Ibn ʿAṭiyya17 establishes a 
method for extracting the nth root, proves it, and gives numerical examples. 
He thus gives the example of the 5th root of N = 4 678 757 435 232. Ibn 
ʿAṭiyya assumes that the root has the form (a + b + c), with a = α · 102, and 
b = β  · 10. Here are the main steps of his algorithm: 

 
He first writes N – a5 = N1, then calculates  
 

5

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

5

∑  a5−k . 

 
Next, he multiplies the terms of this expression respectively by b, b2, 

b3, b4 and b5 to obtain  

5

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

5

∑  a5−kbk

 
 

and calculates 

N2 = N1 −
5

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

5

∑  a5−kbk . 

 
Next, he calculates  

 
17 Ms. London, British Library, 7473, especially beginning from fols 367r–374r. 
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5

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

5

∑  a + b( )5−k ; 

 
he multiplies these terms respectively by c, c2, c3, c4 and c5 to obtain  

 
5

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

5

∑  a + b( )5−k
ck , 

 
and to reach 

N3 = N2 −
5

k

⎛

⎝
⎜

⎞

⎠
⎟

k=1

5

∑  a + b( )5−k
ck = 0 . 

 
When we turn to the extraction of the nth irrational root of an integer, 

we find an analogous situation. In his Treatise of Arithmetic, al-Samawʾal 
gives a rule for approximating by fractions the non-integer portion of the 
irrational root of an integer. His procedure amounts to solving the numeri-
cal equation 

xn = N; 
 

he begins by seeking the greatest integer x0 such that x0
n  ≤ N. Two cases 

emerge:  
 

1° x0
n  = N ⇔ x0 is the exact root that was sought. As we have seen, al-

Samawʾal has access to a sure method of obtaining this result when it 
is possible.  

 
2° x0

n  < N ⇔ N1/n is irrational. In this case, he states as a first 
approximation 

′x = x0 +
N − x0

n

n

k

⎛

⎝
⎜

⎞

⎠
⎟x0

n−k

k=1

n−1

∑
⎡

⎣
⎢

⎤

⎦
⎥+1

, 

that is, 

′x = x0 +
N − x0

n

x0 +1( )n
− x0

n
. 

 
This is therefore the generalization of what mathematicians have called 

the ‘conventional approximation’. 
This approximation by defect shares the same nature as that of al-

Samawʾal’s Arabic predecessors, but it is much more general. Indeed, 
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whereas the arithmeticians who had assimilated al-Karajī’s results limited 
the application of this method to powers ≤ 3, the rule here is extended to 
any power, such as one encounters it among so many later mathematicians, 
such as Naṣīr al-Dīn al-Ṭūsī and al-Kāshī. Not least, it was to improve 
these approximations that decimal fractions were explicitly conceived, as 
the example of al-Samawʾal shows. 

1.2. The extraction of roots and the invention of decimal fractions 

In the middle of the 10th century, al-Uqlīdisī reached an intuitive idea 
of decimal fractions as he was studying the division of odd integers by 2. 
He writes:  

[…] the half of one in any place is 5 before it. Accordingly, if we halve an 
odd number we set the half as 5 before it, the units place being marked by a 
sign  ′  above it, to denote the place.18 

Although commendable and accompanied by a very convenient princi-
ple of notation, this result nevertheless constitutes neither a genuine theory 
of decimal fractions, nor an explicit recognition of the latter. It merely pro-
vides us with an empirical rule for the case of division by 2. Not until the 
algebraists from the school of al-Karajī does one encounter a fully general 
theoretical discussion. These mathematicians very naturally felt the neces-
sity of these fractions while pursuing as far as they wished the approxima-
tion of the nth irrational root of an integer. To invent these fractions, they 
put to good use the algebra of polynomials, its rules, and its means of rep-
resentation. The first known exposition of these fractions, which al-
Samawʾal19 gave in 1172/3, leaves no doubt about either the algebraic 
means or the anticipated goal and applications. Indeed, in al-Samawʾal’s 
book al-Qiwāmī fī al-ḥisāb al-hindī, this exposition immediately follows 
the chapter devoted to the approximation of the nth root of an integer. The 
very title of the chapter on decimal fractions is laden with significance:  

Concerning the positing of the unique principle by which one can determine 
all the operations of ‘partition’ (al-tafrīq), which are division, extraction of 
the square root, extraction of one side for all powers, and the correction, 
indefinitely, of all the fractions that appear in these operations.20  

 
18 Al-Uqlīdisī, Al-Fuṣūl fī al-Ḥisāb al-Hindī, ed. A. S. Saidan, 1st ed., p. 145; 

English transl., p. 110. 
19 See R. Rashed, ‘L’extraction de la racine nième et l’invention des fractions 

décimales’, Archive for History of Exact Sciences, 18.3, 1978, pp. 191–243; English 
transl. in The Development of Arabic Mathematics, pp. 85–146. 

20 Al-Qiwāmī fī al-Ḥisāb al-hindī, fol. 111v, ed. R. Rashed in The Development of 
Arabic Mathematics, p. 137. 
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The ‘unique principle’ to which al-Samawʾal alludes is no other than 

that already recognized in algebra and that he has already explained in his 
book al-Bāhir, namely that, on either side of x0, one has an identical struc-
ture. It thus suffices to substitute 100 for x0, and for the other algebraic 
powers, the power of 10, in order to obtain the integers and the decimal 
fractions. As al-Samawʾal writes: 

Given that the proportional positions beginning with the position of the units 
[100] succeed one another indefinitely according to the proportion of the 
tenth, we assume, on the other side [of 100], that the positions of the parts 
<of ten succeed each other> according to the same proportion, and the posi-
tion of units [100] is intermediary between the positions of the integers, the 
units of which likewise are displaced indefinitely, and the positions of the 
parts that are indefinitely divisible.21  

Continuing his explanation, al-Samawʾal produces a table that we tran-
scribe below with the substitution of 10n

 for verbal expressions and without 
recording all the positions: 

 
1013 1012... 109... 106 ... 103... 10  100 10-1 ... 10-3 ... 10-6 ... 10-9 ... 10-12 10-13 

                4          3       2         1              0                 1          2          3          4 

 

To write the fractions, al-Samawʾal separates the integer from the frac-
tional part, by noting either the numbers of the different positions, or the 
denominator 

 
  100  10-1  10-2 10-3  10-4  10-5  10-6  or                 3 

    3    1          6      2        2      7        7    1 6 2 2 7 7 

                     1 0 0 0 0 0 0 

 
In the same algebraic tradition as al-Samawʾal, al-Kāshī (d. 1436/7) 

much later takes up the theory of decimal fractions and gives an exposition 
that reveals a great mastery of theory and calculation. He insists on the 
analogy between the sexagesimal and the decimal systems, and uses frac-
tions to approximate not only real algebraic numbers, but also the number π 
out to 10-16. What is more, he is, as far as we know, the first to name these 
fractions al-kusūr al-aʿshāriyya, that is, ‘decimal fractions’.22 

 
21 Ibid. 
22 See al-Kāshī, Miftāḥ al-Ḥisāb, ed. A. S. al-Dimirdash and M. H. al-Hifnī, Cairo, 

1967, pp. 79 and 121; P. Luckey, Die Rechenkunst bei Jamshīd B. Masʿūd al-Kāshī, 
Wiesbaden, 1951, p. 103; R. Rashed, The Development of Arabic Mathematics, 
pp. 127 ff. 
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Decimal fractions outlived al-Kāshī in the writings of the 16th-century 

astronomer and mathematician Taqī al-Dīn ibn Maʿrūf23 and of al-Yazdī. In 
al-Yazdī’s treatise ʿUyūn al-ḥisāb, one cannot avoid noticing a certain 
familiarity with decimal fractions, even though he prefers to calculate with 
sexagesimal and ordinary fractions.24 Several clues suggest that decimal 
fractions were transmitted to the West before the middle of the 17th cen-
tury. In a Byzantine manuscript brought to Vienna in 1562, they are called 
the fractions of ‘the Turks’. Al-Kāshī introduces a vertical line that sepa-
rates the integer from the fractional part – a representation that appears in 
such Europeans as Rudolff, Apianus, and Cardano. The mathematician 
Mizraḥi (born in Constantinople in 1455) was using the same sign before 
Rudolff did. As to the Byzantine manuscript, it states, among other things 
that ‘the Turks carried out multiplications and divisions on fractions using 
a special calculatory procedure. They had introduced their fractions when 
they governed our land here’. The example that the mathematician gives 
leaves no doubt that he was referring to decimal fractions.25 

1.3. Numerical polynomial equations 

Not until al-Khayyām and the elaboration of the geometrical theory of 
cubic equations does one encounter the systematic study of numerical 
equations in Arabic mathematics. Thereafter, mathematicians occasionally 
treated one or the other of these equations but, to my knowledge, no one 
had thought of inventing an effective algorithm to solve them. Thus, 
according to al-Khayyām’s report,26 some mathematicians – and not the 
least, since they included al-Būzjānī, al-Qūhī, and al-Ṣāghānī – debated the 
solution of the equation at the royal court of ʿAḍud al-Dawla. 

 
20x2 + 2000 = x3 + 200x , 

 
which Abū al-Jūd ibn al-Layth would solve. Al-Khayyām himself solved 
the equation 

x3 + 2x2 +10x = 20 , 

 
23 Bughyat al-ṭullāb, fol. 131r ff. 
24 Cf. Ms. Istanbul, Hazine 1993, for example fols 9v, 49r–v. 
25 Cf. H. Hunger and K. Vogel, Ein byzantinisches Rechenbuch des 15. 

Jahrhunderts, Vienna, 1963, p. 32, Problem 36. 
26 R. Rashed and B. Vahabzadeh, Al-Khayyām mathématicien, Paris, Librairie 

Blanchard, 1999, pp. 254–6; English transl. Omar Khayyam. The Mathematician, 
Persian Heritage Series no. 40, New York, Bibliotheca Persica Press, 2000 (without the 
Arabic texts), pp. 173–4. 
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for which Fibonacci27 would later give a long solution. Not until al-
Khayyām’s successor, Sharaf al-Dīn al-Ṭūsī, did anyone invent not only 
such an algorithm, but also one that was generalizable, as well as provide a 
theory to justify it. Everything happened as if the absence of a solution by 
means of radicals, the presence of the solution by means of the intersection 
of conic curves, and finally the invention of ‘analytical’ means of ascer-
taining the existence of positive roots opened wide the gates of the treat-
ment of numerical equations. Henceforth, a treatise called al-Muʿādalāt 
(On Equations), like that of al-Ṭūsī, composed c. 1180, includes a study of 
the numerical solution of these very equations. In this treatise, one 
encounters an algorithm to determine the positive root of quadratic and 
cubic equations. The use of this algorithm to solve quadratic equations, 
which were previously solved by means of radicals, evidently shows that 
al-Ṭūsī had set himself apart from the two types of study, the algebraic and 
the numerical, and that he intended to treat the numerical solution as a topic 
in its own right.  

To solve equation (2) (p. 368), Sharaf al-Dīn al-Ṭūsī thus invented an 
optimal algorithm, in the modern meaning of the term, in order to yield an 
efficient and ‘economical’ calculation in his search for a positive root.28 
We will describe as briefly as possible al-Ṭūsī’s procedure.  

After rigorously demonstrating the existence of this root by using 
algebraico-analytical concepts and methods,29 he turns to the determination 
of this root for numerical equations. Let s be this positive root of (2), and 
let its decimal expansion be  

 
s = σ 010 r + σ 110 r −1 +… + σ r −110 + σ r , 

 
with si = σ i10r−i , r the decimal rank of s and r + 1 numbers σ i  the digits 
that constitute root s.  

To determine s, one need only calculate successively the digits σ i . 
Two stages make up al-Ṭūsī’s method. The first is devoted to the 

determination of σ0 and of r. It is to solve this problem that al-Ṭūsī invents 
an ad hoc theory about the dominant polynomials in (2). In the second 
stage, he forms from (2) an equation that admits s − s0( )  as a root. From 

 
27 Omar Khayyam. The Mathematician, p. 88 and R. Rashed, The Development of 

Arabic Mathematics. 
28 See R. Rashed, The Development of Arabic Mathematics and Sharaf al-Dīn al-

Ṭūsī, Œuvres mathématiques. Algèbre et géométrie au XIIe siècle, 2 vols, Collection 
Sciences et philosophie arabes – textes et études, Paris, Les Belles Lettres, 1986. 

29 See ‘Algebra and its unifying role,’ above. 
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this new equation, he seeks to determine σ1, in order to form next an equa-

tion that admits s − s0( ) − s1( )  as a root. He repeats the procedure as often as 

necessary.  
After having calculated σ 0 , al-Ṭūsī then defines by recurrence a 

sequence Ek( )  of polynomials by 

 

   
E0( ) f0 x( ) = f x( )
Ek( ) fk x( ) = fk−1 x + sk−1( )

   1 ≤ k ≤ r. 

 
One can easily confirm that the roots of fk( ) , 1 ≤ k ≤ r are those of fk–1, 

minus sk−1 ; they are therefore those of E0( )  minus s0 + s1 +…+ sk−1( ) . 

It is moreover evident that sr  is a root of Er( ) . 

One can therefore formulate al-Ṭūsī’s procedure as follows: the equa-
tion E0( )  allows one to carry out the calculation in a first time interval s0 , 

that is, σ0  and r; and by recurrence, in a second time interval, we form the 
equations that make possible the calculation, successively, of the σk by 
means of the following equation: 

 

(3.1)  sk =
− fk−1 sk−1( )
fk−1

(1) sk−1( )
. 

 
For this procedure to be effective, however, the problem is to find an 

algorithm to the (Ek) equations by recurrence. Indeed, this algorithm must 
allow one to calculate the coefficients of equation (Ek) from those of (Ek–1). 
What we have here, as we shall see, is the famous algorithm named for 
Ruffini-Horner.  

 
Recall briefly that this algorithm is one that makes it possible to calcu-

late systematically, in the simplest and most ‘economical’ way, the coeffi-
cients of an equation whose roots are those of another equation, reduced by 
a fixed number. One can apply this scheme to our equation in order to 
reduce one of its roots by its first digit; one applies it again to reduce the 
corresponding root of the new equation that results from it, also by its first 
digit, that is, by the second digit of the root under consideration of the ini-
tial equation, and so on. 

Thus, let the polynomial equation be  
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(3.2) F(x) = A0xN + A1x

N−1 +…+ AN−1x + AN = 0 , 
 

and let Δ be a fixed number. By change of variable x �  x + Δ, (3, 2) is 
rewritten 

 
(3.3)    (xN/N!)F(N) (Δ) + (xN–1/(N – 1)!)F(N–1)(Δ) + … + (x/1!)F(1)(Δ) + F(Δ) = 0. 
 

One obtains 
(1/N!)F(N)(Δ) = A0 = B0. 

 
Assume that 
 
(3.4) Bi = (1/(N – i)!)F(N–i)(Δ)   (0 ≤ i ≤ N). 

 
It is evident that the roots of (3.3) are those of (3.2), each reduced by Δ. 
The next scheme makes possible the systematic formation of all the 

other elements from those of the first line, which are the coefficients of 
(3.2). 

The only elements remaining to be defined in the following scheme are 
the Bi,k. By definition, every element Bi,k is the sum of two elements that are 
directly above it. One can verify that the coefficients of (3.3) just are the 
diagonal elements in this scheme: 

 
A0 A1  A2 … AN–1   AN 
 

  ΔA0

B0,1

  
ΔB0,1

B0,2

  
ΔB0,N−2

B0,N−1

  
ΔB0,N−1

B0,N = BN

 

 

  ΔA0

B1,1

  
ΔB1,1

B1,2

  
ΔB1,N−1

B1,N−1 = BN−1

 

  …  …  … 
  BN–2,1 

 

  
ΔA0

BN−1,1 = B1

 

A0 = B0 
 

B0 = (1/N!)F(N)(Δ) = A0, Bi = BN–i,i = (1/(N – i)!)F(N–i)(Δ); 
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N, Δ and the coefficients A0, …, AN of (3.2) are, by definition, the inputs of 
the scheme and B0, B1, …, BN are the outputs. 

For this scheme, we will use the notation SCH(N; Δ; A0, …, AN), or 
simply SCH, if there is no risk of confusion. And we will use the notation 
SCH(n; δ; c0, …, cn) for the result of this scheme for N = n, Δ = δ, Ai = ci. 

 
Al-Ṭūsī’s algorithm is the preceding one, making allowances for a few 

modifications that simplify the preceding scheme.30 Here, we will go into 
neither these modifications, nor the tabular translation of the algorithm. It 
is in these tables that al-Ṭūsī details the different steps of the algorithm.31 
Only one example must suffice to recall the different steps of the algorithm 
and the successive filling-in of the tables. Given the equation 

 
   x3 + ax2 + bx = N  with a = 12, b = 102, N = 34345395 
 

where r = 2, σ 0  = 3, s0  = 300. 
Let us begin by writing this equation in the form  
 

   x3 + 3 ′a x2 + 3 ′b x = N , with a′ = 4, b′ = 34. 
 

Al-Ṭūsī begins with a first table to place a′, b′, −c = N, σ 0 .  

 
I. To place the entries in the table 

• write the absolute values of the constant c and determine the decimal 
positions of the form 3k, k � Z; 

• mark these positions with a 0 above each;  
• place ′b 10r  by placing b′  in the position with the decimal rank r;  
• place ′a 102r  by placing a′  in the position with the decimal rank 2r; 
• place σ 0103r  by placing σ0  in the position with the decimal rank 3r. 
 

II. Calculation to obtain c1 

• calculate s0
3 = σ 0

3103r , by placing σ 0
3  in the position with the decimal 

rank 3r; 
• calculate (a′s0 + b′), which will be placed in the position with the 

decimal rank r; 
 
30 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques, vol. I, pp. LXXX–

LXXXVI. 
31 Ibid., pp. LXXXIX–XCVII. 
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• calculate 3(a′s0 + b′)σ0, which will be placed in the position with the 

decimal rank r; 
• deduce –c1, by computing c − 3s0 ′a s0 + ′b( ) − s0

3 . 

 
III. Calculation to obtain b1 

• calculate a′σ0, which will be placed in the position with the decimal 
rank 2r; 

• calculate σ2
0, which will be placed in the position with the decimal 

rank 3r; 
• retranscribe a′s0 and place it in the decimal rank 2r; 

• deduce ′b1 = 2 ′a s0 + ′b( ) + s0
2 , by adding ′a s0 + ′b + s0

2  to a′s0, which 

will be placed in the position with the decimal rank r – 1. 
 

IV. Determine σ1 = 1
3

E −
c1

10r ′b1

⎛

⎝
⎜

⎞

⎠
⎟ . 

 
V. Repeat the preceding steps r – 1 times to determine σ 2, …,σ r ; here 
r = 3.  

If one regroups the different tables, one obtains the following table for 
the equation. All the operations can easily be recognized. The arrows indi-
cate the position of the part of the decimal rank during the operation.32 

We have yet to summarize al-Ṭūsī’s argument during the determination 
of s0, s1, …, sr . As we have said, al-Ṭūsī proposes for s0 an ad hoc theory 
that we can call ‘the theory of the dominant polynomial’. To explain al-
Ṭūsī’s idea concisely, still in a language different from his, let us return to 
(2). 

Indeed, the continuity of f shows immediately that f changes sign once 
over R+. More precisely: 

 

(4)  if 
0 < x1 < s

0 < x2 < s

⎧
⎨
⎩

 or 
x1 > s

x2 > s

⎧
⎨
⎩

, then f x1( ) f x2( ) > 0 . 

 

(5)  if 
x1 < s

x2 > s

⎧
⎨
⎩

,  then f x1( ) f x2( ) < 0 . 

 
32 Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques, vol. I, p. XCVI. 
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But since 0 < σ 010r ≤ s < σ 0 +1( )10r , the inequality 

 

(6)   f σ10r( ) · f σ +1( )10r( ) ≤ 0  

 
is verified for σ = σ0. The equality corresponds to the case s = σ 010r , that 
we will set aside in what follows. More precisely, one can state the fol-
lowing result: the only digit that verifies the preceding inequality is σ0. And 
one obtains 

 

(7)   f σ 010r( ) < 0  and f σ 0 +1( )10r( ) > 0 . 
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Theoretically at least, it is therefore possible, starting from f(x), to 

determine σ0 and r with the help of relation (6). In all these relations, how-
ever, we have considered all the terms of f. 

By contrast, al-Ṭūsī’s major idea is to stop drawing on all the terms and 
to use only a smaller number of them. And in fact, there exists in general a 
polynomial f1, formed from the terms of f, that depends on s and such that 
the relation 

 
(8)   f1(σ010r) < 0  and  f1((σ0 + 1)10r) > 0 

 
is equivalent to relation (7). This polynomial f1 is a dominant polynomial. 

Now, to find the dominant polynomials, one must return to equation 

(2). A knowledge of the decimal ranks of the numbers ais
n−i , ai ≠ 0 , is 

indeed essential. But s is unknown; and the decimal ranks and the numbers 

ais
n−i  are as well.  

To solve this problem al-Ṭūsī proceeds by comparing the ranks of the 
parameters,33 that is, the absolute values of the coefficients ai contained in 
polynomial f. This method of the dominant polynomial, however, does not 
always lead to a result. It is not always easy to obtain this polynomial, and 
one sometimes gets an incorrect result when al-Ṭūsī’s conditions are met.  

To understand better al-Ṭūsī’s theory of the dominant polynomial, one 
can consider it, at least at the algorithmic level, as similar to Newton’s pol-
ygon method.34 

Now that al-Ṭūsī has obtained the first digit of the root and justified the 
method applied to determine it, he takes up the other digits. He could have 
applied the same method of the dominant polynomial. But this time, the 
method yields a dominant polynomial reduced to the constant term and the 
first-degree term. Now the coefficient of this last term is nothing but the 
derivative, which moreover enters into the determination of the maximum 
of a third-degree polynomial in the theory of algebraic equations al-Ṭūsī 
has developed. As in the latter, he proceeds first to a change of affine vari-
able and substitutes s0 + y for x in (2). He then expands f(s0 + y) and brings 
out, for the coefficient of y, ′f s0( ) , which is equivalent to the derivative of 

s0. Al-Ṭūsī obtains the highest digit of y, that is, the second digit of the root 

 
33 Ibid., pp. LXIV–LXVII. 
34 C. Houzel, ‘Sharaf al-Dīn al-Ṭūsī et le polygone de Newton’, Arabic Sciences 

and Philosophy, 5.2, 1995, pp. 239–62. 
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that was sought, by taking the integer portion of 
− f s0( )

′f s0( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ . For the case of 

the cubic equation that we have considered, this is 1
3

E
−c1

10r ′b1

⎛

⎝
⎜

⎞

⎠
⎟ . The proce-

dure is iterative, and al-Ṭūsī himself uses it for the third digit. Al-Ṭūsī also 
justifies this procedure, or this part of the algorithm, by his own research in 
his Treatise and by relying on an expression equivalent to the derivative 
during his research on the maxima of algebraic expressions. 

Al-Ṭūsī elaborated his algorithm, as well as the justification for it, 
deliberately for numerical polynomial equations. He even omitted applying 
it to the case of x3 = a, whereas he would take care to apply it to second-
degree trinomial equations as well as to all other cubic equations. He 
undertook his algorithmic research in natural language and by means of 
tables. It is true that the latter made possible an effective and parsimonious 
calculation on polynomials; at the time, this was the way to compensate for 
a symbolism that had not yet been invented. Like his contemporary al-
Samawʾal as well as the successors of al-Karajī, al-Ṭūsī wrote down the 
coefficients in the cells of a table and undertook his calculation by using 
displacements in the rows and the columns. Whereas this technique made 
such a calculation possible, it was obviously unsuited for the expression of 
the foundational concepts of the algorithm. In sum, armed only with natural 
language and tables, it would be difficult to imagine going much farther 
than al-Ṭūsī did. At best, one could deduce what the algorithm already 
contains, namely its extension to roots with a fractional component. And 
this is precisely what one encounters in al-Iṣfahānī.35 For the concept of a 
truly efficacious language, one would have to wait until late in the 17th 

century.  
 
Alongside this contribution of al-Ṭūsī’s, whose explicit goal, as we 

have noted, is to obtain an algorithm to solve numerical polynomial equa-
tions, mathematicians proposed other algorithmic procedures to solve one 
equation or the other. Mathematical astronomers in particular had the idea 
of translating geometrical or trigonometrical problems into algebraic lan-
guage. This is what al-Bīrūnī did when he wanted to determine the sign of 
the regular enneagon (the so-called ‘nonagon’), which led him to one or the 
other equation36 

 
35 R. Rashed, Sharaf al-Dīn al-Ṭūsī, Œuvres mathématiques, vol. I, pp. 118–25. 
36 See M.-T. Debarnot, ‘Trigonometry’, in R. Rashed (ed.), Encyclopedia of the 

History of Arabic Science, 3 vols, London/New York, Routledge, 1996, vol. II, pp. 495–
538, at pp. 528–30. 
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  x3 = 3x +1 x = cos20°( ) ,  x3 +1= 3x x = 2sin10°( ) .  

 
Another famous example is that of al-Kāshī for the calculation of 

sin 1°.37 Al-Kāshī’s method rests on two relations: 
 
• sin 3ϑ( ) = 3sinϑ − 4sin3 ϑ  

• for ϑ =1°, sin3° =  3; 8, 24, 33, 59, 34, 28, 15, = q. 
 

Assuming sin 1° = x, one obtains  
 

x = sin3°+ 4x3

3
= q + 4x3

3
= f (x) . 

 
The idea of the iterative method he follows is this: when x is suffi-

ciently small, x3 is negligible, and one has x1 = q
3

. The second step of the 

method consists in writing x2 = q + 4x3

3
= f (x1) . One then repeats the proce-

dure. The point, therefore, is to form the sequence xn = f(xn–1) for x1 > 1; x1 
is a chosen approximated value. We will not go into all these contributions 
or follow their filiations here. This is, moreover, a promissory note for 
forthcoming research. Let us conclude with a final example, that of the 
treatise of al-Iṣfahānī38 who, unbeknownst to history as it were, was still 
working in the wake of al-Ṭūsī. We remarked that he relied on an algorithm 
founded on the property of the fixed point in order to solve the equation 
x3 + 210 = 121x. 

Did he borrow this method from one of his predecessors, or did he 
invent it by inspiring himself from works such as those of al-Kāshī or al-
Yazdī? We do not yet know. As he presents it, this method relies on the 
following ideas. One rewrites the preceding equation thus:  

 

x = 121x − 210( )
1
3 = f x( ) . 

 
Al-Iṣfahānī then takes x1 = 11, whence 
 

y1 = f x1( ) = 1121( )
1
3 <11. 

 
37 Ibid., pp. 530–1. 
38 See the chapter on algebra. 
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He then takes an approximate value of x1 by defect, namely 10.3; he 

finds 

f 10.3( ) = 1036.3( )
1
3 <10.3 . 

 

He then takes x2 = 10.3 and y2 = f(x2) = 1036.3( )
1
3 . 

He then takes an approximation of x2 by defect, namely 10.1. One finds 

that f(10.1) = 1012.1( )
1
3  < 10.1. One then takes x3 = 10.1, and so on; the 

first terms of this sequence are  
 

x1 = 11 > x2 = 10.3 > x3 = 10.1 > ... 
 

Note that al-Iṣfahānī chooses the value 11 in a slightly different way. 
Instead of the function f, he considers a function greater than it, namely  

g(x) = 121x( )
1
3 ; 

 
and he seeks a root x1 of the new equation x = g(x), which guarantees that 
x1 = 11 > x0 if x0 is the root one seeks. 

This algorithm in effect assumes that the function � : x → x
1
3 , a cubic 

root, is increasing concave contracting throughout the entire interval K = 
[a, b], with a > 1, and that f is increasing concave. One can then show that 
K ⊆ 2,11[ ]  so that f a, b[ ] ⊂ a, b[ ] . 

 
 

2. INTERPOLATION METHODS 
 
Numerical equations, algebra, and arithmetic research were not the sole 

domains associated with the invention and study of algorithmic methods. 
The fields of astronomy, trigonometry, and – to a lesser degree – optics 
were also open to fruitful research into iterative methods and algorithms. 
The considerable number of zījs – astronomical tables – required for astro-
nomical calculation and composed by the astronomers and mathematicians 
of classical Islam bear ample witness to this phenomenon. For the most 
part, these tables contain the values of one or another of the functions 
beginning with a few initial values, that is, ones determined independently, 
either by observation or by a clever calculation. These tables can thus per-
tain to the sine function, the longitude of the planets, the refraction of light 
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rays, … It is therefore clear that the composition of such tables requires the 
invention of an interpolation schema. In the history of this invention, how-
ever, we must distinguish several different epistemic states. This interpola-
tion schema is most often implicit in the table without any explicit elabora-
tion by the author. At this stage the composition of the table is 
‘experimental’. At a later stage, the mathematician may himself deliber-
ately make explicit the polynomial formed from these few values and try to 
improve the approximation by studying some properties of the polynomial. 
This marks the explicit beginning of a study of finite differences. Arabic 
mathematics does not reach this stage of research until the end of the 9th 
century, thanks to attempts to improve linear interpolation. Finally, some 
mathematicians attempt to demonstrate the existence and unicity of the 
polynomial. As a proof of existence, the mathematicians of the 10th century 
gave the explicit construction. Not until several centuries later will the 
problem of unicity even be raised.  

Let us return to the origin, that is, the Almagest, which al-Ḥajjāj first 
translated into Arabic at the beginning of the 9th century. Earlier yet, it 
seems that Theon’s commentary on the Almagest, Book 1, was known from 
an ancient translation.39 However that may be, it is the second chapter of 
Book 1 that interests us here, since it contains the table of chords for a cir-
cle of radius 60° calculated to three sexagesimal places, with table entries 

given in half-degrees; that is x = 1°
2( ) , 1°, 3°

2( ) , …, 180°. Moreover, it is 

often the case that, to use this table, one doubles the arc, which leads to the 
result  

1
2

Crd2x = sin x . 

 
It has long been shown that this table was obtained by linear interpola-

tion. Indeed, it was this very method of calculation that mathematicians 
called (in Arabic) ‘the method of the astronomers’, a clue that leaves no 
doubt about its origins. In some Babylonian texts about the risings and set-
tings of Mercury, astronomers proceeded by linear interpolation in the 
second century BC, as O. Neugebauer has shown. Let us translate ‘this 
method of the astronomers’ into our own language: assume that x–1 < x < x0 
and d = x0 – x–1 = xi – xi–1 for i = –2, –1, …, n; the linear interpolation is 
then rewritten 

 
39 R. Rashed, ‘Greek into Arabic: Transmission and Translation’, in J. E. 

Montgomery (ed.), Arabic Theology, Arabic Philosophy. From the Many to the One: 
Essays in Celebration of Richard M. Frank, Orientalia Lovaniensia Analecta 152, 
Leuven/Paris, Peeters, 2006, pp. 157–96. 
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(α)   y = y−1 +
x − x−1

d

⎛
⎝
⎜

⎞
⎠
⎟Δy−1 , 

Δ being the first first-order difference.  
The astronomers and mathematicians of the 9th century, such as Ḥabash 

al-Ḥāsib, improved this method in one respect or the other. From what we 
now know, however, it was only in the 10th century that one notices a new 
step forward: the invention of quadratic interpolation and the attempt to 
establish algorithms on explicit mathematical foundations. Two examples 
illustrate this new stage: one from Iran, with al-Khāzin; the other from 
Cairo, with Ibn Yūnus. Let us begin with the latter. In the second half of 
the 10th century Ibn Yūnus wrote his famous al-Zīj al-Ḥākimī, named for 
the Fatimid caliph al-Ḥākim.40 This zīj is a table of sines to four sexagesi-
mal places, at intervals of 10’. Ibn Yūnus explicitly gives the steps of his 
algorithm,41 and not merely the numerical values. This method can be 
rewritten:  

y = y−1 +
x − x−1

d

⎛
⎝
⎜

⎞
⎠
⎟

1
2

Δy−1 + Δy0( ) + 1
2

x − x1

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−1

⎡

⎣
⎢

⎤

⎦
⎥ . 

 
It is obvious that the parabola defined by this equation goes through the 

points x−1, y−1( ) . 

 
Al-Bīrūnī gives three methods;42 the first is that of the linear interpola-

tion discussed above; the others are:  
 

(β)  y = y−1 +
x − x−1

d

⎛
⎝
⎜

⎞
⎠
⎟ Δy−2 +

x − x−1

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−2

⎡

⎣
⎢

⎤

⎦
⎥ ; 

 
note that, for the calculation of Δy–2 and Δ2y–2, the application of this for-
mula requires that 

x−2 = x−1 − d( )  ∈  0,  π
2

⎤
⎦⎥

⎡
⎣⎢
, 

that is, that x–1 > d. 
 
40 C. Schoy, ‘Beiträge zur arabischen Trigonometrie’, Isis, 5, 1923, pp. 364–99 and 

D. King, The Astronomical Works of Ibn Yūnus, Ph.D. dissertation, Yale University, 
1972. 

41 C. Schoy, ‘Beiträge zur arabischen Trigonometrie’, pp. 390–1. 
42 See R. Rashed, ‘Al-Samawʾal, al-Bīrūnī et Brahmagupta: les méthodes d’inter-

polation’, Arabic Sciences and Philosophy, 1.1, 1991, p. 101–60; repr. in Optique et 
mathématiques. Recherches sur l’histoire de la pensée scientifique en arabe, Variorum 
Reprints, Aldershot, 1992, XII. 
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The third method is that of Brahmagupta. Yet al-Bīrūnī’s presentation 

of this method differs slightly from that in the text of Brahmagupta, insofar 
as one can judge from the English translation of the latter.43 Indeed, al-
Bīrūnī’s explanation allows one to rewrite Brahmagupta’s formula as 
follows:  

 

(γ)   y = y0 +
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟

Δy−1 + Δy0

2
+ 1

2
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−1

⎡

⎣
⎢

⎤

⎦
⎥ . 

 
According to the text of al-Bīrūnī, this method assumes that x < x0, and 

leads to the formula  
 

y = y0 +
x0 − x

d

⎛
⎝
⎜

⎞
⎠
⎟

Δy−1 + Δy0

2
+ 1

2
x0 − x

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−1

⎡

⎣
⎢

⎤

⎦
⎥; 

 
but this expression yields (γ) if one keeps in mind that (x0 – x) > 0, Δy–1 < 0, 
Δy0 < 0 and Δ2y–1 > 0. In other words, for al-Bīrūnī, the method of 
Brahmagupta assumes that x < x0 and that the correction is additive. These 
conditions do not, however, appear to originate in the text of Brahmagupta 
such as we now have it. 

As al-Bīrūnī himself concedes, the fourth method is also Indian in 
origin and called sankalt, or method of monomials; it is rewritten:  

 

(δ)  y = y0 −
x0 − x( ) x0 − x +1( )

d d +1( )
Δy−1 ; 

 
this method proceeds by calculating the increases from xi to xi–1.  

 
In his various works, al-Bīrūnī does not stop with a simple exposition 

of one or the other of the preceding methods. The reasons for this are sev-
eral, notably the work carried out before him not only by al-Khāzin and Ibn 
Yūnus on quadratic interpolations, but also by Ḥabash and Abū al-Wafāʾ 
al-Būzjānī, among others, in this domain. The latter, for example, uses a 

 
43 Brahmagupta, The Khanḍakhādyaka, an Astronomical Treatise of Brahmagupta, 

translated into English with an Introduction, Notes, Illustrations and Appendices by 
P. C. Sengupta, Calcutta, University of Calcutta, 1934, p. 141. 
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method more sophisticated than that of Ptolemy for the determination of 

sin1°
2

.44 

This accumulation of work, of which history has yet to give a properly 
rigorous account, seems to have stimulated al-Bīrūnī to launch at least three 
research themes: 

• To show that the aforementioned quadratic methods all improve upon 
linear interpolation.  

• To find the inverse of each.  
• To justify the algorithm geometrically. 
To compare these methods with respect to their performance is another 

theme that will soon come to the fore and, along with the others, stimulate 
relatively autonomous research on interpolation algorithms. 

About the algorithm that he gives in his al-Qānūn al-Masʿūdī, al-
Bīrūnī knows that, for Δy–1 in (α), he needs only to substitute 

Δ = Δy−2 +
x − x−1

d
Δy−1 − Δy−2( )  in order to obtain (β). 

Likewise, in his presentation, al-Bīrūnī suggests that the method of 
Brahmagupta and, less explicitly, that of the monomials improve upon lin-
ear interpolation. Indeed, after having mentioned ‘the method of the 
astronomers’, that is, linear interpolation, he introduces the method of 
Brahmagupta as an improvement upon it. He applies this method to the 
interval [2°, 5°] and shows its superiority to linear interpolation. Next, he 
introduces the method of monomials, still applied to the same interval, as 
‘closer to reason and to exactness’.45 To take but one case that does not 
restrict the scope of the discussion, the tables of cotangents show, on the 
one hand, that linear interpolation yields values that are too large and, on 
the other, that the first-order difference does not change uniformly. To 
improve the corrections, the idea of al-Bīrūnī, of Brahmagupta before him, 
and of the inventor of the method of monomials, had been to replace Δy0 in 
(α) by Δ, which depends on x. Starting from Δy–1 one thus proceeds by 

linear interpolation; for x = x0, one has Δ = Δy–1 and for x = x1, Δ = Δy0. 
This linear interpolation over [x0, x1] yields 

 

Δ = Δy−1 +
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟ Δy0 − Δy−1( ) , 

 

 
44 F. Woepcke, ‘Recherches sur l’histoire des sciences mathématiques chez les 

Orientaux’, Journal Asiatique, 1860, pp. 281–320. 
45 R. Rashed, ‘Al-Samawʾal, al-Bīrūnī et Brahmagupta’, p. 139. 
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whence 

y = y0 +
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟Δ = y0 +

x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟ Δy−1 +

x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥Δ2y−1 ; 

 
and one thus obtains al-Bīrūnī’s formula (β) if one carries out this interpo-
lation over [x–1, x0]. 

Consider now the linear interpolation over [x–1, x1]; one now has  
 

Δ = Δy−1 + 1
2

x − x−1

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−1 = Δy−1 + 1

2
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−1 + 1

2
Δy0 − Δy−1( ) , 

whence 

Δ =
Δy−1 + Δy0

2

⎛
⎝
⎜

⎞
⎠
⎟+ 1

2
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−1  ; 

 
and one has  

y = y0 +
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟Δ = y0 +

x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟

Δy−1 + Δy0

2

⎛
⎝
⎜

⎞
⎠
⎟+ 1

2
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟Δ2y−1

⎡

⎣
⎢

⎤

⎦
⎥ , 

 
which is Brahmagupta’s formula. 

Let us now turn to the method of monomials over [x0, x1]. Let us divide 
the interval [x0, x1] into d equal parts. To take into account the decrease in 
the function, which is faster near x0 than near x1, as one can see by check-
ing the tables, one considers the cumulative increases of x1 toward x0: 

 

ε + 2ε +…+ dε =
d d +1( )

2
ε = Δy0 , 

 
whence 

ε =
2 Δy0

d d +1( )
. 

 
The correction to be made on y1 is additive, and corresponds to a 

cumulative increase over (x1 – x), where (x1 – x) is an integer, whence 
 

y = y1 + c 
with 

c =
x1 − x( ) x1 − x +1( )

2
ε =

x1 − x( ) x1 − x +1( )
d d +1( )

Δy0  

and 
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y = y1 −
x1 − x( ) x1 − x +1( )

d d +1( )
Δy0 . 

 
If one sets x1 – x = x1 – x0 + x0 – x = d + x0 – x, one has 
 

y = y1 +
x − x0

d
−1

⎛
⎝
⎜

⎞
⎠
⎟ 1−

x − x0

d +1

⎛
⎝
⎜

⎞
⎠
⎟Δy0 , 

 
whence 

y = y0 +
x − x0

d
2d +1
d +1

Δy0 −
x − x0

d

⎛
⎝
⎜

⎞
⎠
⎟

d
d +1

Δy0

⎡

⎣
⎢

⎤

⎦
⎥ , 

 
a relation of the form 

y = y0 +
x − x0

d
Δ , 

 
with Δ of the first degree in 

x − x0

d
. 

 
One obtains formula (δ) if one considers the interpolation over [x–1, x0]. 
The three methods thus present themselves as three different proce-

dures for improving linear interpolation. In this respect, al-Bīrūnī’s method 
does not differ from Brahmagupta’s or from the method of monomials.  

Conversely, al-Bīrūnī seeks to determine the inverse interpolations, 
whether linear or of the second degree. Thus he gives 

 

x = x−1 +
d y − y−1( )

Δy−1

 

 
for the linear interpolation, and 

x = x−1 +
d y − y−1( )Δy−1

Δy−1Δy−2 + y − y−1( )Δ2y−2

 

 
for the interpolation (β). 

Finally, al-Bīrūnī tries to justify geometrically both the linear interpo-
lation and his own quadratic interpolation. Thus, for the linear interpolation 
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of the sine function,46 he considers x to be between x–1 and x0, two values 
known from the table, and he considers on the circle the three angles 

ASE = x–1, ASO = x and ASH = x0, whence d = x0 – x–1 = AH� − AE� = HE� , 

and x – x–1 = EO� . By approximation 
 

(*)   OK
HL

≈ EO�

EH�   and  OK
HL

≈
x − x−1

d
. 

 
One has 

EG = sin x–1 = y–1  and  HI = sin x0 = y0, 
 

therefore 
HL = sin x0 – sin x–1 = y0 – y–1 = Δ y–1 

 
and 

OK = sin x – sin x–1 = y – y–1, 
 

whence 
OK
HL

=
y − y−1

Δy−1

; 

 
therefore (*) is rewritten 

y − y−1

Δy−1

≈
x − x−1

d
, 

 
whence the relation (α). 

S I G
A

EK
L

O

H

x-1

 
Fig. 38 

 
46 Al-Qānūn al-Masʿūdī (Canun Masudicus), 3 vols, Hyderabad, 1954–56; Al-

Maqāla al-Thālitha min al-Qānūn al-Masʿūdī (Book 3), ed. Imām Ibrāhīm Ahmad, 
Cairo, 1985, vol. I, p. 329. 
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Al-Bīrūnī draws upon analogous notions to justify (β). 
 
The domains studied here are not the only ones in which mathemati-

cians develop algorithms that they both apply and try to demonstrate. Thus, 
among many others, the rule of the two errors (ḥisāb al-khaṭaʾayn), or the 
method of the double false position, established geometrically by Qusṭā ibn 
Lūqā and algebraically by al-Samawʾal,47 are presented in most of the trea-
tises of ḥisāb, notably those Muḥammad ibn al-Khawwām al-Baghdādī, 
Kamāl al-Dīn al-Fārisī, and al-Kāshī, to cite only a few examples. As we 
now know, moreover, this rule leads to an approximate solution for quad-
ratic problems. 

 

 
47 Al-Bāhir en Algèbre d’as-Samawʾal, ed. S. Ahmad and R. Rashed, pp. 66–70 

(French), pp. 151–63 (Arabic). 
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THĀBIT IBN QURRA AND AMICABLE NUMBERS*  
 
 
 

In his On the Determination of Amicable Numbers (Fī istikhrāj al-
aʿdād al-mutaḥābba),1 Thābit ibn Qurra demonstrates a theorem that, 
according to him, allows one to form as many pairs of amicable numbers as 
one wishes. He considers two series of numbers: pn = 3 · 2n – 1 and qn = 
9 · 22n–1 – 1; his theorem claims that, if for an integer n, pn–1, pn and qn are 
prime numbers, then 2npn–1pn and 2nqn are amicable numbers, that is, that 
each of them is equal to the sum of the aliquot parts of the other, the aliquot 
parts of a number being the divisors of this number distinct from the 
number itself. This demonstration is preceded by nine lemmas or 
propositions and is written in the purest Euclidean style of Books VII to IX 
of the Elements. 

The first three propositions determine the divisors of the product bc of 
two numbers starting from the divisors of b and the divisors of c; Thābit 
ibn Qurra follows ancient usage in considering the proper divisors (other 
than the number itself and 1) rather than the divisors.  

 
In Proposition 1, b and c are assumed to be prime; the proper divisors 

of bc are then b and c. 
Indeed, if d is a proper divisor of bc, there exists a number e such that 

bc = de and, b being prime, it divides d or e, for example d. Thābit ibn 
Qurra uses here Proposition 30 of Book VII of the Elements, according to 
which a prime number that divides a product divides one of the factors of 
this product. Since b:d = e:c, e divides c, which is also prime; since d is not 
equal to bc, e should be equal to c, but then d = b.  

 
* In collaboration with Christian Houzel. 
1 Fī istikhrāj al-aʿdād al-mutaḥābba, ed. and French transl. R. Rashed, Thābit ibn 

Qurra. Science and Philosophy in Ninth-Century Baghdad, Scientia Graeco-Arabica, 
vol. 4, Berlin/New York, Walter de Gruyter, 2009, pp. 89–151. 
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Proposition 14 of Book IX of the Elements is related to the latter: it 
states that if a number a is the smallest number divisible by the prime 
numbers p1, p2,…, pn, the only prime divisors of a are p1, p2,…, pn.2 

 
In Proposition 2, b is assumed to be prime, but not c. The proper 

divisors of bc are then classified into three types: 1) b and c; 2) the proper 
divisors of c; 3) the products of b by the proper divisors of c. This is a 
generalization of Euclid’s reasoning in Proposition 36, the last proposition 
of Book IX of the Elements, in which he had determined the divisors of a 
number of the form 2nE, where E is a prime number. 

It is clear that b, c and the divisors of c divide bc: if d is one of them, 
one has d:c = bd:bc and, since d divides c, bd divides bc. Reciprocally, let � 
be any proper divisor of bc, such that �n = bc. Since b is prime, it divides � 
or n. If b divides n, the proportion n:b = c:� shows that � divides c and � is 
therefore equal to c or to one of its proper divisors. If b divides �, n divides 
c for b:� = n:c; thus b = � and n = c, or else � = bd and c = nd, where d is a 
proper divisor of c. 

 
Proposition 3 treats the case in which b and c are both composite. The 

proper divisors of bc are of six types: 1) b and c; 2) the proper divisors of 
b; 3) those of c; 4) the products of b by the proper divisors of c; 5) the 
products of the proper divisors of b by c; 6) the products of a proper divisor 
of b by a proper divisor of c. 

It is clear that b, c and the divisors of b or of c divide bc. If g divides c, 
the proportion g:c = bg:bc shows that bg divides bc; one likewise 
establishes that, if d divides b, dc divides bc. One also has dg:bg = d:b, 
therefore dg divides bg, therefore it also divides bc.  

Reciprocally, let u′ be any proper divisor of bc, such that u′o′ = bc, 
therefore u′:b = c:o′. If u′ and b are mutually prime, u′ divides c and b 
divides o′, according to Propositions 20 and 21 of Book VII of the 
Elements, therefore u′ is equal to c or to one of its proper divisors. 

 
2 In R. Rashed, Entre arithmétique et algèbre. Recherches sur l’histoire des mathé-

matiques arabes, Sciences et philosophie arabes — Études et reprises, Paris, Les Belles 
Lettres, 1984. One finds a history of the theory of amicable numbers in Arabic mathem-
atics that we will not repeat here; nevertheless, on p. 264 one reads that Proposition 1 is 
a particular case of Proposition IX.14 of the Elements, but it is more correct to say that 
the two propositions are related, for that of Euclid treats only prime divisors and not all 
divisors as does that of Thābit ibn Qurra (English transl. The Development of Arabic 
Mathematics: Between Arithmetic and Algebra, Boston Studies in the Philosophy of 
Science 146, Dordrecht, 1994). On the diffusion of Thābit’s theorem in medieval 
Hebrew literature, see T. Lévy, ‘L’histoire des nombres amiables: le témoignage des 
textes hébreux médiévaux’, Arabic Sciences and Philosophy, 6, 1996, pp. 63–87. 
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Otherwise, u′ divides b, or b divides u′, or else the greatest common divisor 
j of u′ and b is distinct from u′ and from b. In the first case, u′ is equal to b 
or to one of its proper divisors. In the second, o′ divides c; let o′i = c and 
u′ = bi, where i is a proper divisor of c. Finally consider the third case, in 
which b = joa and u′ = job, where the numbers oa  and ob  are mutually 
prime. One has oa :ob  = b:u′ = o′:c, therefore oa  divides o′ and ob  divides 
c; if oa  = o′, ob  = c and u′ = jc where j is a proper divisor of b and 
otherwise ob  = g is a proper divisor of c, and j is a proper divisor of b, and 
u′ = jg. 

One can summarize by saying that, if � divides a product bc, there 
exists n such that �n = bc, therefore �:b = c:n = �′:b′ where � = j�′ and b = 
jb′, j being the greatest common divisor of b and of �. Then �′ and b′ are 
mutually prime, therefore �′ divides c, and b′ divides n, according to 
Propositions 20 and 21 of Book VII of the Elements, and one finds that � is 
a product of the divisor j of b by a divisor �′ of c. 

 
Proposition 4 gives the sum of a geometric progression of reason 2: if 

a0, a1,…, an are such that aj+1 = 2aj for 0 ≤ j ≤ n – 1, then 
 

an – (a0 + a1 + … + an–1) = a0;  
 

Thābit ibn Qurra specifies that the statement remains valid when a0 = 1, 
because Euclid never treats the unit as a number. This signifies that 
1 + 2 + 22 + … + 2n–1 = 2n – 1. 

The proposition is deduced from Proposition 35 of Book IX of the 
Elements, according to which for every geometric progression a0, a1,…, an, 
one has 

 (a1 – a0):a0 = (an – a0):(a0 + a1 + … + an–1);  
 

here a1 – a0 = a0, therefore this ratio is equal to 1:1 and one has 
 

an – a0 = a0 + a1 + … + an–1. 
 

Proposition 5 takes up by generalizing it, Proposition 36, which is the 
last proposition of Book IX of the Elements. One considers a geometric 
progression a0, a1,…, an–1 of reason 2, where a0 = 1 (aj = 2j), and by ƒ one 
designates its sum, namely, 2n – 1 according to the preceding proposition. 
Then if g is an odd prime number  

(1) if g = ƒ, then an–1g is a perfect number; 
(2) if g < ƒ, then an–1g is an abundant number with an excess of ƒ – g; 
(3) if g > ƒ, then an–1g is a deficient number with a defect of g – ƒ. 
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Euclid considers only case (1), which gives him perfect even numbers;3 
they correspond to Mersenne prime numbers, of the form, 2n – 1, where n 
must necessarily be prime because 2pq – 1 is divisible by 2p – 1. Recall that 
numbers are called perfect that are equal to the sum of their aliquot parts 
(including 1), abundant when the numbers are smaller than the sum of their 
aliquot parts (the excess being the difference), and deficient when the 
numbers are greater than the sum of their aliquot parts (the defect being the 
difference). Like Euclid, Thābit ibn Qurra develops his reasoning on the 
example n = 5 which gives the Mersenne prime number 31 and, in case (1), 
the perfect number 16 × 31 = 496; but he does not make this value explicit, 
because he treats the example as generic.  

 
According to Proposition 2, the proper divisors of an–1g are an–1, g, the 

proper divisors of an–1, and the products of g by the proper divisors of an–1. 
According to Proposition 13 of Book IX of the Elements, the aliquot parts 
of an–1 are a0, a1, … , an–2, and they are pairwise distinct; likewise the 
numbers ga0 = g, ga1, … , gan–2 are pairwise distinct, for they also form a 
geometric progression of reason 2. It remains to be shown that none of the 
numbers gaj is equal to an ai; if this were the case, using Proposition 11 of 
Book IX of the Elements, one would have for j ≥ i (respectively j ≤ i), 
gaj:gaj–i = ai:a0 (respectively gaj:g = ai:ai–j), therefore gaj–i = a0 = 1 
(respectively g = ai–j), which is absurd. Note that Euclid does not 
demonstrate that the aliquot parts he found are pairwise distinct. The 
sequence g, ga1, … , gan–2, gan–1 is a geometric progression of reason 2, 
therefore, according to Proposition 4, the sum g + ga1 + … gan–2 is equal to 
gan–1 – g and therefore the sum of the aliquot parts of gan–1 is equal to 

a0 + a1 + … + an–1 + g + ga1 + … + gan–2 = ƒ + gan–1 – g = gan–1  

if g = ƒ; greater than gan–1 if g < ƒ (the excess being ƒ – g), and smaller 
than gan–1 if g > ƒ (the defect being g – ƒ). Q.E.D. 
 

Thābit ibn Qurra therefore establishes that the aliquot parts of a = 2n–1g 
(where g is prime) are 1, 2, … , 2n–1, g, 2g, … , 2n–2g and that they are 
distinct, so that their sum is  

2n – 1 + (2n–1 – 1)g = a + ƒ – g  

if ƒ = 2n – 1. 

 
3 Euler established the reciprocal, that is that every even perfect number has the 

Euclidean form, that is the form 2n–1(2n – 1) where 2n – 1 is prime (see below). We still 
do not know if there is an infinity of Mersenne prime numbers or if there exist odd 
perfect numbers.  
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In Proposition 6, the givens are the same, except that g is no longer a 
prime number but the product of two distinct odd prime numbers h and i. 
Then an–1g is abundant or deficient according to whether g < ƒ + ƒ(h + i) or 
g > ƒ + ƒ(h + i), equality being excluded; the excess (respectively the 
defect) of an–1g is equal to ƒ + ƒ(h + i) – g (or, respectively g – ƒ – ƒ(h + 
i)). Note that in cases (2) and (3) of Proposition 5 along with this 
Proposition 6 yield partial reciprocals of Euclid’s theorem: 2n–1g is not a 
perfect number if g is a prime number different from 2n – 1 or if it is the 
product of two distinct odd prime numbers. Ibn al-Haytham was apparently 
the first to have tried to demonstrate the reciprocal of Euclid’s theorem in 
complete generality, but he succeeded in establishing only that if 2n–1(2m – 
1) is a perfect number, then m = n and 2m – 1 is prime, that is, that the 
number under consideration has the Euclidean form.4 

 
According to Proposition 3, Proposition 13 of Book IX of the Ele-

ments, and Proposition 1, the aliquot parts of an–1g are a0 = 1, a1, … , an–1, 
g, h, i, ga1, … , gan–2, ha1, … , han–1, ia1, … , ian–1. Since (a0, a1, … , an–1), 
(g, ga1, … , gan–2), (h, ha1, … , han–1) and (i, ia1, … , ian–1) are four geome-
tric progressions of reason 2, their terms are pairwise distinct. None of the 
numbers gaj (0 ≤ j ≤ n – 2) is equal to a number hak (0 ≤ k ≤ n – 1) for 
otherwise one would have, for k ≤ j (resp. k ≥ j), gaj:gaj–k = hak:h (resp. 
gaj:g = hak:hak–j), whence gaj–k = h < g (resp. hi = g = hak–j, whence i = ak–j 
= 2k–j), which is absurd; one demonstrates likewise that none of the 
numbers gaj is equal to a number iak. None of the numbers gaj is equal to a 
number ak, otherwise one would deduce by the same reasoning that gaj–k 
= 1 if j ≥ k or that g = ak–j if k ≥ j, which is absurd. Likewise also none of 
the numbers aj (1 ≤ j ≤ n – 1) is equal to an hak or an iak (0 ≤ k ≤ n – 1), 
otherwise one would have aj–k = h or i for j ≥ k or 1 = hak–j or iak–j for k ≥ j, 
which is absurd. Finally, none of the numbers haj is equal to an iak, 
otherwise one would have haj–k = i or h = iak–j, which is absurd since h and 
i are distinct prime numbers. According to Proposition 4,  

 
g + ga1 + … + gan–2 = gan–1 – g;  

 
the sum of the other aliquot parts of gan–1 is 

 
h + ha1 + … + han–1 + i + ia1 + … + ian–1 + 1 + a1 + … + an–1  
= ƒ(h + i) + ƒ, 

 
4 See R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV: 

Méthodes géométriques, transformations ponctuelles et philosophie des mathématiques, 
London, al-Furqān, 2002, pp. 192–5 and pp. 320–8. 
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therefore the sum of all of the aliquot parts of gan–1 is 
 

gan–1 + ƒ + ƒ(h + i) – g.  
 

Finally one observes that g cannot be equal to ƒ(h + i) + ƒ = ƒ(h + i + 
1), otherwise it would be divisible by ƒ and by h + i + 1; now, according to 
Proposition 1, the only proper divisors of g are h and i, and h + i + 1 > h 
and i. 

Thābit ibn Qurra establishes that the distinct aliquot parts of k = 2n–1hi 
are 1, 2, … , 2n–1, h, 2h, … , 2n–1h, i, 2i, … , 2n–1i, hi, 2hi, … , 2n–2hi, such 
that their sum is  

 
(2n – 1)(1 + h + i) + (2n–1 – 1)hi = k + ƒ(h + i + 1) – g 

 
with ƒ = 2n – 1 and g = hi.  

More generally, one could establish by the same methods that, if b and 
c are mutually prime, then the divisors j� of bc found in Proposition 3, 
where j divides b and � divides c, are pairwise distinct. Indeed, if j� = j1�1, 
one has j:j1 = �1:�. Let k be the greatest common divisor of j and j1; one has 
j = ku and j1 = ku1 with u, u1 mutually prime and u:u1 = j:j1 = �1:�, therefore 
u divides �1, and u1 divides � according to Propositions VII.20 and 21 of the 
Elements. Then u divides j, and therefore b, and �1 divides c, and one has u 
= 1; likewise u1 = 1 and j = k = j1, therefore also �1 = �. Consequently, the 
sum σ(bc) of all the divisors of bc is equal to 

 
j�

j b,� c

∑ = j
j b

∑ ⋅ �
� c

∑  = σ(b)σ(c). 

 
In substance, this is just what Kamāl al-Dīn al-Fārisī would 

demonstrate at the beginning of the 14th century.5 
The case in which b = 2n–1 and c is odd yields σ(2n–1c) = (2n – 1)σ(c) 

or, if one writes σ0(a) = σ(a) – a (the sum of the aliquot parts of a number 
a), 

 
σ0(2n–1c) = (2n – 1)(σ0(c) + c) – 2n–1c = 2n–1c + (2n – 1)σ0(c) – c; 

 

 
5 See R. Rashed, The Development of Arabic Mathematics, pp. 287–94 and 

‘Matériaux pour l’histoire des nombres amiables et de l’analyse combinatoire’, Journal 
for the History of Arabic Science, 6.1–2, 1982, pp. 209–78, at pp. 229–66. 
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2n–1c is therefore perfect if c = (2n – 1)σ0(c), an abundant number of excess 
(2n – 1)σ0(c) – c if c < (2n – 1)σ0(c) and deficient with a defect of c – (2n – 
1)σ0(c) if c > (2n – 1)σ0(c). In the first case, if n ≥ 2, σ0(c) is an aliquot part 
of c, for 2n – 1 ≥ 3 and one therefore has σ0(c) = 1, which means that c is a 
prime number and that c = 2n – 1. One has thus demonstrated the reciprocal 
of Euclid’s theorem (later established by Euler). 

 
Propositions 7 and 8 are easy lemmas, in which one considers four 

numbers a, b, c, and d in geometric progression of reason 2 and one 
establishes successively that 

 
c(d + c)(b + c) = cd(d + a)  

 
and that 

 c(b + d + 2c) = d(d + a).  
 
Since b = 2a, c = 4a and d = 8a, this means that 12 × 6 = 8 × 9 = 4 × 18, 

but Thābit ibn Qurra demonstrates this by means of proportion theory: 
a:b = b:c = (a + b):(b + c) = c:d, whence, if one compounds (c + d):d = (a + 
c + 2b):(b + c) = (a + 2c):(b + c) = (a + d):(b + c) and, consequently 
(c + d)(b + c) = d(a + d), which one need only multiply by c in order to 
obtain Proposition 7. For Proposition 8, he observes that d + 2c = 2d and 
b = 2a, whence d + 2c + b = 2(d + a), so that c:d = (d + a):(d + b + 2c), 
whence c(b + d + 2c) = d(d + a). 

 
In Proposition 9, the givens are the same and one demonstrates that 
 

d(a + d – 1) = c(d(a + d) – 1 – (d + c – 1)(b + c – 1)). 
 

Indeed, according to Propositions 7 and 8, one has  
 

c((d + c)(b + c) – (b + d + 2c)) = (c – 1)d(a + d)  
 

where the first member is equal to c((d + c – 1)(b + c – 1) – 1); thus  
 

d(a + d) + c((d + c – 1)(b + c – 1) – 1) = cd(a + d)  
 

and 
 d(a + d) – c = c(d(a + d) – (d + c – 1)(b + c – 1)).  

 
In addition, subtract c from both members:  
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d(a + d – 1) = d(a + d) – 2c = c(d(a + d) – 1 – (d + c – 1)(b + c – 1)).  
 

This identity is moreover a consequence of  
 

   d(a + d) – 1 – (d + c – 1)(b + c – 1)  
 = 8a × 9a – 1 – (12a – 1)(6a – 1) = 18a – 2. 

 
Proposition 10 is Thābit ibn Qurra’s theorem; it gives a procedure for 

constructing pairs of amicable numbers ‘at will’, which is probably to be 
understood as infinite in number. One considers a geometric progression of 
reason 2, a0 = 1, a1 = 2, … , an, the sum of which is g = 2n+1 – 1. One 
assumes that numbers h = g + an = 3 × 2n – 1 and i = g – an–1 = 3 × 2n–1 – 1 
are prime; one also assumes that s = an+1(an+1 + an–2) – 1 = 9 × 22n–1 – 1, 
where an+1 = 2an, is also prime. Therefore the numbers � = hian and o = san 
are amicable. 

Since s > g, the number o is deficient according to case (3) of 
Proposition 5, and its defect is equal to p = s – g. One has  

 
p + g + 1 = an+1(an+1 + an–2),  

 
whence, since g + 1 = an+1, 

 
p = an+1(an+1 + an–2 – 1) = an+1(g + an–2). 

 
The number hi is smaller than g(h + i) because the difference is 

gi + h(g – i); according to case (2) of Proposition 5, � is abundant and its 
excess is 

 
u = gi + h(g – i) + g  = g(g – an–1) + (g + an)an–1 + g = g2 + an–1an + g =  

              = g(g + 1) + an+1an–2 = an+1(g + an–2). 
 

One has 
o – � = an(s – hi) = an(an+1(an+1 + an–2) – 1 – (g + an)(g – an–1)),  

 
where 

g + an = an+1 + an – 1 and g – an–1 = an+1 – 1 – an–1 = an–1 + an – 1. 
 

According to Proposition 9, one therefore has 
 
 o – �  = an(an+1(an+1 + an–2) – 1 – (an+1 + an – 1)(an–1 + an – 1))  
          = an+1(an+1 + an–2 – 1) = an+1(g + an–2). 
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Thus o – � = p = u, and � = o – p is the sum of the aliquot parts of o 
whereas o = � + u is the sum of the aliquot parts of �. One notes that, in 
such a pair of amicable numbers, the smaller is abundant, the greater is 
deficient, and the excess of the abundant number, the defect of the deficient 
number, and the difference between the two numbers are all equal. 

Thābit ibn Qurra shows his reasoning in the example with n = 4, which 
gives h = 3 × 16 – 1 = 47, i = 3 × 8 – 1 = 23 and s = 9 × 128 – 1 = 1151, all 
prime. The corresponding pair of amicable numbers is   

 
� = 16 × 47 × 23 = 17296,  o = 16 × 1151 = 18416;  

 
Kamāl al-Dīn al-Fārisī states it explicitly at the beginning of the 14th 
century,6 but it is often attributed to Fermat, who rediscovered it in 1636.7 
Thābit ibn Qurra does not make it explicit, because his example serves as a 
generic case; that he insists on this generic character is shown by his use of 
letters to represent the numbers.8 For n = 2, one would have found h = 11, 
i = 5, and s = 71, which yields the pair (220, 284) known since antiquity. 

One verifies that h and i cannot be divisible by the following prime 
numbers: 3, 7, 17, 31, 41, 43, 73, 79, 89, 103, 109, 113, 127, 137, 151, 157, 
199, … and that s can not be divisible by 3, 5, 11, 13, 19, 29, 31, 37, 43, 
53, 59, 61, 67, 73, 83, 89, 97, 101, 107, 109, 113, 127, 131, 139, 149, 151, 
157, 163, 173, 179, 181, 193, 197, … 

The following table contains on the first row a list of modules m 
associated with prime numbers p of the form 2tm + 1 in smaller type; the 
following rows, marked h, i, s indicate remainders r such that, if n ≡ 
r (mod m), the corresponding number in h, i, s is divisible by p. For 
example, the module m = 4, is accompanied by two prime numbers, 5 and 
17, because n ≡ 1 (mod 4) implies that h is divisible by 5 and that s is 
divisible by 17, and n ≡ 2 (mod 4) implies that i is divisible by 5. 

 

 
6 R. Rashed, ‘Matériaux pour l’histoire des nombres amiables et de l’analyse 

combinatoire’ and ‘Nombres amiables, parties aliquotes et nombres figurés aux XIIIe et 
XIVe siècles’, Archive for History of Exact Sciences, 28.2, 1983, pp. 107–47; repr. in 
The Development of Arabic Mathematics, pp. 275–319.  

7 M. Mersenne, Harmonie universelle, t. I, Paris, 1636. 
8 For failing to grasp this generic character, Thābit is credited with an explicit 

computation of this pair. He could perfectly well have calculated this pair, as well as the 
one for n = 7, but such was not his intention. 
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m   3, 7 4,5, 17 10,11,41 11,23 12, 13 18,19 23,47 28,29 34,137 35,71 36,37 39,79 
h  1 2 3 8 5 4 23  19 10  

i  2 3 4 9 6 5 24  20 11  

s 0 1 3 9   16  14  2 10 

 
The values 2, 4, 7 of n yield the first three pairs of amicable numbers in 

the form of Thābit ibn Qurra, the two that we have already mentioned and 
the third  

(9363584, 9437056) 
 

obtained for n = 7 and independently discovered in the 17th century by al-
Yazdī and by Descartes. The table allows one to eliminate all subsequent 
values of n up to 34 inclusive, because for these values, one or the other of 
the numbers h, i, s is not prime.  

Restricting oneself to the first table (12 columns), one also eliminates 
the numbers of each of the forms: 43q + 30, 43q + 31, 43q + 9, 49q + 29, 
49q + 30, 51q + 17, 52q + 35, 52q + 36, 53q + 36, 53q + 37, 58q + 8, 
58q + 9, 60q + 54, 60q + 55, 66q + 27, 66q + 28, etc. 

Besides n = 2, 4, and 7 (known in the 17th century), the only numbers 
smaller than 400 that are not excluded by these congruences are n = 148, 
187, 340, and 391. 

 
Table of the values of pn for small values of n: 

n 1 2 3 4 5 6 7 8 9 10 11 12 
pn 5 11 23 47 5.19 191 383 13.59 5.307 37.83 6143 11.1117 
 
n 13 14 15 16 17 18 19 
pn 52.983 23.2137 197.499 421.467 5.78643 786431 71.22153 
 
n 20 21 22   
pn 13.241979 5.1258291 112.103991   
 

Table of the values of qn: 

n 1 2 3 4 5 6 7 8 9 10 
qn 17 71 7.41 1151 17.271 7.2633 73727 294911 7.17.23.431 79.59729 
 

In the notations introduced above, a pair (�, o) is constituted of amicable 
numbers if one has σ(�) = σ(o) = � + o. In the case in which � = 2nk and 
o = 2ns with k and s odd, this is written 

 
 (2n+1 – 1)σ(k) = (2n+1 – 1)σ(s) = 2n(k + s).  
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Assume that s is prime and k = hi where h and i are distinct prime 
numbers; the foregoing condition becomes  

 
(2n+1 – 1)(h + 1)(i + 1) = (2n+1 – 1)(s + 1) = 2n(hi + s), 

whence  
 s = hi + h + i  and  hi = (2n – 1)(h + i) + 2n+1 – 1.  

 
Set h = 2n – 1 + h1 and i = 2n – 1 + i1; the preceding equation yields  

 
h1i1 = (2n – 1)2 + 2n+1 – 1 = 22n,  

 
the solutions of which are h1 = ε 2α and i1 = ε 2β with ε = ±1, where α and 
β are natural integers such that α + β = 2n. Since h ≠ i, α ≠ β, therefore one 
of them, for example α, is greater than n and the other, β, smaller than n. 
Thus α = n + γ, β = n – γ with 1 ≤ γ ≤ n – 1, which requires that n ≥ 2; thus 
2α = 2n+γ > 2n and the fact that h is positive requires that ε = 1. One 
therefore has 
 

h = 2n – 1 + 2n+γ = 2n(2γ + 1) – 1 and i = 2n – 1 + 2n–γ = 2n–γ(2γ + 1) – 1,  
 
and finally s = 22n–γ(2γ + 1)2 – 1. When γ = 1, 2γ + 1 = 3 and one returns to 
the form given by Thābit ibn Qurra; this more general form, with 1 ≤ γ ≤ 
n – 1, was discovered by Euler.  

Assume now that k = h2 where h is a prime number, s being always 
prime; the condition for (2nk, 2ns) to be a pair of amicable numbers is 
written 

(2n+1 – 1)(h2 + h + 1) = (2n+1 – 1)(s + 1) = 2n(h2 + s), 
 
whence s = h2 + h is divisible by h, which is impossible. From this, it 
follows that there is no pair of amicable numbers of the form (2nh2, 2ns) 
with h and s odd primes.  

The pairs of amicable numbers of the form (2nhi, 2ns) where h, i, s are 
odd prime numbers are therefore those for which n ≥ 2 and there exists an 
integer γ between 1 and n – 1 such that h = 2n(2γ + 1) – 1, i = 2n–γ(2γ + 1) – 
1 and s = 22n–γ(2γ + 1)2 – 1.  

Note that the even values of γ must be excluded because they yield 
values of s that are multiples of 3; when γ is odd, 2γ + 1 is a multiple of 3, 
therefore h, i, s cannot be multiples of 3. One also verifies that s is never a 
multiple of 5, 11, 13 or 19. In its first column, the following table contains 
the remainders of γ (mod 24) and, facing it, the possible remainders of 
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n (mod 24); for the other remainders, one of the numbers h, i, s is divisible 
by 5, 7, 13 or 17: 

    ±1 4, 7, 11, 16, 19, 23 
    ±3 0, 3, 15 
    ±5 7, 8, 11, 16, 19, 23 
    ±7 4, 7, 8, 11, 16, 19, 20, 23 
    ±9 0, 3, 12, 15 
    ±11 7, 11, 16, 19, 23  

Euler’s formulas can generate pairs of amicable numbers that were not 
obtained by Thābit ibn Qurra’s formulas only for relatively high values of n 
(n ≥ 8 for γ = 5 or 7, n ≥ 12 for γ = 9, n ≥ 15 for γ = 3, n ≥ 11 for γ = 11, 
etc.). Finally the amicable numbers are not all given by these formulas, as 
the example (1184, 1210) discovered by N. Paganini in the 19th century 
shows. It is still not known whether or not there exists an infinity of pairs 
of amicable numbers. 

 



 
 
 

– 4 –  
 

FIBONACCI AND ARABIC MATHEMATICS 
 

 
 
The 1226 meeting between Emperor Frederick II and the mathemati-

cian Leonard of Pisa (a.k.a. Fibonacci) has endlessly fascinated historians. 
It is rare indeed for an emperor to take the time and the leisure to discuss 
mathematics, and even rarer when his projects are facing setbacks. Yet this 
is precisely what Frederick II did when he stopped in Pisa while returning 
to Sicily after the failure of his undertakings in Lombardy.1 This event, 
about which we in fact know very little, could not help but intrigue and 
tease the imagination. Beyond its legendary aura, however, this meeting 
made possible another, more recent one, between historians and historians 
of science. Henceforth, Frederick II is present in histories of mathematics, 
and Fibonacci appears in every biography of Frederick II.2 Their conversa-
tion has given biographers of the emperor a chance to appreciate the diver-
sity of his intellectual interests and the depth of his concerns; for their part, 
historians of mathematics have been able to emphasize the incontestable 
position reserved for the mathematician Fibonacci in the first quarter of the 
13th century. From the presence of John of Palermo and (at least temporar-
ily) Theodore of Antioch at the emperor’s court,3 as well as from the lat-
ter’s correspondence with Arabic scholars,4 we know that the ruler was 

 
1  E. Kantorowicz, Emperor Frederick the Second, 1194–1250, New York, 

Frederick Ungar, 1957, authorized English version by E. O. Lorimer 1987, pp. 154–8 
2 Cf. E. Kantorowicz, Emperor Frederick the Second; Thomas Curtis von Cleve, 

The Emperor Frederick II of Hohenstaufen, Oxford, Clarendon Press, 1972, pp. 310–
12. See also Hans Niese, ‘Zur Geschichte des geistigen Lebens am Hofe Kaiser 
Friedrichs II.’, Historische Zeitschrift, 108, 1912, pp. 473–540. 

3 Cf. C. H. Haskins, Studies in the History of Medieval Science, Cambridge, Mass., 
Harvard University Press, 1924, notably the chapter on ‘Science at the court of the 
Emperor Frederick II’, pp. 242–71. See also M.-T. d’Alverny, ‘Translations and 
Translators’, in Robert L. Benson, Giles Constable, and Carol D. Lanham (eds), 
Renaissance and Renewal in the Twelth Century, Cambridge, Mass., Harvard 
University Press, 1983. 

4 I refer to the philosophical and scientific correspondence. Everyone knows his 
correspondence with Ibn Sabʿīn, an Andalusian mystic. See M. Amari, ‘Questions 

(Cont. on next page) 
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interested not only in philosophy, astrology, and falconry, but also in such 
sciences as optics and mathematics.5 But the conversation with Fibonacci 
reveals much more: Frederick knew enough mathematics to carry on a 
discussion with a mathematician. As to Fibonacci, the position that he 
secured and the games of projection about this conversation would confer 
on him royal standing among medieval mathematicians. Thus, Kantorowicz 
saw in him ‘the greatest mathematician of his time and of the Middle Ages 
in general’;6 Haskins, whose horizon differed from that of Kantorowicz, 
called Fibonacci ‘the outstanding scientific genius of the thirteenth cen-
tury’;7 finally, Kurt Vogel, from yet a third perspective, referred to ‘the first 
great mathematician of the Christian West’.8 This enthusiastic judgment, 
which historians of mathematics have unanimously endorsed, is never-
theless not phrased to fit the occasion. But, what precisely does it mean 
when one alludes to the first great mathematician of the Latin West at the 
beginning of the 13th century? This question is evidently a central one both 
for the history of mathematics and for the history of culture, all the more so 
since, from the 16th century at least, generations of mathematicians would 
constantly return to the wellspring of Fibonacci’s writings. 

Before studying this question by analyzing Fibonacci’s most important 
writings, however, let us pause to notice another remarkable feature of this 
famous conversation, indeed one that suggests a path to follow forward. 
Without risk of error, one can read into the conversation between the 
Emperor and the mathematician, an agreement between two great figures 
belonging to the same cultural world, and whose projects have several 
points in common. Frederick II and Fibonacci spoke the same language, 
manipulated the same concepts, and shared several similar values. Indeed 
both men had from infancy absorbed a certain Mediterranean culture with a 
predominant Arabic tone, the first in Palermo, the other in Bejaïa (Bougie) 

                                         
(Cont.) philosophiques adressées aux savants musulmans par l’Empereur Frédéric II’, 
Journal Asiatique, 5e série, 1, 1853, pp. 240–74. The Arabic text of his correspondence 
was published by Şerefettin Yaltkaya, with a foreword by H. Corbin, Paris, 1943. 

5 E. Wiedemann, ‘Fragen aus dem Gebiet der Naturwissenschaften, gestellt von 
Frederich II., dem Hohenstaufen’, Archiv für Kulturgeschichte, II/4, 1914, pp. 483–5. 
H. Suter, ‘Beiträge zu den Beziehungen Kaiser Friedrichs II zu zeitgenössischen 
Gelehrten des Ostens und Westens, insbesondere zu dem arabischen Enzyklopädisten 
Kemâl ed-din ibn Jûnis’, in Abhandlungen zur Geschichte der Naturwissenschaften und 
der Medizin, 4, 1922, pp. 1–8. 

6 Kantorowicz, The Emperor Frederick the Second, p. 153. 
7 Haskins, Studies in the History of Medieval Science, p. 249. 
8 Cf. the article by K. Vogel on Fibonacci in C. C. Gillispie (ed.), Dictionary of 

Scientific Biography, vol. 4, p. 604. 
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where he stayed before the travels that took him to Syria, Egypt, and Sicily. 
Both men had Arabic teachers; one of them spoke the language, the other 
seems to have known at least its elements. Moreover, the Emperor and the 
mathematician each sought to do fundamental and organizational work in 
the domain of his primary activity. For Fibonacci, that work extended 
mainly to arithmetic, algebra, and number theory.9 Our question thus 
becomes more precise: to reflect on the significance of ‘the first great 
mathematician’ of the Latin West is to ask oneself what such work means 
in the Latin world of the 13th century. For obvious reasons, I cannot discuss 
all three of the domains I just mentioned; I will therefore consider here 
only algebra and number theory, focusing on Fibonacci’s two most 
important writings, the Liber abaci and the Liber quadratorum. 

Composed in 1202 and revised in 1228, the Liber abaci is a summa of 
Indian calculation, and of problems in arithmetic and algebra. Significantly, 
the edition of 1228 is dedicated to Michel Scot,10 the translator from the 
Arabic who worked at Frederick II’s court. The fifteen chapters of his book 
include Fibonacci’s exposition, which is articulated as follows: he begins 
by defining the primitive terms of algebra, before moving on to the study of 
algebraic equations of the first two degrees. He then turns to the study of 
arithmetic operations on binomials and trinomials associated with these 
equations, before studying slightly more than ninety problems, of which 
one part reduces to these equations with rational coefficients, and the 
second part to these same equations, but with real coefficients.  

One already notices that this order is that of the exposition in al-
Khwārizmī’s Algebra (composed c. 830) as well as that of his immediate 
successors, such as Abū Kāmil in his own Algebra (composed c. 870).11 
Just like al-Khwārizmī, Fibonacci defines only three primitive terms of 
algebra: the simple number (numerus simplex), the square root (radix), and 
the square (census). These are the only powers necessary for the study of 
equations of the first and second degree. Fibonacci introduces these equa-
tions in the very terms of al-Khwārizmī: ‘six ways, of which three are 

 
9  Baldassarre Boncompagni, Intorno ad alcune opere di Leonardo Pisano 

matematico del secolo decimoterzo, Rome, 1854. 
10 Scritti di Leonardo Pisano, matematico del secolo decimoterzo, pubblicati da 

Baldassarre Boncompagni, Rome, 1857, vol. I, p. 1. 
11 R. Rashed, Al-Khwārizmī: Le commencement de l’algèbre, Paris, A. Blanchard, 

2007, Introduction. See our edition of the Algebra in Abū Kāmil: Algèbre et analyse 
diophantienne, Scientia Graeco-Arabica 9, Berlin, De Gruyter, 2012. 
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simple and three compound […]’.12  He then enumerates verbally the 
following six equations. 

ax2 = bx, ax2 = c, bx = c, ax2 + bx = c, bx + c = ax2, ax2 + c = bx. 

He goes on to discuss the algorithm of solution as well as its geomet-
rical justification. Next comes the study of different problems that are 
reducible to one or the other of these six equations. Here, contrary to al-
Khwārizmī, Fibonacci does not stop with those that have rational coeffi-
cients; rather, like Abū Kāmil, he brings in irrational coefficients. These 
problems are of the following type: to divide 10 into two parts such that the 
product of the one by the other is equal to the quarter of the product of one 
of two parts by itself; that is, x(10 – x) = (1/4)x2; or again, to divide 12 into 
two parts such that the product of the one by 27 is equal to the product of 
the other by itself, that is, 27(12 – x) = x2. Fibonacci treats more than 90 
problems in this way. Now an examination of the latter identifies 22 of 
them as borrowed from al-Khwārizmī’s Algebra and 53 from Abū Kāmil’s 
Algebra. These are the same problems, sometimes with no more than a 
superficial change of numerical coefficients. This massive borrowing most 
frequently follows the order of its model. Indeed Fibonacci generally repro-
duces the order of the problems al-Khwārizmī conceived, but he is even 
more faithful to the order of Abū Kāmil. The remainder of the approxi-
mately 25 problems that he discusses and whose origin we cannot identify 
are in any case conceived according to the model of problems borrowed 
from al-Khwārizmī and Abū Kāmil. As to the path that Fibonacci took to 
gain access to the works of these two algebraists, a simple comparison 
points to Gerard of Cremona’s Latin translation of al-Khwārizmī’s13 works, 
which Fibonacci surely consulted. Moreover, ‘Maumeht’, al-Khwārizmī’s 
first name, literally appears in this chapter on algebra in the Liber abaci.14 
The case of Abū Kāmil is not so simple, since we know neither the exact 
date of the Latin translation of his Algebra, nor the identity of the translator 
(probably Gerard of Cremona).  

 
12 ‘sex modis ex quibus tres sunt simplices et tres compositi…’ Scritti di Leonardo 

Pisano, vol. I, p. 406. 
13  Cf. Gerard of Cremona’s Translation of al-Khwārizmī’s al-Jabr, a critical 

edition by B. Hughes in Medieval Studies 48, 1986, pp. 211–63. See also A. Allard, 
‘The Influence of Arabic Mathematics in the Medieval West’, in R. Rashed (ed.), 
Encyclopedia of the History of Arabic Science, 3 vols, London/New York, Routledge, 
1997, vol. II, pp. 539–80. See also N. Miura, ‘The Algebra in the Liber Abaci of 
Leonardo Pisano’, Historia Scientarum, 21, 1981, pp. 57–65. 

14 Al-Khwārizmī’s first name can be read in the margin of the third part of chapter 
fifteen. 
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 Fibonacci’s Algebra thus appears to be a kind of commentary on those 
of al-Khwārizmī and Abū Kāmil. In fact, however, these two mathemati-
cians represent the initial period of algebra, the first as the founder, the 
second as the figure who most advanced the work of the first, and in the 
same spirit. By the time of Fibonacci, algebra had undergone two radical 
transformations since its creation. The first, which I have recently named 
the arithmetization of algebra,15 came to light with al-Karajī, at the end of 
the 10th century. This transformation led to the elaboration of the algebra of 
polynomials and to abstract algebraic calculation. There is little doubt that 
Abū Kāmil, with his research on irrational coefficients and the calculation 
of quadratic irrational numbers, prepared the ground for the transformation 
that al-Karajī subsequently effected. Whereas it is not impossible that 
Fibonacci somehow got wind of al-Karajī’s algebra, he surely did not come 
under the latter’s influence, either in his project, or in its realization, con-
trary to what the eminent historian F. Woepcke16 believed in the mid-19th 
century. Fibonacci remains not only tributary to al-Khwārizmī and to Abū 
Kāmil, but also in a certain sense their contemporary. The second transfor-
mation of algebra led to the constitution of algebraic geometry with al-
Khayyām (1048–1131) and Sharaf al-Dīn al-Ṭūsī in the second half of the 
12th century. No trace of this algebraic geometry appears in Fibonacci, 
however. Even when one gives him al-Khayyām’s equation x3 + 2x2 + 10x 
= 20, in his Flos he treats it arithmetically to give it an approximate solu-
tion.17 Everything therefore indicates that Fibonacci the algebraist was 
evolving uniquely and strictly within an earlier stage of Arabic algebra. 

 But algebra is not the only domain of the Liber abaci for which this is 
the case. The same is true of arithmetic, as Fibonacci himself admits. It 
remains for us to choose two other examples from the Liber abaci, in two 
other domains, in reference to Arabic works not translated into Latin, or for 

 
15 R. Rashed, The Development of Arabic Mathematics, pp. 22 ff. 
16 F. Woepcke, Extrait du Fakhrī, Paris, 1853, pp. 24 ff. 
17 See R. Rashed and B. Vahabzadeh, Al-Khayyām mathématicien, Paris, Librairie 

Blanchard, 1999, pp. 88, 224; English transl. Omar Khayyam. The Mathematician, 
Persian Heritage Series no. 40, New York, Bibliotheca Persica Press, 2000; 
F. Woepcke, ‘Sur un essai de déterminer la nature de la racine d’une équation du 
troisième degré…’, extrait du Journal de mathématiques pures and appliquées, XIX, 
1854; Boncompagni, Intorno ad alcune opere di Leonardo Pisano, p. 6; H. G. Zeuthen, 
‘Sur la résolution numérique d’une équation du 3e degré par Léonard de Pise’, Bulletin 
de l’Académie Royale des Sciences et des Lettres du Danemark, no. 3, janvier-mars 
1893, pp. 6–17; See finally H. Henkel, Zur Geschichte der Mathematik in Altertum und 
Mittelalter, Leipzig, 1874; repr. G. Olms, 1965, pp. 292–3. 
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which no translation has so far reached us. The first is borrowed from 
numerical computation, the other from classical number theory.  

In Liber abaci, Fibonacci proposes a method to approximate the cubic 
root of an integer. For N = a3 + r, he gives18 an expression equivalent to 

N
1
3 = a + r

3a2 + 3a +1
. 

Then he writes: ‘inueni hunc modum reperiendi radices secundum 
quod inferius explicabo (I discovered this way of finding roots according to 
what I will explain below)’.19 But this method was so widespread in Arabic 
mathematics ever since the beginning of the 9th century at least, that 
slightly later mathematicians such as Naṣīr al-Dīn al-Ṭūsī called it ‘the 
conventional method’. Indeed, it already appears in Ibn al-Haytham (d. 
after 1040) and Abū Manṣūr al-Baghdādī (d. 1037). 

The second example is even more striking and is borrowed from a 
different domain: number theory, from which we want to discuss a problem 
of linear congruences that Ibn al-Haytham treats and solves. Let us begin 
by listening to his own words: 

To find a number such that, if one divides it by two, one remains; if one 
divides it by three, one remains; if one divides it by four, one remains; if one 
divides it by five, one remains; if one divides it by six, one remains; and if 
one divides it by seven, nothing remains.20 

Listen now to Fibonacci:  

There is a number such that, when one divides it by 2, or by 3, or by 4, or by 
5, or by 6, the remainder is 1, which is not divisible [by the above numbers], 
whereas the same number is entirely divisible by 7. Find this number.21 

This is evidently the same statement of a problem of linear congru-
ences that is known as ‘the Chinese remainder theorem’ and can be rewrit-
ten: to find an integer n such that 

    

n ≡1(mod mi )

                              with 1< mi ≤ p −1

n ≡ 0(mod p)

⎧

⎨
⎪

⎩
⎪

 
where mi = 2, 3, ..., 6. 

 
18 Scritti di Leonardo Pisano, p. 378. 
19 Ibid. 
20 On the Solution of a Numerical Problem, in R. Rashed, The Development of 

Arabic Mathematics, p. 247. 
21 Scritti di Leonardo Pisano, pp. 281–2.  
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In his own words here is Fibonacci’s solution.  

[…] because it is proposed that the remainder is always 1 when it is divided 
by 2, or 3, or 4, or 5, or 6, when 1 is subtracted from the number the differ-
ence is integrally divisible by each of the abovewritten numbers; therefore 
you find the least common denominator of 1

2
1

3
1

4
1

5
1

6 ; this number will 
be 60 which you divide by the 7; the remainder is 4 which should be 6 
because the entire number is divisible by the 7; therefore the number which 
is one less than it when divided by 7 must of necessity have remainder 6 that 
is 1 less than seven; therefore 60 is doubled, or tripled, or any multiple is 
taken up to when the number divided by 7 has remainder 6; the multiple will 
be 5 by which the 60 is multiplied; the result is 300 to which is added 1; 
there will be 301, and this is the number. Similarly if 420 that is integrally 
divisible by all of the aforesaid numbers, you will add to the 301 once, or 
however many times you will wish, then the sought number will always 
result, namely a number which is integrally divisible by 7, and the 
remainders are always 1 when it is divided by the others.22 

Fibonacci repeats the numerical application of the method to find 
another number with mi = 2, ..., 10, p = 11, and finds 25201. This is what 
he writes: 

By this method we indeed find another number which when divided by any 
number from two up to ten always has remainder 1, and is integrally divisi-
ble by 11; the number is 25201. Also if 698377681 is divided by any number 
from 2 up to 23, you will always find that the remainder is 1, and it is truly 
integrally divisible by 23; this number is found similarly by the abovewritten 
method. 

number 
25201 

number 
698377681 

 
On the Same [Topic] 

Again there is a number which when divided by 2 has a remainder 1, and 
when divided by 3 has a remainder 2, when divided by 4 has a remainder 3, 
when divided by 5 has a remainder 4, when divided by 6 has a remainder 5, 
and is truly integrally divisible by 7; therefore the least common denomina-
tor of 1

6
1

5
1

4
1

3
1

2  is found, and it will be 60 from which you take 1; there 

 
22  Fibonacci’s Liber Abaci: a Translation into Modern English of Leonardo 

Pisano’s Book of calculation, translated by L. E. Sigler, Sources and Studies in the 
History of Mathematics and Physical Sciences, New York, Springer-Verlag, 2002, 
p. 402. 
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remains 59. As this is not integrally divisible by 7, you will double the 60, or 
you will triple it, or you will take another multiple of it until the product is a 
number which has a remainder 1 when divided by 7; indeed the double of 
60, namely 120, when divided by 7 has a remainder 1; when the 1 is sub-
tracted from the 120, there remains 119 for the sought number. 

 
number 

119 
[to which, if you add 420 

once, twice, or as many times as you wish, 
you will have the sought number.] 

 
On the Same [Topic] 

Also there is a number which when divided by 2 has a remainder 1, when 
divided by 3 has a remainder 2, when divided by 4 has a remainder 3, and 
thus so on up to 10; when the number is divided by 10 it has a remainder 9; 
truly the number is integrally divisible by 11. First indeed you find the least 
common denominator of 1

10
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 which we thus 
demonstrate to you how to find. First you take 60 which is the least common 
denominator of the aforesaid fractions 1

10
1

6
1

5
1

4
1

3
1

2 , and when you 
multiply it by 7; there will be 420 that you must multiply by 8 and 9; 
however you leave off multiplying by the 4 that is in the rule for 8, and the 3 
which is in the rule for 9 because the least common denominator of 1

4
1

3  is 
found in the abovewritten 60; therefore you will multiply the 420 by the 2 
remaining in the rule for 8; there will be 840 that you will multiply by the 3 
remaining in the rule for 9; there will be 2520 which is the least number in 
which are found all the abovewritten factors, and in geometry it is called the 
least common multiple of all the numbers which are less than or equal to 10; 
next you subtract 1 from the 2520; there remains 2519 that is integrally 
divisible by 11; we have our number without labor; that is, 2519 is the 
sought number. And when 4655851199 is divided by any number which is 
less than 23 there will always be remainder 1 less than the number by which 
it was divided, and it is integrally divisible by 23. And when 698377681 is 
divided by all the abovewritten numbers up to 22 it always has remainder 1; 
it is truly integrally divisible by 23. 

number 
2519 

number 
4655851199.23  

 

 
23 Fibonacci’s Liber Abaci, transl. L. E. Sigler, pp. 402–3. 
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Fibonacci does not state the main property of these numbers, in con-
trast to Ibn al-Haytham, for whom it was of primary interest; in his own 
words: ‘this property is necessary for every prime number’, that is,  

 
n is prime ⇔ (n – 1) ! ≡ –1 (mod n). 

 
Moreover, Fibonacci is not alone in having let slip this fundamental 

property for characterizing prime numbers, which would later be known as 
‘Wilson’s theorem’. Other algebraists who were contemporaries of 
Fibonacci also cited this same problem without mentioning this property. 
But a comparison between the text of Ibn al-Haytham and that of Fibonacci 
clearly suggests that the latter knew at least a commentary on the former, if 
not the text itself, but that he could not grasp Ibn al-Haytham’s intention: to 
define a criterion that distinguishes prime numbers.  

Thus algebra, numerical calculation, and linear congruences combine 
with arithmetic to situate the Liber abaci in the universe of Arabic 
mathematics, as much by its borrowings and its developments as by its 
style and its language. More precisely, the book of Fibonacci belongs not to 
the most advanced mathematics, such as that of al-Karajī, al-Khayyām and 
Sharaf al-Dīn al-Ṭūsī, but rather to that of an earlier period. Note further 
that when he treats a new and promising field of research – linear congru-
ences – Fibonacci lifts out only the most immediate aspect, as do so many 
Arabic commentators who are not among the most creative.  

Does such a characterization apply also to the Liber quadratorum, 
which historians of mathematics rightly consider the most important Latin 
contribution to number theory before those of Bachet de Méziriac and 
Fermat? The situation is in fact analogous, for his book belongs to a differ-
ent Arabic tradition in number theory, one born around the middle of the 
10th century and still extending into the period of Fibonacci. This is attested 
by a report from Kamāl al-Dīn ibn Yūnus,24 who was also a correspondent 
of Frederick II and a teacher of Theodore of Antioch,25 who himself later 
joined the Emperor’s court and exchanged letters with Fibonacci.26 

 
24 Kamāl al-Dīn ibn Yūnus, Risāla fī bayān annahu lā yumkin an yūjad ʿadadān 

murabbaʿān fardān majmūʿhuma murabbaʿ, ms. Paris, BN no. 2467, fols 196v–197v. 
25 H. Suter, ‘Beiträge zu den Beziehungen Kaiser Friedrichs II.’. 
26 Fibonacci’s answer to a letter from Theodore of Antioch, who was at the time at 

the court of Frederick II, is thus entitled: ‘Epistola suprascripti Leonardi ad Magistrum 
Theodorum phylosophum domini Imperatoris’, in Scritti di Leonardo Pisano, vol. II, 
pp. 247 ff. 
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The Liber quadratorum itself opens with discussions heavily laden 
with meaning. Fibonacci begins by addressing the Emperor in these terms:  

After being brought to Pisa by Master Dominick to the feet of your celestial 
majesty, most glorious prince, Lord F[rederick.], I met Master John of 
Palermo; he proposed to me a question that had occurred to him, pertaining 
not less to geometry than to arithmetic: find a square number from which, 
when five is added or subtracted, always arises a square number.27 

By Fibonacci’s own admission, we therefore know that the goal of his 
book is to solve the system of second-degree Diophantine analysis that is 
proposed by John of Palermo and rewritten thus:  

 
   x 2 + 5 = y1

2 , 
(I) 
   x 2 − 5 = y2

2 , 
 

 and that this problem is not algebraic, but geometrical and numerical. 
After this short paragraph, we observe a combination of facts that can in no 
way be considered mere coincidences. First of all, John of Palermo, who 
was at the court of Frederick II, knew both mathematics and Arabic. It is 
indeed from this language that he translated a treatise on the asymptote to 
an equilateral hyperbola under the title De duabus lineis.28 He is moreover 
a colleague of Theodore of Antioch who, as we were just reminded, had 
studied with Kamāl al-Dīn ibn Yūnus, who was himself practiced in this 
type of research. In addition, by characterizing the problem as geometrical 
and numerical, Fibonacci classifies it not in algebra, but in that branch of 
number theory that treats Pythagorean triples or numerical right triangles, 
an interpretation that at every point is confirmed by studies of the Liber 
quadratorum itself. Finally, at issue here is not just any question of 
Diophantine analysis, but a problem that appears, as it were, ‘in person’ 
several times in the works of Arabic number theorists and algebraists. So it 
is that al-Karajī writes: ‘If one says a square and if one adds to it five units, 
one has a square, and if one subtracts five units, one has a square’.29 Al-

 
27 Leonardo Pisano/Fibonacci, The Book of Squares, An annotated translation into 

modern English by L. E. Sigler, Orlando, Florida, Academic Press, Inc., 1987, p. 3. Cf. 
the French translation by P. Ver Eecke, Léonard de Pise, Le livre des nombres carrés, 
Paris, Blanchard, 1952, p. 1. 

28 This text was established and translated by Marshall Clagett, Archimedes in the 
Middle Ages, vol. IV: A Supplement on the Medieval Latin Tradition of Conic Sections 
(1150–1566), Philadelphia, 1980, pp. 33–61, pp. 335–57. 

29 Al-Karajī, Al-Badīʿ, ed. A. Anbouba, Beirut, 1964, p. 77. 
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Karajī finds as a solution x2 = 1681/144, which is the solution that appears 
in Fibonacci.30 But neither Fibonacci’s methods nor his aims are those of 
al-Karajī. Moreover, this same system appears in a treatise on numerical 
right triangles composed at least a half-century before al-Karajī; and 
Fibonacci’s method, as well as the problems he discusses in the Liber 
quadratorum and its mathematical style, are very close to what one finds in 
this treatise, and in similar 10th-century ones devoted to numerical right 
triangles. In short, the problem that John of Palermo proposed to Fibonacci 
was borrowed directly or via al-Karajī from one of the writings on 
Diophantine analysis. Fibonacci’s research in the Liber quadratorum to 
solve it allows one to glimpse a certain knowledge of the works of number 
theorists from the middle of the 10th century who were the first to elaborate 
a new branch of Diophantine analysis: namely, integer Diophantine 
analysis. We can thus sharpen our question about the Liber quadratorum: 
to what extent is the book integrated into this tradition? 
 

Indeed, one encounters this problem, called of congruent numbers, for 
the first time in an anonymous treatise on integer Diophantine analysis, or 
more precisely on the theory of Pythagorean triples.31 The author was fully 
and justifiably aware of the novelty of his project, which he emphasizes 
with vigor. But this same problem also reappears in al-Khāzin, a 
mathematician from the same period, and it is later reproduced by 
mathematicians such as Abū al-Jūd ibn al-Layth32 in the latter third of the 
10th century. All this is to say that the problem was diffused and transmitted 
throughout the 10th century. Now, in al-Khāzin’s treatise, this problem of 
congruent numbers is presented in the same form that later appears in 
Fibonacci as the goal of his treatise. This is how al-Khāzin himself presents 
it:  

After having introduced the preceding, we reach the goal that we have pur-
sued: how to find a square number such that, if one adds to it a given number 
and if one subtracts the given number, the sum and the difference are two 
squares.33 

Without going through al-Khāzin’s procedure, we need only recall that 
he tries to determine not only such a square, but especially the conditions 

 
30 Scritti di Leonardo Pisano, vol. II, p. 271. 
31 This treatise is translated into French by F. Woepcke, Recherches sur plusieurs 

ouvrages de Leonardo de Pise…; Extraits et traduction des ouvrages inédits, Rome, 
1861. 

32 Fī al-muthallathati al qāʾimati al-zawāya, ms. Leiden, Or. 168/14, fols 132r ff. 
33 R. Rashed, The Development of Arabic Mathematics, pp. 221–2. 
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necessary for solving this Diophantine system; he demonstrates the follow-
ing theorem:  

Given an integer a the following conditions are equivalent:  
1) the system 

   (II)
x2 + a = y1

2

x2 − a = y2
2

⎧
⎨
⎪

⎩⎪
   (y2 < x < y1)  

 
admits a solution; 

2) there exists a pair of integers (u, v) called conjugate, that is, such 
that  

    u2 + v2 = x2  

    2uv = a ; 

under these conditions, a is of the form 4k, where k is not a power of 2; or 
again, a is of the form 4p (2q + 1). Al-Khāzin shows clearly that the 
smaller integer that verifies these conditions is 24: the other integers are 
multiples of 24.  

Note also that al-Khāzin’s demonstration rests on a lemma and a 
proposition established in the treatise. The lemma states that there is no 
pair of integers, square and odd, whose sum is a square. As to the proposi-
tion, it pertains to Pythagorean triples established by synthesis in Euclid’s 
Elements, for which al-Khāzin provides the analysis; it states:  

Given (x, y, z), a triple of integers such that (x, y) = 1, x is even, the 
following conditions are equivalent  

 
(III) 1) x2 + y2 = z2 
  2) there exists a pair of integers (p, q) such that p > q > 0, 

(p, q) = 1 and p and q are of opposite parity such that  

x = 2 pq  y = p2 – q2  z = p2 + q2. 

Finally, after having considered several problems of Pythagorean tri-
ples and solved the system of congruent numbers, al-Khāzin treats the 
representation of a number as the sum of squares, and in this connection 
establishes for the first time the double identity known since the 
Babylonians:  

(IV) (p2 + q2) (r2 + s2) = (pr ± qs)2 + (ps + qr)2. 
 
We now come to the Liber quadratorum, and quickly examine 

Fibonacci’s procedure. He begins by establishing 

(2k − 1) = n2

k =1

n

∑  
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in order to show that [1 + 3 + ... + (2n – 1)2 – 2] and (2n – 1)2 are the two 
sides of a numerical right triangle. He establishes an analogous property for 
even numbers. In the third proposition, he comes back to an application of 
III. In Proposition 6, he gives IV, which is one of the first known 
decompositions of quadratic forms. In Proposition 12, he gives a form of II, 
by establishing that for (u, v) = 1, one has 

uv (u + v) (u – v) = 24 k,     k = 1, 2, ...  

In Proposition 16, he returns to system I, and chooses (u, v) such that 
4 uv (u + v) (u – v) is a square multiple of 5. He takes u = 5, v = 4, where 

4 uv (u + v) (u – v) = 720 = 122 · 5 = 25 · 6 · 5. 

It is not necessary to linger further in order to see that these results are 
very close to those of the 10th century mathematicians, and much more 
importantly, that they fit into an identical mathematical context: the theory 
of Pythagorean triples. This conclusion is in no way novel; Gino Loria, an 
eminent historian with undoubted admiration for Fibonacci, has already 
proposed it. Loria, who wrongly believed that Fibonacci was the first to 
have found the double identity (IV),34 wrote after studying the Liber 
quadratorum:  

If it seems difficult to deny that the example of Muḥammad ibn Ḥusayn led 
Leonard of Pisa to the research that we have summarized above, the latter’s 
dependence on the former appears even less doubtful when one turns to the 
next section of the Liber quadratorum, which treats ‘congruent numbers’.35 

No one knew, however, that this Muḥammad ibn al-Ḥusayn was none 
other al-Khāzin. 

The Liber quadratorum thus belongs to this tradition of 10th century 
mathematicians who gave birth to integer Diophantine analysis. At the 

 
34 G. Loria, Storia delle Matematiche, Milan, Ulrico Hoepli, 1950, p. 233: ‘Va 

ancora rilevato che il nostro matematico stabilisce la doppia identità 

 (a2 + b2) (c2 + d2) = (ac + bd)2 + (bc – ad)2 = (ad + bc)2 + (bd – ac)2; 

ritrovata da Bachet de Méziriac, fu aplicata da Viète, Cauchy e da molti altri, ma, in 
memoria di chi per primo la scoperse, meriterebbe di recare il nome di Teorema di 
Fibonacci’.  

‘One should also note that our mathematician established the double identity  

 (a2 + b2) (c2 + d2) = (ac + bd)2 + (bc – ad)2 = (ad + bc)2 + (bd – ac)2; 

rediscovered by Bachet de Méziriac, it was applied by Viète, Cauchy, and many others. 
In memory of its first discoverer, however, it would deserve to bear the name Theorem 
of Fibonacci’. 

35 Ibid., p. 234. 
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moment, however, we know of no Latin translation of these writings, no 
more than we do for the case of Ibn al-Haytham’s treatise. 

In concluding this exposition, we therefore see ‘that the first great 
mathematician’ of the Latin West presents himself, not only in arithmetic, 
but also in algebra and in number theory, as carried by the current of the 
first period of Arabic mathematics, that of the 9th–10th centuries. This 
conclusion finds confirmation in the presence of other Arabic mathemati-
cians from this period in Fibonacci’s work, for example, Aḥmad ibn 
Yūsuf.36 In this regard, however, Fibonacci’s work does not differ from 
that of other Latin mathematicians of his day, such as Jordanus de 
Nemore’s De numeris datis. Yet in contrast to these others, Fibonacci evi-
dently had direct access to the various traditions of Arabic mathematical 
writing. It was therefore inevitable that his contribution appeared much 
superior to the Latin writings of his own day, whether in the fields that it 
embraced or in the results that it presented. But this man who, when 
viewed from upstream, is tied to the Arabic mathematics of the 9th–10th 
centuries, is, when seen from downstream, a scholar of Latin mathematics 
from the 15th–16th centuries. In any event, his work proved to be a source of 
inspiration and renewal for Latin mathematics. 

 

 
36 Indeed, Fibonacci borrows certain problems from the work on proportions by 

this mathematician from the late 9th to the beginning of the 10th century; cf. Scritti, 
pp. 118–19. This is how Fibonacci concludes the borrowed problem: ‘[...] et Ametus 
filius ponat decem et octo combinationes ex ea in libro, quem de proportionibus 
composuit’ (p. 119). On Aḥmad ibn Yūsuf, see notably D. Schrader’s article in the 
Dictionary of Scientific Biography, vol. I, pp. 82–3. 



 
 
 

– 5 –  
 

FIBONACCI AND THE LATIN EXTENSION  
OF ARABIC MATHEMATICS 

 
 
 

In the middle of the 19th century, thanks to recent works by Cossali,1 
Libri,2 and especially Boncompagni,3 F. Woepcke4 became the first to 
study what Fibonacci’s Flos and Liber quadratorum owed to Arabic 
mathematics. His explanations were accepted and adopted by many histo-
rians who wrote on Fibonacci: Gino Loria, A. Youshkevitch, E. Picutti, for 
example. In an earlier study that examined not only the two preceding 
books, but also the Liber abaci, I tried to show that ‘the first great mathe-
matician of the Christian West’, as K. Vogel5 called him, turns out to be 
carried by the current of Arabic mathematics, not in general (as people like 
to repeat), but only from the first period, that is, the mathematics of the 9th 
and the first half of the 10th century.6 It is to this tradition that Fibonacci 
seems to have had access, particularly the writings of al-Khwārizmī and 
Abū Kāmil in Latin translation. To these names, one should also add those 
of a few other mathematicians whose writings have also translated into 
Latin, such as Aḥmad ibn Yūsuf, the Banū Mūsā, al-Nayrīzī… One reaches 

 
1 Pietro Cossali, Origine, trasporto in Italia, primi progressi in essa dell’ algebra, 

Parma, 1797. 
2 Guglielmo Libri, Histoire des sciences mathématiques en Italie, vol. II, 

Hildesheim, Georg Olms, 1967. 
3 Baldassarre Boncompagni, Tre scritti inediti di Leonardo Pisano, Firenze, 1854. 
4 See in particular Extrait du Fakhrī, Traité d’algèbre par Aboū Bekr Mohammed 

Ben Alhaçan Alkarkhī, précédé d’un mémoire sur l’algèbre indéterminée chez les 
Arabes, Paris, Imprimerie Nationale, 1853; repr. Hildesheim, Georg Olms, 1982. 

5 K. Vogel, ‘Fibonacci’, Dictionary of Scientific Biography, vol. IV, 1971, 
pp. 604–13. 

6 See above, ‘Fibonacci and Arabic mathematics’. On the Liber Abaci, see also 
R. Franci, ‘Il Liber Abaci di Leonardo Fibonacci, 1202–2002’, La Matematica nella 
Società e nella Cultura, Bollettino della Unione Matematica Italiana, Serie VIII, vol. V–
A, Agosto 2002, pp. 293–328. See also O. Terquem, ‘Sur Léonard Bonacci de Pise et 
sur trois écrits de cet auteur publiés par Balthasar Boncompagni’, Annali di scienze 
matematiche, vol. 7, 1856. 
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this conclusion very naturally, by examining several chapters of the Liber 
abaci. Calculations on roots in the fourteenth chapter can be understood 
perfectly in light of the works cited above. Better yet, of the ninety pro-
blems that Fibonacci studied in the fifteenth chapter, seventy-nine are bor-
rowed from the books of al-Khwārizmī and Abū Kāmil. By ‘borrowing’, I 
mean a repetition of the problem that is identical to the original or contains 
a few insignificant variants, such as a change of numerical coefficients. 
Note also that the problems that, according to Woepcke, Fibonacci alle-
gedly borrowed from al-Karajī, the mathematicians from the end of the 10th 
century, or from Diophantus via the latter, are all found in Abū Kāmil’s 
book. Contrary to Woepcke’s belief, there is no evidence that Fibonacci 
knew either al-Karajī’s al-Fakhrī or Diophantus’s Arithmetic.  

These borrowings (and many others, no doubt) are certainly important 
for situating Fibonacci’s contributions to the history of mathematics. To 
stop here, however, would be to obscure another facet of his contribution 
and thus to miss its true significance. Not only did Fibonacci borrow entire 
chapters from these mathematicians, but also his work presents itself in 
some sense as an extension into Latin of the Arabic mathematics of the first 
period. By this, I mean the invention of new results, but within the frame-
work of the inherited mathesis, and without any rupture from it. The key 
question is: In which sense and according to which style did this extension 
take place? It goes without saying that a full and definitive answer to such a 
question lies in the future, for it will require a better knowledge of Latin 
translations from the Arabic and especially of the Arabophone communi-
ties of Italy as well as the completion of a genuine critical edition of the 
Liber abaci. In the meantime, we should toe to incontestable facts and 
avoid arbitrary resemblances, to say nothing of abusive ones. In what fol-
lows, I propose nothing more than the first sketch of an answer to this 
question. 

To me, the most propitious terrain for such an inquiry seems to be the 
debate between Fibonacci and the mathematicians at the Hohenstaufen 
court. The likes of John of Palermo and Theodore of Antioch not only 
knew Arabic, but were obviously in touch with mathematical research 
written in this language. By way of illustration, John of Palermo translated 
into Latin an anonymous Arabic treatise on the asymptote to an equilateral 
hyperbola. Now, we know that mathematicians such as al-Sijzī at the end 
of the 10th century had already formulated this problem, which would later 
become an object of research.7 In all probability, then, the translated trea-

 
7 R. Rashed, ‘Al-Sijzī et Maïmonide: Commentaire mathématique et philosophique 

de la proposition II.14 des Coniques d’Apollonius’, Archives internationales d’histoire 

(Cont. on next page) 
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tise was written after the end of the 10th century. As to Theodore of 
Antioch, he was himself an Arab, a student of the Mosul mathematician 
Kamāl al-Dīn ibn Yūnus (1156–1241), himself a student of the great 
algebraist, Sharaf al-Dīn al-Ṭūsī, who pushed and developed in a new 
direction al-Khayyām’s work in algebraic geometry. Recall also that the 
mathematician Kamāl al-Dīn ibn Yūnus was one of the Arab correspon-
dents of Frederick II. In short, these mathematicians at the emperor’s court 
had access to Arabic mathematical works for which we know of no Latin 
version, and it was from these writings that they drew the questions they 
put to Fibonacci. These were truly difficult questions, drawn from works 
that Fibonacci very probably did not know, or else knew only from their 
statements and their style, in a debate to which the Emperor himself served 
as arbiter. All of these elements prompt us to see here a challenge that 
Fibonacci could not resist accepting, and thus forced him to excel, if not to 
out-do himself. In other words, here we are speaking no longer of borro-
wings, but only of the pursuit of inventive research. Precisely in this sense 
is the terrain most favorable for our inquiry. 

 
I. John of Palermo asks Fibonacci to solve the equation 
 
(1)  x3 + 2x2 +10x = 20 , 

 
by requiring in addition that the solution be ‘ex his que continentur in X° 
Libro Euclidis [drawn from what is contained in Book X of Euclid]’.8 

Why this equation and this solution? Clearly the problem raised is nei-
ther easy nor innocent: John of Palermo no doubt knew that the solution 
was not in any way easy, perhaps because he had wrestled with it himself, 
perhaps because he knew the history of this equation, or finally, perhaps, 
for both reasons at once. 

Indeed, an identical equation with the very same coefficients appears in 
the Treatise of Algebra by al-Khayyām (1048–1131), as Woepcke long ago 
noted. Al-Khayyām writes in this regard: ‘One will determine the side of 
the cube according to what we have explained by means of conic sections 
[…] The square (murabbaʿ ) of that side will then be the square (māl, i.e. 

                                         
(Cont.) des sciences, no. 119, vol. 37, 1987, pp. 263–96; repr. in Optique et mathé-
matiques: Recherches sur l’histoire de la pensée scientifique en arabe, Variorum 
reprints, Aldershot, 1992, XIII. 

8 Boncompagni, Tre scritti inediti di Leonardo Pisano, p. 3. 
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the root) looked for’.9 In fact, al-Khayyām solves this type of equation by 
the intersection of a circle and a hyperbola.10 Moreover, this type of 
equation was among those that the mathematicians in the tradition of al-
Karajī tried to solve by radicals. The 12th-century mathematician al-Sulamī 
proposed to eliminate the second-degree terms by means of an affine 
transformation, then by imposing a condition on the coefficients of the 
first-degree terms, in order to make this new equation amenable to the 
simple extraction of a cubic root.11 Thus, for the equation 

 

x3 + ax2 + bx = c , 
 

one sets x = y −
a

3
; the equation is rewritten  

 

y3 + b −
a

3

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ y +

2a3

27
−

ba

3
− c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 0. 

 

One imposes b =
a2

3
, a method that cannot work here. It was therefore 

necessary to find another method. 
 

Whatever John of Palermo’s source(s), he only compounded the diffi-
culty by requiring Fibonacci to proceed by means of Book X of the 
Elements. In effect, he was demanding that the latter interpret the book 
algebraically – unless Fibonacci somehow already knew about this inter-
pretation of Arabic mathematics, undertaken by al-Karajī and pursued by 
such successors as al-Samawʾal, for example. In the present state of our 
knowledge, however, nothing supports such a supposition. Indeed, Chapter 
14 of the Liber abaci shows that Fibonacci’s knowledge of calculation by 
radicals does not go beyond that found in Abū Kāmil’s Algebra; and 
unfortunately his own work on Book X has not reached us. But John of 

 
9 R. Rashed and B. Vahabzadeh, Al-Khayyām mathématicien, Paris, Librairie 

A. Blanchard, 1999, p. 225, 4–5; English version without the Arabic text: Omar 
Khayyam: The Mathematician, Persian Heritage Series no. 40, New York, 2000, p. 159. 

10 Ibid., pp. 55–8 and p. 185; English version, pp. 55–8 and 141–2. 
11 R. Rashed, ‘Les commencements de l’algèbre’, dans Entre arithmétique et 

algèbre. Recherches sur l’histoire des mathématiques arabes, Paris, Les Belles Lettres, 
1984, pp. 17–29, at p. 28; English transl.: The Development of Arabic Mathematics: 
Between Arithmetic and Algebra, Boston Studies in the Philosophy of Science, 156, 
Dordrecht/Boston/London, Kluwer Academic Publishers, 1994, p. 17. 
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Palermo required even more: that the solution be formed by Euclidean 
radicals. We now know that this is impossible, but neither the emperor’s 
mathematician nor Fibonacci was aware of this.  

From this unusually delicate situation, the Pisan mathematician will 
extricate himself superbly. In fact, he combines Euclidean arithmetic and 
algebra, like many number theorists from the 10th century: al-Khāzin, al-
Khujandī, Abū al-Jūd, al-Sijzī. Had he come under their influence? Per-
haps, but it is also possible that, being familiar with the algebra of al-
Khwārizmī and Abū Kāmil, he found the same way to answer John of 
Palermo. 

Let us begin by summarizing his procedure in a different language. 
Equation (1) is rewritten 

x3

10
+

x2

5
= 2 − x . 

 
One sees immediately that 1 < x < 2, and that x is not an integer. 

Let x =
m

n
, with m and n mutually prime, whence equation (1) is 

rewritten 

m3 + n 2m2 +10mn − 20n2( ) = 0.  
 

Thus n divides m3; since it is prime with m, the repeated application of 
Euclid’s lemma shows that it divides m, contrary to the hypothesis; there-
fore, x is not a rational number.  

Fibonacci then shows that x can be neither a Euclidean irrational nor a 
combination of Euclidean irrationals. 

Assume that x = n , where n is not square. Equation (1) is rewritten  

 (2)  x = 210 − x2

10 + x2
= n ; 

n  is therefore rational, which is absurd. 
 
Assume that x = n4 : therefore equation (2) is rewritten 

10 n4 + n4 · n = 2 10 − n( ),  

and thus the first of the two medials is equal to the apotome, two irrational 
quantities the heterogeneity of which Euclid had demonstrated.  

One falls into a similar contradiction if one assumes that x = m + n  

or x = m + n . 
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Thus, Fibonacci demonstrates that no Euclidean radical can satisfy 
equation (1). He concludes by giving an approximation of x.12 

Fibonacci answered John of Palermo well, but without thinking of 
going beyond the question the latter had raised. Let me explain. Historians 
have noticed how, during this demonstration, the appeal to Euclidean 
arithmetic to discuss this cubic equation led to most interesting results:  

• Fibonacci showed that if the root of equation (1) is non-integer, it 
cannot be rational either. The result is doubly important – in itself, but also 
on account of the method used to establish it. It is the same method traces 
of which already appear in the construction of the irrationality of the dia-
gonal of a square in Greek mathematics. As a treatise by al-Sijzī13 attests, 
the same method also appears in the works of the 10th-century mathemati-
cians on integer Diophantine analysis. After becoming generalized in the 
19th century, it will make possible the demonstration that every principal 
ring is completely closed.  

• He proves also that an irreducible cubic equation cannot be solved by 
any combination of the irrationals in Book X, that is, quadratics. Note that 
Fibonacci did not attempt to find other constructible irrationalities which 
do not appear in Book X of the Elements. In al-Badīʿ, however, al-Karajī, 
like his successor al-Samawʾal in al-Bāhir, explained that there is an infi-
nity of kinds of irrationals beyond those of Book X of the Elements. 

• Fibonacci’s demonstration is geometrical, that is in the style and 
terminology of Book X, even if his means are arithmetical.  

 
II. The second ‘challenge’ that John of Palermo set for Fibonacci is 

reported by the latter himself in the prologue to his Liber quadratorum. His 
opening words to the Emperor are worth quoting again:  

After being brought to Pisa by Master Dominick to the feet of your celestial 
majesty, most glorious prince, Lord F[rederick.], I met Master John of 

 
12 See Boncompagni, Tre scritti di Leonardo Pisano, pp. 1–54; F. Woepcke, ‘Sur 

un essai de déterminer la nature de la racine d’une équation du troisième degré’, Journal 
de mathématiques pures et appliquées, XIX, 1854. See also Il ‘Flos’ di Leonardo 
Pisano dal Codice E.75 P. Sup. della Biblioteca Ambrosiana di Milano, Traduzione e 
Commenti di Ettore Picutti, Physis, Anno XXV, Fasc. 2, 1983, pp. 293–387; H.-G. 
Zeuthen, ‘Notes sur l’histoire des mathématiques’, Oversigt over det Kongelige Danske. 
Videnskabernes Selskabs. Forhandlinger og dets Medlemmers Arbejder (B.A.R.S.L.D., 
no. 3 Janvier-Mars), Copenhagen, 1893, pp. 1–17. 

13 See R. Rashed, L’Œuvre mathématique d’al-Sijzī, vol. I: Géométrie des coni-
ques et théorie des nombres au Xe siècle, Les Cahiers du MIDEO, 3, Louvain/Paris, 
Peeters, 2004, pp. 171–2. 
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Palermo; he proposed to me a question that had occurred to him, pertaining 
not less to geometry than to arithmetic: find a square number from which, 
when five is added or subtracted, always arises a square number. Beyond this 
question, the solution of which I have already found, I saw, upon reflection, 
that this solution itself and many others have origin in the squares and the 
numbers which fall between the squares.14 

Fibonacci could not have been more explicit about the object of his 
inquiries, nor about their target: the object, he says, belongs both ‘as much 
to geometry as to number’. It starts from the problem of ‘congruous’ 
numbers, as he put it himself, and requires that one examine the properties 
of square numbers. At stake then, is research in integer Diophantine 
analysis such as it emerged in the 10th century. Being both Euclideans and 
readers of Diophantus, these 10th-century mathematicians, like al-Khāzin, 
thought of arithmetic as concerned with integers, and as represented by line 
segments. Contrary to Diophantus’s Arithmetic, such a representation made 
it possible to respect the norms of demonstration, such as the arithmetic 
books of the Elements defined and practiced it. In short, they read 
Diophantus in light of the Elements, while being also well informed about 
al-Khwārizmī’s Algebra. At issue in this tradition was not merely the 
presentation of algorithms alone, nor the solution of Diophantine problems, 
but rather the demonstration of the solutions.  

Before situating Fibonacci in relation to this tradition, let us turn to the 
Liber quadratorum. Fibonacci begins by showing that one can obtain 
square numbers as the sum of odd prime integers beginning with one 

[n2 = 2k −1( )
k =1

n

∑ ]. He then moves to the Diophantine problem: ‘Find two 

numbers so that the sum of their squares makes a square formed by the sum 
of the squares of two other given numbers’.15 

Assume that the two given numbers are u and v, 
 

u2 + v2 = r2 . 
 
Fibonacci then considers the two segments EZ and ED such that  

 
14 Leonardo Pisano/Fibonacci, The Book of Squares, An annotated translation into 

modern English by L. E. Sigler, Boston, Academic Press, 1987, p. 3. See also E. Picutti, 
‘Il Libro dei Quadrati di Leonardo Pisano e i problemi di analisi indeterminata nel 
Codice Palatino 557 della Biblioteca nazionale di Firenze. Introduzione e Commenti’, 
Physis, Anno XXI, 1979, pp. 195–339. 

15 Fibonacci, The Book of Squares, p. 18. 



432 PART  I:  ARITHMETIC 

  

EZ 2 + ED2 = DZ 2 . 
 

If DZ = r, the problem is solved; if not, suppose first that DZ > r; and 
let a segment I be equal to r. From ZD, remove the segment TZ = I and 
drop the perpendicular TK; then ZK and TK are the numbers that were 
sought. 

D

T

ZKE  
Fig. 39 

 
Indeed, the similarity of the two triangles, DEZ and TKZ, yields 

 
KZ
EZ

= ZT
ZD

  and  KT
ED

= ZT
ZD

, 

 
whence 

KZ = ZT
ZD

· EZ   and  KT = ZT
ZD

· ED ; 

 
whence 

KZ2 + KT 2 =
ZT

ZD
⎛ 
⎝ 

⎞ 
⎠ 

2

EZ2 + ED2( ) = ZT 2 = r 2 . 

 
One reasons analogously if DZ < r, but one extends ZD. We have just 

translated Fibonacci’s procedure. 
If Fibonacci ’s reasoning holds, it is on account of a supplemental 

proposition missing from his book. If one can find x and y such that 

x2 + y2 = a2, where a is the given number, then x1 =
r

a
x  and y1 =

r

a
y  yield a 

solution to the problem.  
 
Fibonacci’s method is neither that of Diophantus in his Arithmetic, nor 

the algebraic one of an Abū Kāmil, for example. Not only does he fail to 
establish the supplemental proposition, but his method is geometrico-
arithmetical. Geometry is bodily present insofar as Fibonacci appeals to 
similar triangles, for example. But neither is this method that of the 
theoreticians of the new Diophantine analysis, such as al-Khāzin or al-Sijzī. 
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The latter did, to be sure, represent integers by line segments, but only to 
apply purely arithmetic or arithmetico-algebraic methods. Even when some 
of them, such as al-Sijzī, happened to draw upon geometry, it was always 
in the manner of the algebraists. Finally note that, in his Zététiques, Viète 
borrows this method from Fibonacci. He writes: 

To find in numbers two squares, the sum of which is equal to a given square. 
Given a number, F quadratum [F2]. One must find two squares the sum of 
which is F quadratum. 

Assume a numerical right triangle of hypotenuse Z, base B, perpendi-
cular side D. Given a right triangle similar to it with hypotenuse F. One has 

Z to F equals B to the other base, which is therefore equivalent to BF

Z
 and 

likewise Z is to F as D is to the other perpendicular, which is therefore 

equivalent to DF

Z
. This is why the squares of BF

Z
 and of DF

Z
 will have a sum 

equal to the given F quadratum, which was to be done.16 

In his Ad logisticam speciosam notae priores, however, Viète returns to 
the method of the algebraists and shows that the two methods are equi-
valent once the missing proposition is restored.  

Our question about the very status of Fibonacci’s contribution in the 
Liber quadratorum thus becomes more precise: is the geometrical inflec-
tion of his work circumstantial or essential?  

To answer this question, let us begin by remembering that Fibonacci 
uses a very long and laborious demonstration to establish an important 
proposition, which can be rewritten in other terms: 

 

Given (p, q, r, s) four integers such that 
p

q
≠

r

s
 and that p2 + q2 = m  and 

r2 + s2 = n , where m and n are nonsquare integers. One has 
 
(1) mn = p2 + q2( ) r2 + s2( ) = pr + qs( )2

+ ps − qr( )2
= pr − qs( )2

+ ps + qr( )2 . 
 

(2) mn2 = pr + qs( )2
+ ps − qr( )2

= ps + qr( )2
+ pr − qs( )2

= p2 r 2 + s 2( ) + q2 r 2 + s 2( )  
 
(3) m 2n2 = pr + qs( )2

+ ps − qr( )2
= ps + qr( )2

+ pr − qs( )2  
         = p2 r 2 + s 2( ) + q2 r 2 + s 2( ) = r2 p2 + q2( ) + s2 p2 + q2( ) . 
 

 
16 Opera mathematica, Leiden, 1646; repr. Hildesheim, Georg Olms, 1970, p. 62.  
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This proposition is a consequence of one of the first known decompo-
sitions of quadratic forms. Already known by the Babylonians, one finds it 
thinly veiled in Problem 3.19 of Diophantus’s Arithmetic, and it is stated 
and established by 10th-century mathematicians such al-Khāzin.  

Fibonacci’s demonstration is in the pure style of the arithmetic books 
of the Elements. 

 
Let us turn now to the next proposition, which states: ‘Find two 

numbers which have the sum of their squares equal to a nonsquare number 
which is itself the sum of the squares of two given numbers’;17 which is 
rewritten 

x2 + y2 = c = a2 + b2 , 
 

where c is not square and a and b are rational. 
Let us formulate Fibonacci’s demonstration in a different language. 
Given u and v such that 
 

u2 + v2 = r2  and u
v

≠ x
y

; 

 
and given k = r2 · c. According to the preceding proposition, k is rewritten 

 

k = x2 + y2( ) u2 + v2( ) = xu − yv( )2
+ xv + yu( )2

= xv − yu( )2
+ xu + yv( )2

.
 

 
Next Fibonacci considers the triangle ABC right at C and such that 

AB = k , AC = m, BC = n, where m = xu – yv and n = xv + yu. 
 

A
K

C

B
I

 
Fig. 40 

 
On AB, take the segment AI = c  and drop the perpendicular IK onto 

AC. The two segments AK and IK give the solution. Indeed 
 

 
17 Fibonacci, The Book of Squares, p. 36. 
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AK
AC

= AI
AB

= c
k

= 1
r

, 

 
whence 

AK =
m

r
=

xu − yv

r
  and  IK =

n

r
=

xv + yu

r
; 

 
whence the result. 

 
As one can see, the demonstration is geometrico-arithmetical. Here, 

too, Fibonacci draws upon similar triangles. To grasp the difference, let us 
compare Fibonacci’s solution to some others.  

In effect, this problem is none other than 2.9 of Diophantus, who posits  
 

x = a + t  and  y = st – b,  
 

whence 

t =
2 bs − a( )

s2 +1
, 

 
whence 

x = as2 + 2bs − a
1+ s2

  and  y = bs2 − 2as − b
1+ s2

. 

 
Regardless of whether one gives it an arithmetico- or geometrico-

algebraic interpretation, this method indeed differs from Fibonacci’s. 
Abū Kāmil applies a method that resembles that of Diophantus. Thus 

he posits  
x = a + t  and  y = b – st, 

 
and calculates t, then x and y. 

This is the method that one finds again among algebraists such as al-
Karajī.18 Finally, in his Zététiques [4.2], Viète gives Fibonacci’s method 
before giving that of Diophantus.  

 
Next, Fibonacci establishes the following propositions before returning 

to the problem of congruous numbers:19 

 
18 Woepcke, Extrait du Fakhrī, 3.37, p. 100. 
19 Integer n is congruous in Fibonacci’s sense if n = ab(a + b)(a – b) with (a + b) is 

even; or if n = 4 ab(a + b)(a – b) with (a + b) odd. 
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• i2

i =1

n

∑ =
n n +1( ) 2n + 1( )

6
. 

 

• 2i − 1( )2

i =1

n

∑ =
4n 2n −1( ) 2n +1( )

12
. 

 
• If a and b are two integers such that a > b, (a, b) = 1 and 

(a + b) = 2k, then ab(a + b)(a – b) is a multiple of 24 (24 is the smallest 
congruous number). One shows that this will also be the case for 
4ab(a + b)(a – b) if (a + b) is odd, a congruous number.  

 
Everything is now ready for Fibonacci to take up John of Palermo’s 

challenge and to solve the system thus. 
 

  x2 + a = y1
2
 

(1)     with y1 > x > y2 . 

  x2 − a = y2
2
 

 
Let us begin by examining Fibonacci’s method, before returning to the 

history of the problem in order to compare this method with that of his 10th-
century predecessors.  

Fibonacci’s main idea is to reduce the problem to finding three squares 
in arithmetic progression. This is an interesting idea, which in a sense 
spontaneously springs to mind. Indeed, from equation (1), one obtains 

 

(2)  y1
2 − x2 = x2 − y2

2.  
 

Let us therefore posit that  
 

  y2
2 = 2i −1( )

i=1

n

∑ , x2 = 2i −1( )
i=1

n+m

∑ , y1
2 = 2i −1( )

i =1

n+ m +k

∑ , with k < m. 

 
Equality (2) is rewritten 

 

(3)  n + m + k( )2
− n + m( )2

= n + m( )2
− n2,  

 

because 2p −1( )
p=1

n

∑ = n2 . 
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From (3) one has  
 

  y2 = k2 + 2mk − m2 , x = m2 + k2, y1 = m2 + 2mk − k2,  
and one has 

 

(4)  a = 4mk m + k( ) m − k( ).  
 

This last step is one that Fibonacci did not truly establish.  
From the preceding proposition, one knows that a = 24 is the smallest 

congruous number. 
The solution of equation (4) is not immediate. Stated in a different 

language, the issue is to find the rational points on an elliptical curve. 
 
To situate Fibonacci’s contribution, let us remember some history. This 

problem has very deep roots, since it goes back to research on numerical 
right triangles in Babylonian mathematics. In various forms, one also finds 
it in Diophantus’s Arithmetic. Earlier we alluded to Problem 3.19 of the 
Arithmetic, which is rewritten: 

 

  x2 + ai = yi
2,  

      ( yi+1
2 < x2 < yi

2 ) 

  x2 − ai = yi+1
2     

 
and i = 1, 2, 3, 4; with the condition 

 
x = a1 + a2 + a3 + a4 . 

 
This problem amounts to finding four congruous numbers correspon-

ding to x2 and such that their sum is equal to x. 
Diophantus certainly does not raise the problem of congruous numbers 

for itself, but encounters it during his research on square numbers. His 
solution draws primarily on a relation that he established between the 
Pythagorean triples (a, b, c) and a congruous number; in his own words: 
‘Since the square of the hypotenuse of every right triangle, augmented or 



438 PART  I:  ARITHMETIC 

  

diminished by the double product of the sides constituting the right angle, 
forms a square […]’:20 

(*)   c2 ± 2ab = a ± b( )2
.  

 
Next, Diophantus looks for four right triangles having the same hypo-

tenuse, a problem equivalent to representing a square as the sum of two 
squares in four different ways. Neither the problem such as Fibonacci states 
it, nor the method that he follows to solve it owes anything at all to 
Diophantus’s Arithmetic, about which Fibonacci knew nothing. Had it been 
otherwise, Fibonacci would have rephrased the problem into that of finding 
a numerical right triangle for which 2ab is equal to the number ai. The path 
that Diophantus took is well known, and would consist in positing  

 
u2 + v2 = c, u2 − v2 = a, 2uv = b,  

whence 
4uv u + v( ) u − v( ) = ai . 

 
Not until the 10th century, when integer Diophantine analysis diverged 

from rational Diophantine analysis did the problem of congruous numbers 
arise for its own sake. It was then presented as a problem in number theory, 
to which several mathematicians would devote sustained attention. One of 
the first was al-Khāzin, who devoted several works to integer Diophantine 
analysis, all of which treat numerical right triangles and the problems 
deduced from them, such as the first case of Fermat’s theorem. Yet neither 
al-Khāzin nor the mathematicians of this era used a specific word to distin-
guish these numbers. Fibonacci was the first to call them ‘congruous’.  

One of the theorems that al-Khāzin demonstrates concerns congruous 
numbers and can be stated as follows. The following conditions are 
equivalent:  

1° system (1) admits a solution;  
2° there exists a pair of integers (u, v) such that 

u2 + v2 = x2,  2 uv = a; 

under these conditions, a has the form 4k, and k is not of the form 2n. 

 
20 Diophante d’Alexandrie, Les Arithmétiques, Les six livres arithmétiques et le 

Livre des nombres polygones, Œuvres traduites pour la première fois du grec en français 
avec une introduction et des notes par Paul Ver Eecke, Paris, Librairie A. Blanchard, 
1959, p. 108. 
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Since I have examined al-Khāzin’s demonstration elsewhere,21 suffice 
it here to mention only the ideas that he puts into play. 

System (1) gives us by addition and subtraction 
 

x2 =
y1

2 + y2
2

2
,    a =

y1
2 − y2

2

2
. 

Given y1 = u + v and y2 = u – v, one has 

x2 = u2 + v2  and  a = 2uv. 

Earlier, however, al-Khāzin had demonstrated by analysis and synthe-
sis the lemma to Proposition X.29 of the Elements, which Euclid had esta-
blished by synthesis alone. One knows that there exists a pair of integers 
(p, q) with opposite parities such that p > q and (p, q) = 1 such that 

 
u = p2 – q2,  v = 2 pq  and  x = p2 + q2, 

and one has 

p2 + q2( )
2

+ 4pq p − q( ) p + q( ) = p2 − q2 + 2pq( )
2

, 
 

p2 + q2( )
2

− 4pq p − q( ) p + q( ) = p2 − q2 − 2pq( )
2

. 
 

System (1) is thus identically verified if 
 

a = 4pq(p – q)(p + q). 
 

Al-Khāzin notes that the smallest integer a that verifies this equality is 
24. He does not stop here but for the use of algebraists, he proposes a 
second method to solve (1), that is, to obtain rational numbers. This method 
requires the solution of the equation 

  
x2 + y4 = z2. 

 
Other mathematicians in this tradition – notably Abū al-Jūd ibn al-

Layth – also deal with the problem of congruous numbers.  

 
21 R. Rashed, ‘L’analyse diophantienne au Xe siècle: l’exemple d’al-Khāzin’, 

Revue d’histoire des sciences, 32, 1979, pp. 193–222; English transl. in The Develop-
ment of Arabic Mathematics, pp. 205–37; and Histoire de l’analyse diophantienne 
classique: D’Abū Kāmil à Fermat, Berlin/New York, Walter de Gruyter, 2013.  
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For their part, the algebraists will soon take up this same problem. At 
the end of the 10���century, al-Karajī in his al-Badīʿ formulates precisely 
the problem that John of Palermo would later put to Fibonacci, namely  

 

(5)  
x2 + 5 = y1

2,

x2 − 5 = y2
2.

 

 
Here are al-Karajī’s steps. From (5) one pulls 
 

y1
2 − y2

2 = 10, y1 + y2 = u  and  y1 – y2 = v, 
 

whence 

y1 =
u + v

2
, y2 =

u − v

2
  and   y1

2 − y2
2 = uv ; 

whence v =
10

u
. 

Let us make the substitution in (5), and set u =
3

2
. 

 

  x2 =
1

4
u2 +

102

u2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

1681

144
=

41

12
⎛ 
⎝ 

⎞ 
⎠ 

2

, 

 

  y1
2 =

1

2
u +

10

u
⎛ 
⎝ 

⎞ 
⎠ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

=
2401

144
=

49

12
⎛ 
⎝ 

⎞ 
⎠ 

2

, 

 

  y2
2 =

u2 −10

2u

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

=
961

144
=

31

12
⎛ 
⎝ 

⎞ 
⎠ 

2

. 

 
These numbers are identical to the ones Fibonacci obtained in the Liber 

quadratorum. His method is different and draws its inspiration from the 

same idea he had applied earlier: to find three squares, x2, y1
2, y2

2  in arith-
metic progression with a difference of 5; that is, to solve 

 
y1

2 − x2 = x2 − y2
2 = 5 , 

 
for rational numbers (5 is not divisible by 24); or, what amounts to the 
same thing, to solve 

Y1
2 − X 2 = X 2 −Y2

2 = 5k2
 

 
for integers. 
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Fibonacci takes k2 = 144 and thus 5k2 = 720, a multiple of 24, and 
therefore divisible by 24. He obtains for X, Y1, Y2: 41, 49, 31, and for x, y1, 
y2 the values that al-Karajī had found, that is  

 

x =
41

12
, y1 =

49

12
, y2 =

31

12
. 

 
By Fibonacci’s own admission, the Liber quadratorum was conceived 

and composed with the goal of solving the problem of congruous numbers, 
and in fact, two-thirds of its propositions are directly tied to this research. 
The rest consists of problems that are merely variations on the central 
question. Thus, in the following proposition, Fibonacci shows that, for two 

integers p, q such that p > q , if (p + q) is even, then 
p

q
≠

p + q

p − q
. 

At the end of this proposition, he writes a sentence that has often exci-
ted the imagination of some historians:22 ‘nullus quadratus numerus potest 
esse congruum’ – ‘no square number can be a congruous number’.23 

Without falling into the trap of anachronism, let us concede that 
Fibonacci’s statement reflects a difficulty that he felt intuitively. It is per-
haps this same difficulty, moreover, that earlier had incited al-Khāzin to a 
proliferation of methods. Let us stay within the latter’s perspective. As we 
noted he was dealing with Pythagorean triples. In this context, the problem 
of congruous number is explicitly posed as follows: how to decide if a non-
square integer is the area of a numerical right triangle? We must emphasize 
again that this context is neither that of al-Karajī, nor strictly that of 
Fibonacci. With his theorem, al-Khāzin gives a necessary and sufficient 
condition. Nevertheless, this theorem does not allow one always to solve 
the problem. If, for example, one wants to show that 1 is not a congruous 
number, one is reduced to proving the impossibility of x4 – y4 = z4 for posi-
tive integers, which was not demonstrated until Fermat. Let us return to 
Fibonacci’s statement.  

From the preceding statement, one immediately obtains, as Fibonacci 
noted,  

p

q
=

p + q

p − q
⇒ pq p + q( ) p − q( )  and  4 pq p + q( ) p − q( )   

are squares. 

 
22 K. Vogel for example (cited n. 5).  
23 Boncompagni, Tre scritti di Leonardo Pisano, p. 98; Fibonacci, The Book of 

Squares, transl. L. Sigler, p. 83. 
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The reciprocal should then pass through equation x4 – y4 = z2. Indeed, 
pq(p + q)(p – q) is the area of a Pythagorean triangle with factors that are 
pairwise prime. If the product is a square, all the factors must be as well. 
Let us therefore posit p = x2, q = y2, (p + q) = u2, (p – q) = v2, with u, v both 
odd, and (u, v) = 1. Then x, y, z = uv solve x4 – y4 = z2. 

Did the mathematician of Pisa notice such a difficulty ? We think not. 
By examining some values, however, he may have seen the property stated 
above. 

Between Fibonacci’s text and this analysis starting from Pythagorean 
triples, therefore, lies an abyss that some have tried to leap with one bound.  

Thus the group of remaining problems (less than a third) includes ones 
that also appear in al-Karajī’s al-Badīʿ, but that Fibonacci solved by means 
of congruous numbers:  

    
x2 + nx = y1

2, x2 + a = y1
2

x2 − nx = y2
2, x2 − na = y2

2  with n = 1, 2, …; 

it concludes with another system of Diophantine equations that Theodore 
of Antioch proposed to Fibonacci.  

One can certainly compare this procedure to that of al-Khāzin in one of 
his treatises. Indeed, he too recalls that the goal (al-gharad) of the first part 
of this treatise is to solve the problem of congruous numbers. But the ana-
logy stops there.  

As we have noted, for al-Khāzin, the problem of congruous numbers 
arises during research on Pythagorean triples that he intended as systema-
tic. By forgetting this context, one is condemned to understanding nothing 
about the choice of representing numbers by line segments, and especially 
al-Khāzin’s deliberate preference for methods that are purely arithmetic or 
arithmetico-algebraic – in other words, the two foundations on which inte-
gral Diophantine analysis builds. Yet it is indeed to the latter that the pro-
blem of congruous numbers belongs, as does the method that al-Khāzin 
used to solve it. 

The Liber quadratorum, by contrast, is in no sense a treatise on 
Pythagorean triples. In it, Fibonacci is concerned with congruous numbers. 
His method consists, on the one hand, in obtaining the squares x2, y1

2 , y2

2  as 
sums of arithmetic progressions and, on the other, in returning to squares in 
arithmetic progression. To distinguish the two contributions concisely, one 
might characterize them as follows. Al-Khāzin treats Pythagorean triples 
by arithmetico-agebraic means, or even by Diophantine methods reinvigor-
ated by integer arithmetic, in order to found integer Diophantine analysis. 
By contrast, Fibonacci focuses on the problem of congruous numbers and 
on several related problems, by drawing on the methods of Euclidean and 
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neo-Pythagorean arithmetic without recourse to algebraic means. This is an 
original procedure, but it also makes his occasionally defective demons-
trations longer and heavier.  

Nevertheless, unlike al-Karajī, both Fibonacci and al-Khāzin are 
already squarely in the domain of number theory. Indeed al-Karajī treats 
rational solutions and, as we have seen, chooses a Diophantine method that 
he interprets algebraically.  

Fibonacci’s procedure evokes in particular the path that he himself took 
in his study of al-Khayyām’s equation. His first move was therefore to 
draw upon Euclid’s arithmetic books in order to establish that the root can-
not be a rational number, and this independently of John of Palermo’s 
requirement that he proceed via Book X of the Elements.  

How ought one understand the causes and consequences of this 
Euclidean inclination? I believe that two terms capture the essentials of 
Fibonacci’s situation: isolation and originality, where the first is in some 
sense the cause of the second. Let me explain. 

Most, if not all, of the propositions of the Liber quadratorum were 
known by Fibonacci’s Arabic predecessors, who had widely diffused them. 
But Fibonacci’s demonstrations were different. Was there a Latin transla-
tion that dealt with these questions in number theory? No evidence so far 
allows one to say so. But the case is not unique. I cite in particular Ibn al-
Haytham’s study of a problem of linear congruence that is now known as 
the ‘Chinese remainder theorem’ and that appears in the Liber abaci.24 
There is, however, no known trace of a Latin translation of Ibn al-
Haytham’s text or of any of his commentators. There can be no doubt that 
Fibonacci trained himself to put his energy into the Arabic mathematics 
translated into Latin, or that he had some sort of direct access to the latter, 
whether oral (as was the case for John of Palermo and Theodore of 
Antioch) or written. Equally incontestable, however, this gifted mathemati-
cian was doubly isolated: not only with respect to the active mathematical 
production in this domain since the second half of the 10th century; but also 
with respect to the advanced contemporary research that was at the time 
thriving in the cities of the Muslim East. In this isolation, one can 
nevertheless glimpse the ferment of an unmistakable originality. Since he 
stood outside the tradition of integer Diophantine analysis that was emer-
ging in the middle of the 10th century and would prosper among such 

 
24 See above, ‘Fibonacci and Arabic mathematics’, pp.  416–8: 

n ≡1(mod mi ),   with 1< mi ≤ p −1, where  mi = 2, 3,…, 6

n ≡ 0(mod p).
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mathematicians as Kamāl al-Dīn ibn Yūnus, Fibonacci drew upon the 
means at his disposal, namely the Elements and Euclidean and neo-
Pythagorean arithmetic. Isolated also from the tradition of algebraic geo-
metry, he once again turned to these same books. This is how he came to 
develop certain lines of research within Arabic mathematics, but in diffe-
rent directions and by other means. This is precisely what we mean by 
characterizing Fibonacci’s work as ‘the Latin extension of Arabic 
mathematics’.  



 
 
 

– 6 – 
 

AL-YAZDĪ AND THE EQUATION i

2x
i=1

n

∑ = 2x  

 
 
 
The 10th century witnessed the birth of two relatively distinct traditions 

in Diophantine analysis. The first is that of the algebraists who, following 
the works of Abū Kāmil and of the translation of seven books of 
Diophantus’s Arithmetic, developed Diophantine rational analysis as an 
integral chapter of algebra. From al-Karajī and his successors until the 16th 
century, this chapter is not simply a component of every substantial treatise 
in algebra: it also gets its own proper name, al-Istiqrāʾ. With al-Karajī, this 
term, which literally means ‘induction’, acquired the technical sense of 
indeterminate rational analysis. The second tradition is that of mathemati-
cians such as al-Khujandī, al-Khāzin, Abū al-Jūd, al-Sijzī, among others, 
who deliberately broke from the preceding tradition and chose a style 
decidedly different from that of Diophantus’s Arithmetic. They allowed 
only integer solutions and they required demonstrations. Understandably, 
the latter were carried out by means of line segments and proportion the-
ory. This is how the new, or integer, Diophantine analysis was first con-
ceived in the 10th century. As we have noted, however, numerical right tri-
angles from the beginning became a favorite domain of research in this 
tradition. Indeed they often stand at the origin of most of the mathematical 
questions that the aforementioned mathematicians raise in all their works. 
Already in the 10th century, they tried to formulate a theory of these trian-
gles, and to express the results in relation to certain modules.1 Among the 
problems that are often taken up after al-Khāzin, one encounters that of the 
general solution, with integers, of the Diophantine equation  

 
  ∗ 1

2x + 2

2x +… + n

2x = 2x . 

 
1 R. Rashed, ‘L’analyse diophantienne au Xe siècle: l’exemple d’al-Khāzin’, Revue 

d’histoire des sciences, XXXII/3, 1979, pp. 193–222; English translation in The 
Development of Arabic Mathematics: Between Arithmetic and Algebra, Boston Studies 
in Philosophy of Science 156, Dordrecht/Boston/London, Kluwer Academic Publishers, 
1994, pp. 205–37.  
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Throughout this research, one finds here and there the thinly veiled 
desire of reaching the solution arithmetically. It is here that the historian of 
Diophantine analysis confronts one of the most important questions, an 
unavoidable one: when and how in this episode did one begin to proceed 
by purely arithmetic demonstrations? It is thanks to this requirement, and 
with the help of infinite descent, that Fermat brought about the transfor-
mation that made his name in number theory.  

We want to show that, before this transformation, the history of the 
new Diophantine analysis evinces partial progress on the path towards 
purely arithmetic demonstration. With textual evidence in hand, we will 
see that the 16th-century mathematician al-Yazdī2 made an advance of this 
type in relation to the solution of the equation (*). The arithmetic character 
of his procedure pertains to his reliance on a calculation equivalent to the 
congruences (mod 8) and (mod 4). We cannot yet assert, however, that this 
contribution originates with al-Yazdī himself, or whether it reflects a more 
ancient phase of Diophantine analysis in Arabic. Too many texts still 
remain unstudied for us to offer a clear answer. The example of al-Yazdī, 
nevertheless, does allow us to conclude that at the end of the 16th century, 
the flame of Arabic mathematical research, although weakened, had not 
gone out.  

 
Muḥammad Bāqir al-Yazdī wrote a voluminous treatise called The 

Fountains of Arithmetic,3 which is still unedited. In this volume, al-Yazdī 
contributes to Euclidean number theory as well as to rational Diophantine 

 
2 Muḥammad Bāqir al-Yazdī was an Iranian mathematician who died around 1637. 

We know very little about his life except that he was an important mathematician, as 
were his son and grandson. Written in Arabic, his mathematical work includes an 
important treatise called ʿUyūn al-ḥisāb (The Fountains of Arithmetic), in the tradition 
of al-Karajī and of his successors until al-Kāshī; it therefore contains a substantial 
chapter on indeterminate analysis. It is also in this book that al-Yazdī studies amicable 
numbers, and lists the pair that is now called ‘of Descartes’ (R. Rashed, The 
Development of Arabic Mathematics, p. 286; as well as ‘Matériaux pour l’histoire des 
nombres amiables et de l’analyse combinatoire’, Journal for the History of Arabic 
Science, vol. 6, nos. 1–2, 1982, pp. 209–78). He also wrote a commentary on Book X of 
the Elements, as well as other mathematical books (see Agha Buzrug Tihrānī, Ṭabaqāt 
aʿlām al-shīʿa: al-Rawda al-naḍra fī ʿulamāʾ al-mīʾa al-ḥādiya ʿashra, Beirut, 1990, 
pp. 75–6; see also A. Qurbānī, Biography of Mathematicians from the Islamic Period 
(in Persian), Teheran, University Press of Teheran, 1365 H., pp. 436–41. 

3 The large number of manuscripts of this text suggests that it was a teaching 
textbook. We worked with manuscript no. 1993 Hazinesi, Süleymaniye, Istanbul. 
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analysis. In addition, he composes a report, heretofore unknown,4 that is 
devoted precisely to the solution of equation (*).  

Among other things, al-Yazdī proves the following lemmas (we follow 
the order of the text):  

 
LEMMA 1: If n is odd, then n2 ≡ 1(mod 8). 

Indeed 
(2n + 1)2 = 4n(n + 1) + 1 ≡ 1(mod 8). 

 
This lemma is fundamental for the congruences that al-Yazdī uses 

next. 
 

LEMMA 4: Given an odd number n that is neither prime nor the square of a 
prime, then for every pair (d1, d2) of associated divisors (d1 > d2), one has 

 

n = d1·d2 =
d1 + d2

2

⎛
⎝
⎜

⎞
⎠
⎟

2

−
d1 − d2

2

⎛
⎝
⎜

⎞
⎠
⎟

2

. 

 
LEMMA 5: For an even number n to be the difference of the squares of two 
integers, it is necessary and sufficient that it be greater than 4 and have the 
form  

n = (2m + 1) 2k   with k ≥ 2.  

 
From 4 and 5, al-Yazdī shows how to represent a number in several 

ways as the difference of two squares – of different parities if the number is 
odd; of the same parity if it is even.  

 
LEMMA 6: Let n be an odd number such that n � 1 (mod 8), then 
a1

2 +…+ an
2  cannot be a square if a1, …, an  are odd numbers. 

 

 
4 The manuscript of this text is found in Teheran, Majlis Shūrā Library, no. 171, 

catalogued under the title (in Persian) ‘Gloss of Muḥammad Bāqir Yazdī on the 
Commentaries of the Spherics, Text of Naṣīr al-Dīn al-Ṭūsī’. This title is suggested by a 
gloss at the end of the manuscript. See our critical edition of this text in Historia 
Scientiarum, 4–2, 1994, critical apparatus, p. 101. 

Al-Yazdī’s text evidently does not have any connection to the Commentary on the 
Spherics. The text consists of four folios; the last page contains only the copyist’s gloss, 
according to which the gloss pertains to the aforementioned commentary. The writing is 
nastaʿlīq, in the same hand; there is nothing in any marginal note to suggest that the 
copyist revised his text based on his model (ibid., pp. 92–101). 
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Indeed, for every 1 ≤ i ≤ n, ai

2 ≡ 1(mod8),  therefore a1

2 +…+an

2  
≡ n  � 1(mod 8). Moreover a1

2 +…+an

2  is odd since n is. It is therefore not a 
square. 

Al-Yazdī calculates 
 

1
4

a1
2 +…+ an

2( ) = αi

i=1

n

∑ αi +1( ) + n
4

,  if αi = 2αi + 1; 

 
in this expression, the summation that appears in the second term is even, 

and n
4

 is not of the form 2k + 1
4

 with k integer. The second term can there-

fore not be ¼ of a square.  
 

LEMMA 7: Let n ≡ 1(mod 8); if a1, … , an-1 are given odd numbers, then 
there exists an odd an such that a1

2 + … an-1
2 + an

2  is a square. 

Indeed the sum a1
2 +…+ an−1

2 ≡ n −1(mod8) , therefore it is divisible by 
8; one posits  

an = 1
4

a1
2 +…+ an−1

2( ) −1.  

Thus  

a1
2 +…+ an−1

2 + an
2 = 1

4
a1

2 +…+ an−1
2( ) +1

⎡
⎣⎢

⎤
⎦⎥

2

.  

 
LEMMA 8: Let n be even such that n ��0(mod 4) [� n ≡ 2(mod 4)]; then 
a1

2 + … + an
2  cannot be a square if a1, … , an are odd numbers.  

Indeed, a1

2 +…+an

2 ≡ n ≡ 2( mod 4); but a square is congruent to 0 or 1 
(mod 4). 

 
LEMMA 9: Let n ≡ 0(mod 4); if a1, … , an-1 are given odd numbers, there 
exists an odd  an  such that a1

2 +…+ an-1
2 + an

2  is a square. 
Indeed, a1

2 +…+an−1

2 ≡ n − 1( ) ≡ −1(mod 4).  One posits 
 

an = 1
2

a1
2 +…+ an−1

2( ) −1⎡
⎣

⎤
⎦ .  

 
This is an odd number, and one has 
 

a1
2 +…+ an−1

2 + an
2 = 2an +1+ an

2 = an +1( )2
. 
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Note: if a1
2 +…+ an

2 = b2 , with a1, … , an  odd, and if c is any number, one 
has  

a1c( )2
+…+ anc( )2

= bc( )2
.  

 
One applies this note to the specific case in which c = 2 p.  

 
 

LEMMA 10: If n is even such that n � 0(mod 4) [� n ≡ 2(mod 4)], and if 
ai

2 = αi
2 22p , where αi are odd, then it is impossible that a1

2 + … + an
2  be a 

square.  

Indeed sn = ai
2

i=1

n

∑ = 22 p αi
2

i=1

n

∑ = 22 p ′sn , with ′sn  the sum of n odd squares. 

For sn  to be a square, it is necessary and sufficient that ′ s n  be one. But 

according to lemma 8, if n � 0(mod 4), one has ′ s n  � 0(mod 4); ′ s n  is not a 

square, sn  is not one either. 

 
LEMMA 12: If n is even such that n � 0(mod 4) – or odd such that n ��1 
(mod 8) – [��if n � 0, 1, 4(mod 8)] and if a1

2 + … + an
2  is a square, then 

the highest power of 2 that divides the ai (that is, the dyadic valuations) is 
not the same for all i; for example the ai cannot all be odd. Moreover, the 
number of odd squares is ≡ 0  or  ≡ 1(mod 4). 

Indeed, if this number is r, with a1, … , ar being odd, one has  
 
  a1

2 +…+ar

2 ≡ r (mod 4)  
and 

  ar+1
2 +…+ an

2 ≡ 0(mod 4), 
 

since the aj, j ≥ r + 1 are even. But a square is always ≡  0 or ≡  1(mod 4). 
 
Using examples, al-Yazdī develops a method for constructing a sum-

mation of r ≡  0 or ≡  1(mod 4) odd squares and of any number of even 
squares, such that this sum is a square. 

 
1st case: an even square and r odd squares. 
One takes a1, … , ar as odd, and one uses the formula 
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tu + t − u
2( )

2

= t + u
2( )

2

. 

 

One therefore seeks t, u, such that a1
2 +…+ ar

2 = tu  and t − u
2

 is even. In 

other words, one decomposes a1
2 +…+ ar

2  ≡ r(mod 4) into a product of two 
factors t, u such that t ≡  u(mod 4). One must therefore choose t, u such 
that r ≡ tu(mod 4) and t ≡  u(mod 4); also r ≡ t2(mod 4), thus t ≡ r(mod 2) 

and t a1
2 +…+ ar

2( ) . If r ≡ 0(mod 4), one writes a1
2 +…+ ar

2 = 4α  and 

t = 2τ , u = 2τ + 4k ; one must have α = τ τ + 2k( ) , that is, α  is the product 

of two numbers with the same parity. In other words, if τ  is even, α  is 

divisible by 4. If r ≡ 1(mod 4), one writes a1
2 +…+ ar

2 = 4α +1, and 

t = 2τ +1, u = 2τ + 4k +1; one must have α = τ 2 +τ + 2kτ + k , which 
always admits the solution τ  = 0, k = α . 

 
Al-Yazdī takes as his example r = 5, a1 = 3, a2 = 5, a3 = 7, a4 = 9 and 

a5 = 11, which yields 
 

  a1
2 +…+ a5

2 = 285 = 3× 95 = 5× 57 =15×19 ; 
 

one can therefore choose 
 
  (t, u) = (3, 95), (5, 57), (15, 19), 
 

and one has: 

  a1
2 +…+ a5

2 + 462 = 492, 

  a1
2 +…+ a5

2 + 262 = 312, 

  a1
2 +…+ a5

2 + 22 =172. 
 
2nd case: method for any r and two even squares. 

The task is to find any v2 such that t + u
2( )

2

+ v2  is a square and to repeat 

the procedure.  
 
Let us take up the preceding example. One starts with one of the 

squares sn obtained for any r and a single even square, on the condition 
that it not be the square of a prime number; given 
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  sn = a1
2 +…+ a5

2 + 462 = 492 , 
  sn = tu . 

Whence 

sn + t − u
2( )

2

= t + u
2( )

2

; 

 
in the example, t = 343 and u = 7. 

 
For any number of even squares, one repeats the process as many 

times as necessary. 
 
We have just seen that al-Yazdī devotes his treatise to the solution of 

equation (*) by purely arithmetic means. He studies different cases as a 
function of the parity of the xi, starting with the case in which all xi  are 
odd. He systematically uses a calculation equivalent to the congruences 
mod 4 and mod 8. These apparently new results were evidently al-Yazdī’s 
response to one of his concerns: to characterize the squares with the prop-
erties of congruences – or, in another language, to take into account dyadic 
properties; and thus to establish arithmetic propositions arithmetically. 
Borrowed from congruences, these arguments did not seem trivial to the 
mathematicians of the 17th century, at least to those who were effectively 
working in number theory. Thus Bachet de Méziriac drew precisely on 
congruences modulo 4 and modulo 8.5 In his famous letter XII, probably 
from 1638,6 Fermat himself takes pride in having shown that no number of 
the form 8k – 1 is a sum of less than four squares. He writes ‘This propo-
sition leads to remarkable consequences … [which] in any case seemed to 
have fruitlessly tested Bachet’s genius and efforts’.7 

 
 5 Bachet de Méziriac notes in his commentary on Problem V.12 (V.9 in 

P. Tannery’s edition) of Diophantus’s Arithmetic, that prime integers of the form 4n + 1 
are decomposable into two squares. In his commentary on V.14 (V.11 in P. Tannery’s 
edition), he shows that every integer of the form 8n + 7 cannot be in integers either a 
square or a sum of two or three squares. Cf. Diophanti Alexandrini Arithmeticorum libri 
sex, Paris, 1621, pp. 311–12. 

6 J. Itard, ‘Les méthodes utilisées par Fermat en théorie des nombres’, Revue 
d’histoire des sciences, III, 1949; repr. in J. Itard, Essais d’histoire des mathématiques, 
revised and introduced by R. Rashed, Paris, Librairie Blanchard, 1984, pp. 229–34; see 
also A. Weil, Number Theory, an Approach through History, Boston, Basel, Stuttgart, 
Birkhaüser, 1983, p. 61. 

7 Œuvres de Fermat, vol. III, French translation by P. Tannery, Paris, Gauthier-
Villars, 1896, p. 288. 
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For the Diophantine problems and for the sums of squares, one sees 
here the same phenomenon noted elsewhere in the very same al-Yazdī, but 
in a different arithmetic, that of the Euclidean tradition: until the 1630s 
research in Arabic is still alive; what is more, both for the topics broached 
and the results obtained, one notices a certain parallelism with the research 
pursued in Latin and in French. Mathematicians who knew nothing of each 
other’s existence – al-Yazdī on the one hand, Bachet and Fermat on the 
other – treated the same questions and reached results that, although not 
identical, were nevertheless analogous. Not surprisingly, all of them started 
from Diophantus’s Arithmetic and, more or less directly, from the works of 
the 10th-century mathematicians, a substantial portion of whose results 
Leonardo of Pisa or Fibonacci had taken up.8 This is therefore a privileged 
moment in the history of mathematics, at the hinge between two eras, 
marking the cleavage between the end of one tradition and the beginning of 
a new one. Indeed one should not exaggerate the parallelism to which we 
alluded above: although al-Yazdī is not without originality, he is walking 
on a path previously laid out in the 10th century in order to answer ques-
tions already raised by al-Khāzin. A little later, thanks to the invention of 
the infinite descent, Fermat answers questions raised by these mathemati-
cians (Fermat’s theorem for n = 3, 4), but formulates and solves others that 
his predecessors had never conceived (notably the emergent study of cer-
tain quadratic forms), and he fulfills al-Yazdī’s fondest wish for a purely 
arithmetic demonstration. This cleavage, which also characterizes Fermat’s 
own work, seems to mark the moment when, on the Mediterranean, the sun 
of mathematics sets in the East in order to rise in the West. 

 

 
8 See above, ‘Fibonacci and Arabic mathematics’. 



 
 
 

– 7 – 
 

FERMAT AND THE MODERN BEGINNINGS  
OF DIOPHANTINE ANALYSIS 

 
 
 

Fermat’s arithmetic research belongs not to one but to two traditions: 
that of Euclidean and neo-Pythagorean arithmetic, and that of Diophantus’s 
analysis. It is true, however, that number theorists have constantly mingled 
these two traditions since the 10th century.1 This is also the case in Fermat’s 
work, notably before the 1640s. In the accounts that historians give of 
Fermat’s contribution to number theory, it is nevertheless not rare that the 
second tradition obscures the first. Of the several reasons for this, two 
matter here. The first pertains to the importance of the results that Fermat 
established in Diophantine analysis; the second follows from the flowering 
of this analysis, not only among the heirs of Fermat – Euler and Lagrange 
in particular – but especially recently in algebraic geometry. As can some-
times happen even in studies with historical pretensions, Fermat’s mathe-
matics are nevertheless presented outside of all historical determination. 
One can therefore empathize with the difficulty that the historian faces who 
confronts a work as foundational of a new domain and as fruitful for new 
currents of research as Fermat’s, even as the correct perspective requires 
that it be seen also as the product of two traditions. In such a case, caution 
demands that one follow these traditions, which both entered into the for-
mation of the work, and that one also trace their entanglement, in order to 
follow this formation step by step and to situate Fermat’s contribution in 
history. This is all the more necessary because the history of each of these 
traditions is distinct and unique, for the very reason that each had a differ-
ent intention and goal. To be concise, the history of the Euclidean and neo-

 
1 See R. Rashed, ‘Théorie des nombres et analyse combinatoire. L’analyse 

diophantienne au Xe siècle: l’exemple d’al-Khāzin’, in id., Entre arithmétique et 
algèbre. Recherches sur l’histoire des mathématiques arabes, Paris, Les Belles Lettres, 
1984, pp. 195–225; English translation in The Development of Arabic Mathematics: 
Between Arithmetic and Algebra, Boston Studies in Philosophy of Science 156, 
Dordrecht/Boston/London, Kluwer Academic Publishers, 1994, pp. 205–37; and 
Histoire de l’analyse diophantienne classique: D’Abū Kāmil à Fermat, Berlin/New 
York, Walter de Gruyter, 2013. 
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Pythagorean tradition – in spite of the difference between their two styles 
of arithmetic – can be rewritten as research on integers and on the criteria 
for determining some of their classes. It studies, among other things, ques-
tions of parity, of divisibility, criteria for prime numbers, perfect numbers, 
amicable numbers…, by means of demonstrations analogous to those 
encountered in the arithmetic books of Euclid’s Elements, or inductively, as 
among the neo-Pythagoreans. This tradition will undergo an important 
transformation directly tied to algebra, when algebraic demonstrations are 
substituted for demonstrations of the Euclidean type. This transformation 
occurred around the 12th–13th centuries among the Arabic algebraists. 
Matters are completely different for Diophantus’s analysis. The history of 
this chapter is much more complex; already well before Fermat, it is char-
acterized by transformations that are even more profound, on account of 
algebra and such 10th century mathematicians as al-Khāzin. Let me simply 
note here that this history can be rewritten as that in which algorithmic pro-
cedures acquired diverse and precise mathematical significations: alge-
braic, purely arithmetic, geometric. Indeed, between these algorithmic pro-
cedures and the mathematical meanings that they are supposed to capture, 
there is an internal relation, even if it is not always apparent. In my view, it 
would be illusory to characterize the algorithmic research of an ancient or 
even a more recent mathematician as being independent of all mathemati-
cal content. This is to say, to speak of purely algorithmic research in 
Diophantus, Fermat, and Euler, for example, is highly anachronistic and 
inexact. That said, it nevertheless remains the case that the need to conquer 
the mathematical meaning of every algorithm became an unavoidable 
necessity beginning in the 9th century in algebra, that is, when one began to 
require a mathematical justification of algorithmic methods. This event was 
absolutely crucial, and it can be dated rather precisely to c. 830. Indeed in 
his Algebra, written around this date, al-Khwārizmī (to whom the concept 
of ‘algorism’ – subsequently corrupted to ‘algorithm’ – owes its name) 
formulates for the first time in history the idea that an algorithm must be 
mathematically justifiable, if not demonstrable. A genuine mathematical 
discipline, like the algebra that he had just founded, could not be satisfied 
to be merely algorithmic: it also had to be demonstrative. Only demonstra-
tion could confer on the algorithm the dimension that it lacked: apodic-
ticity. In the last analysis, it is apodicticity that distinguishes an algorithm 
from a simple empirical procedure or a recipe. In addition, it is also 
demonstration, or its justification, that gives the algorithm a precise mean-
ing. From the 9th century on, this new requirement suffuses Arabic mathe-
matical research, including the most advanced. Diophantus’s analysis not 
only was a part of this project, it was also precisely this question that stood 
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at the origin of the different interpretations of Diophantus’s Arithmetic, and 
of the different styles of Diophantine analysis that we have tried to 
distinguish.2 

We will therefore follow the paths traced by the two traditions men-
tioned above. But to grasp the way in which Fermat uses them and to avoid 
arbitrarily introducing demarcations that run the risk of separating what he 
insisted on mixing, let us begin by following him step by step to understand 
the evolution of his arithmetic research. To a notable extent, we can do this 
thanks to his correspondence, which allows us to enter into this genealogi-
cal research. 

For the most part, we do not know how Fermat acquired his mathe-
matical training. But we do know that, before 1636, he studied Viète’s 
Zététiques, Diophantus’s Arithmetic, and probably Bachet’s commentaries. 
To this one must add a deep familiarity with Euclidean arithmetic. One 
therefore expects a combination in which ‘la spécieuse’ (the ‘new algebra’ 
of Viète), Diophantine analysis, and more or less algebraized Euclidean 
methods enter. This is precisely what one sees when one examines his 
mathematical studies up to September 1636. At the time, this combination 
nevertheless had a dominant emphasis, which had a clear effect on his con-
cept and practice of Diophantine analysis. Indeed, the core of his research 
belonged to the tradition of Euclidean arithmetic, and his knowledge of 
Diophantine analysis was still modest. This is what we will show thanks to 
his correspondence.  

Whether it is a matter of its formulation or its solution, the first prob-
lem we encounter sends us back to Diophantus and Viète. At issue is to 
find two numbers, each of which is composed of three squares, as is their 
sum. It is about this very problem that Fermat will later state:  

That a number, composed of three squares only in integers, can never be 
divided into two squares nor even in fractions, no one has yet demonstrated; 
and this is what I am working on, and I believe that I will bring it to an end. 
This knowledge is of enormous utility and it seems to me that we do not 
have enough principles to bring it to an end.3 

 
2 R. Rashed, Diophante: Les Arithmétiques, Collection des Universités de France, 

2 vols, Paris, Les Belles Lettres, 1984. 
3 ‘Or, qu’un nombre, composé de trois quarrés seulement en nombres entiers, ne 

puisse jamais être divisé en deux quarrés, non pas même en fractions, personne ne l’a 
jamais encore démontré et c’est à quoi je travaille et crois que j’en viendrai à bout. Cette 
connoissance est de grandissime usage et il semble que nous n’avons pas assez de 
principes pour en venir à bout.’ Letter X – Tuesday 2 September 1636, of Fermat to 
Mersenne, vol. II, p. 58. 
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For now, we simply note this requirement of an integer solution. Here 
we are in palpable contact with Fermat’s goal and with the limits of his 
knowledge. At issue is a problem in integer Diophantine analysis, not the 
analysis of the algebraists; conversely, the problem at hand is easily soluble 
by congruences modulo 8. It seems that Fermat did not yet have sufficient 
knowledge of this congruence and of this type of problem. In this regard he 
writes: ‘we do not have enough principles in order to bring it to an end; 
M. de Beaugrand agrees with me about this’.4 

If the preceding problem shows us the nature and the limits of Fermat’s 
knowledge of Diophantine analysis at that time, the second problem reveals 
the domain in number theory on which he is working the most. Both a let-
ter addressed to Mersenne and the preface that the latter wrote to his 
Harmonie universelle5 indicate that Fermat in this period is treating primar-
ily the problems of the divisors of an integer, their sum, perfect numbers, 
amicable numbers, etc. – questions originating directly from the Euclidean 
and neo-Pythagorean traditions. Thus, in order to form subduplicate num-
bers – that is, the integers n such that σ 0 (n) = 2n ; σ0  being the summation 
of the proper divisors, with σ (n) = σ 0 (n) + n the sum of the divisors – 
Fermat proceeds as follows: 

If an integer n is such that 2n − 1= p 2n− 3 +1( ) , with p prime, then 
3p · 2n–1 is a subduplicate integer. Indeed, 

 
σ 3p · 2n−1( ) = 4 p +1( ) · 2n −1( ) = 4p 2n −1( ) + 4p 2n−3 +1( )
= p · 2n+2 + p · 2n−1 = 9p · 2n−1;

 

 
in other words, the sum of the divisors of the integer must be its triple, and 
the sum of its proper divisors its duplicate.  

 
4 Ibid., p. 58. 
5 In the letter dated Tuesday, 24 June 1636 addressed to Mersenne, Fermat writes: 

‘A long time ago already, I sent to Mr. Beaugrand the proposition about aliquot parts, 
together with the construction for finding an infinity of numbers of the same nature’ 
(vol. II, p. 20). P. Tannery and C. Henry have linked this letter to two excerpts from 
Mersenne’s general preface to his Harmonie Universelle (1636), in which the latter 
writes: ‘… and I would add Monsieur Fermat, Counselor to the Parlement of 
Thoulouze, to whom I owe the remark that he made about the two numbers 17296 and 
18416, whose aliquot parts mutually remake each other…’ (vol. II, p. 21). In the second 
passage, an excerpt from the Seconde Partie de l’Harmonie Universelle (1637), 
Mersenne gives the procedure, probably from Fermat, for forming subduplicate 
numbers. 
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Fermat’s procedure is ingenious, but ineffective. He is vulnerable to the 
criticism that Descartes sent him.6 If one posits 2n–3 = x, p is then written 

p =
8x −1

x +1
; for n = 3, x = 1. Since p is a monotone increasing function of x, it 

tends towards 8 when x tends to infinity; p varies from 7
2

 to 8 and therefore 

cannot have the values 5 and 7. And thus, Fermat’s rule can only give two 
subduplicate numbers: 120 and 672, corresponding respectively to n = 4, 
p = 5 and n = 6, p = 7. This is why we called it ineffective.  

The third problem encountered in the correspondence confirms what 
we already stated earlier about the domain Fermat was privileging at the 
time, and about his arithmetic knowledge. It concerns a rule to characterize 
and find amicable numbers, that is, the integers a and b such that 
σ 0 (a) = b and σ 0 (b) = a . The rule can be stated as follows: 

Let n be an integer such that  3 · 2n–1 – 1 = pn–1,  3 · 2n –1 = pn, and  
9 · 22n–1 – 1 = qn; if pn–1, pn, qn all three are prime numbers different from 2, 
then the numbers A = 2n · pn–1 · pn and B = 2n qn are amicable. 

 
This rule is none other than the one that Thābit ibn Qurra established in 

the 9th century, and that which Kamāl al-Dīn al-Fārisī re-established alge-
braically at the end of the 13th century, and that was diffused broadly, as we 
have shown.7 Moreover, the pair of amicable numbers (17296, 18416), 
called ‘Fermat’s pair’, had been discovered earlier on several occasions.8 

But what was Fermat’s method? Did he proceed by means of propor-
tion theory, as in Euclidean arithmetic, to which these problems pertain? Or 
by means of algebra, like his Arabic predecessors from the end of the 12th 
century on, and as the case of al-Fārisī in the 13th century illustrates? 
Barely a few months later, Fermat offers at least an indirect answer in the 
letter of 16 December 1636, in which he writes:  

 
6 Correspondance du P. Marin Mersenne, commencée par Mme Paul Tannery, 

publiée et annotée par Cornélis de Waard, vol. VII, Paris, 1962, Letter XVII – 27 May 
1638, from Descartes to Mersenne, pp. 237–8, at p. 263 and following. 

7 R. Rashed, ‘Nombres amiables, parties aliquotes et nombres figurés aux XIIIe et 
XIVe siècle’, in id., Entre arithmétique et algèbre. Recherches sur l’histoire des 
mathématiques arabes, Paris, Les Belles Lettres, 1984, pp. 259–99; English translation 
in The Development of Arabic Mathematics: Between Arithmetic and Algebra, Boston 
Studies in Philosophy of Science 156, Dordrecht/Boston/London, Kluwer Academic 
Publishers, 1994, pp. 275–319, at pp. 278 f. 

8 Ibid. 
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As far as numbers and their aliquot parts are concerned, I found a general 
method to solve all questions by means of algebra, about which I plan to 
write a little Treatise.9 

At this stage, one can lift out the following characteristics of Fermat’s 
research: as in Euclidean arithmetic, it focuses on integers; but in contrast 
to Euclid, Fermat proceeds by means of algebra, without, however, neglect-
ing the Diophantine problems that also treat integers. This is to say that he 
participates in two traditions at once, that developed by mathematicians 
such as al-Fārisī, by the study of divisions by means of algebra, and that at 
work since al-Khāzin, and later borrowed by Fibonacci, on integer 
Diophantine analysis. So far Fermat has produced no new result, and con-
ceived no new method. What is more, his knowledge seems to be inferior 
to that of his predecessors.  

One should therefore not be surprised that Fermat from the outset posi-
tions himself on the terrain of integer Diophantine analysis, and that he 
tackles the problems that such predecessors as al-Khāzin and Fibonacci, 
among others, had most heavily worked, namely, numerical right triangles. 
Thus, in the same letter of 16 December cited above, he poses the question 
of finding three right triangles whose areas constitute respectively the sides 
of a right triangle. 

To understand Fermat’s solution, we must return to his Observation 29 
on Diophantus’s Arithmetic, which is probably contemporaneous with his 
letter. In this Observation, Fermat tries to find two numerical right trian-

gles, the areas of which are in a given ratio 
a

b
. Let us then assume (m, n), 

(p, q) are the pairs of generators of two triangles respectively. One immedi-
ately has  

bmn(m – n)(m + n) = apq(p – q)(p + q). 

 
Fermat identifies two of the factors of the second member with two of 

the first. Let us summarize in the following table the results that this 
method can yield.  

 
Areas proportional to   a        b 
         a + b; 2a – b    a + b; a – 2b    1 
         a – b; 2a + b   a – b; a + 2b    2 
 

 
9 In his letter of 22 September 1636 to Roberval, he seems to be referring to this 

method, when he recalls that he communicated it with Mr. Despagnet (Letter XVIII, 
vol. II, p. 93). 
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Pairs of       6a; 2a + b    4a + 2b; b – 4a   3 
generators     6a; 2a – b    4a – 2b; b + 4a   4 
         2a + 4b; a – 4b  6b; a + 2b     5 
         2a – 4b; a + 4b  6b; 2b – a     6 
 
Fermat obtains all of them except (3) and (5). Overlooking sign 

changes or permutations of a and b, there are in fact only two possible 
cases.  

In this same Observation 29, Fermat wants to deduce from the preced-
ing ‘a method to find three right triangles whose areas are proportional to 
three given numbers, on condition that the sum of two of these numbers be 
four times the third’;10 the solution of this problem can be found from the 
preceding one. Indeed given these last three numbers a, b, c, let us associ-
ate the solutions (2) to a and b and (6) to a and c in the table. One will then 
obtain a – b = 2a – 4c and 2a + b = a + 4c; the two equations are reducible 
to 4c = a + b.  

Let us then return to the problem raised in the letter mentioned above 
and find a right triangle (a, b, c) such that 4c = a + b. If (m, n) is a generat-
ing pair, one obtains 8mn = 2m2, and therefore 4n = m. By setting n = 1, 
one obtains the triangle (8, 15, 17). Finally, by setting a = 17, b = 15, c = 8, 
the three sought triangles are formed respectively by the pairs (2, 49), 
(2, 47), (1, 48).  

This is Fermat’s first research on numerical right triangles. One can 
note that the questions are traditional – to form right triangles from others – 
and that the method is algebraic: the identification of factors. Fermat him-
self presents his Observation 29 as a restitution and explanation ‘of 
Diophantus’s method, which Bachet did not understand’.11 But this time, as 
in the 10th century, the use of algebra by a mathematician concerned with 
integers inside the framework of Euclidean arithmetic will raise new ques-
tions very unlike those of Diophantus in his Arithmetic. As we shall see, 
this is the theoretical complexity that now hovers for the second time over 
the history of the invention of integer Diophantine analysis. For now, note 
that in Observation 23, which is slightly later than Observation 29, Fermat 
seems to be trying to form from one Pythagorean triple an infinity of others 
with the same area.  

 
10 Œuvres de Pierre Fermat. I: La théorie des nombres, Textes traduits par Paul 

Tannery, Introduits et commentés par R. Rashed, C. Houzel, G. Christol, Paris, Albert 
Blanchard, 1999, p. 142. 

11 Ibid., p. 141. 
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Research in number theory from the years 1636–1640 on 

Until the end of 1636, neither Fermat’s knowledge in number theory, 
nor the results he obtained, nor yet the methods he follows, surpass in any 
way those of his predecessors – quite the contrary. From the end of 1636 to 
the beginning of 1640, Fermat’s correspondence displays nothing funda-
mentally new: the problems he raises are analogous to those of the preced-
ing period or to extensions of them. Fermat still continues to be concerned 
with Diophantus’s analysis and Euclid’s arithmetic.  

Several clues nevertheless reveal that this is a very important period: 
Fermat begins to lay the foundations for a new departure, a turning point in 
his career as a number theorist and in the history of the discipline. The 
clues are assembled in his famous Letter XII, the one that J. Itard, with the 
competence that was his hallmark, dated to the beginning of June 1638.12 

In this letter, Fermat formulates several impossible problems. Let us 
here quote this one: 

To find a numerical right triangle such that its area is a square.13 

In this letter, written in the style of a controversy, Fermat seems to rec-
ognize that the problems he is posing are impossible. Nevertheless, nothing 
allows one to infer that he knew the demonstration of this impossibility, 
such as he established it in Observation 45 on Diophantus, that is, by infi-
nite descent. Let us emphasize again that nothing allows us to state that 
Fermat knew the method of infinite descent in June 1638. In May 1640, the 
situation seems different. In a challenge thrown to Frenicle around that 
date, the impossible problems surface again. This time, everything suggests 
that Fermat has the demonstration. Let us read what he wrote to Mersenne:  

If [Frenicle] answers you that, up to a certain number of numbers, he has 
tested that these questions have no solution, you can be sure that he is pro-
ceeding by tables.14  

If Fermat speaks in this way, it is probably because he has solid 
demonstrations, or at least an idea about them, and that consequently he has 
already conceived the method of infinite descent. In any case, the conjec-
ture is not a bold one.  

Beyond this, however, what were Fermat’s concerns in number theory 
during this period? He is interested in Euclidean arithmetic, in prime num-

 
12 J. Itard, ‘Les méthodes utilisées par Fermat en théorie des nombres’, in Essais 

d’histoire des mathématiques, réunis et introduits par R. Rashed, Paris, Librairie 
Blanchard, 1984, pp. 229–34. 

13 Letter XII, vol. II, p. 65; vol. III, p. 287. 
14 Letter XXXIX, from Fermat to Mersenne, vol. II, p. 195. 
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bers, and in one case of what will become his ‘little theorem’. In May (?) 
1640, he writes:  

I have found several shortcuts to find perfect numbers and I tell you in 
advance that there is none of either 20 or 21 digits, which destroys the opin-
ion of those who had thought that there was one in the confines of every 
group of ten; such as one from 1 to 10, another from 10 to 100, another from 
100 to 1000, etc.15 

Now this problem is equivalent to that of recognizing that prime 
numbers have the form 2p – 1. But for p = 31, one has a prime number, and 
the perfect number is 230(231 – 1). For p = 37, the perfect number is 
236(237 – 1); it has a number of digits given approximately by 73log2, 
which is clearly many more than 22 digits. It is therefore clear that Fermat 
could answer without knowing if this number is perfect or not.  

More important yet is the letter of June (?) of the same year in which 
Fermat states: ‘Here are three propositions that I found, on which I hope to 
erect a great edifice’.16 The propositions are the following: 

 
(1) If n is composite, then 2n – 1 is as well. 
(2) If p is prime, then 2p – 1 ≡ 1 mod 2p. 
(3) If p is prime, the only prime divisors of 2p – 1 have the form 

2kp + 1. 
 
Fermat continues:  

Here are three very beautiful propositions that I found and proved with 
considerable difficulty: I can call them the foundations of the discovery of 
perfect numbers.17 

It is moreover reasonable to follow Fermat when he asserts that he 
demonstrated them. If indeed, one considers the first proposition and one 
assumes n = pq, one has in this case  

 
2pq – 1 = (2p)q – 1. 

 
Now, according to the identity am – bm = (a – b) (am–1 + … + bm–1), one 

immediately concludes that 2n – 1 is divisible by 2p – 1; whence the result. 
The identity one obtains was known well before Fermat.  

To demonstrate the second proposition, one need only write  
 

 
15 Ibid., vol. II, p. 194. 
16 Letter XL, by Fermat to Mersenne, vol. II, p. 198. 
17 Ibid. 
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2n = 1 +1( )n
=

n

k

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

k= 0

n

∑ = 2 + 2n + 2n
n −1

2
+ 2n

n −1( ) n − 2( )
6

+…. 

 
If n = p prime, one has  

2p ≡ 2 mod 2p, 
 

whence 
2p–1 ≡  1 mod p. 

 
This algebraic demonstration has all the odds of being similar to 

Fermat’s. In 1636 he already knew the rules for forming figurate numbers 
by multiplication. Indeed, as we have shown, all of these rules were well 
known and used before Fermat.  

The third proposition is also demonstrable with the tools Fermat had at 
his disposal, if one can concede that he already had his little theorem, at 
least for the specific case in which a = 2 in the statement: 

For p prime, and with a prime with p, ap–1 ≡ 1 mod p. 
 
In this case, the relation 2n – 1 ≡ 0 mod p makes n a divisor of p – 1 

where p = kn + 1. Since 1 and p are odd, therefore p = 2kn + 1. 
Thus, we have enough clues to think that, in the middle of 1640, 

Fermat had both infinite descent and his little theorem, at least for the 
special case in which a = 2. In August of the same year, as we shall see 
below, he had also found the theorem on the representation of an integer as 
the sum of two squares. Everything therefore indicates that the year 1640 
marks the beginning of a conceptual and technical transformation, the 
effects of which reach all the domains of numbers, including that of 
numerical right triangles.18 Beginning in 1640, the study of the latter finds 
itself therefore a vaster arithmetic, which is not the case for the other 
mathematicians working in this area, such as Frenicle. This integration will 
itself gradually inflect the study of these triangles: instead of taking an 
interest only in the properties of the numbers that compose them, one 
focuses more and more on problems associated with the representation of 
integers by combinations of squares. Since the movement that we have just 
summarized led to a genuine revolution in number theory, we must pause 
here.  

 
18 Our conclusion corroborates but pushes back the date by two years that of 

J. Itard when he writes: ‘in short, one could say: in 1638, Fermat is in possession of his 
method of infinite descent, but he does not have his own method of factorization. His 
little theorem gives him such a method in 1640.’ (‘Les méthodes utilisées par Fermat en 
théorie des nombres’, p. 232.) 



 7. FERMAT AND DIOPHANTINE ANALYSIS 463 

Toward the end of this period, and throughout the year 1640, every-
thing unfolds as if the interest directed to the properties of integers, from 
the points of view of both Euclidean arithmetic and the new Diophantine 
analysis, was gradually increasing, culminating in a reconfiguration of the 
field of arithmetic. Let us follow Fermat’s correspondence a little farther. 

On 25 December 164019 – Fermat formulates the following problem:  
Given the integer n, find the number of solutions of x – y = n and of 

xy = z2. He then writes:  

And there is only this difference, that in this question all prime numbers 
except 2 are useful, which is not the case in the preceding one about 
hypotenuses.20  

He continues:  

Now, to find all the triangles and also the stated numbers in this question, the 
matter is rather easy, about which I will write you (Mersenne) separately, if 
you wish.21 

To understand Fermat’s assertion, let us rewrite the preceding system 
 

n = x − y,    y2 + ny − z 2 = 0; 
 

whence  
n2 + 4z2 = t 2 .  

 
For this numerical right triangle, consider the case in which n is odd; 

one has n = p2 – q2 and z = pq. One will therefore have as many solutions as 
there are decompositions of n into two factors; in this case, x and y are each 
square.  

More generally, if one posits 
  

n = λ p2 − q2( )  and z = λ pq ,  
 

one will have 
t 2 = λ2 p2 + q2( )2

, y = λq 2 , x = λp 2 . 

 
19 Letter XLV, from Fermat to Mersenne, vol. II, pp. 212–17. 
20 ‘Et n’y a que cette différence, qu’en cette question tous les nombres premiers 

hormis 2 sont utiles, ce qui n’est pas en la précédente des hypoténuses’ (ibid., p. 216). 
21 ‘Or, pour trouver tous les triangles et aussi les dits nombres en cette question, la 

chose est assez aisée, de quoi je vous (= Mersenne) écrirai séparément, si vous voulez’ 
(ibid., pp. 216–17). 
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One therefore obtains as many solutions as there are decompositions of 
n into products of three factors, since n = λ (p – q) (p + q). More precisely, 
every product of three distinct factors yields three solutions.  

One can see clearly that Fermat is interested no longer in integer solu-
tions as such, but in their properties, that is, in the structure of these solu-
tions. This becomes more pronounced, and six months later – in June 1641 
– in a letter to Mersenne on the 15th of the month, he returns to a result that 
practitioners of integer Diophantine analysis had already obtained in the 
10th century.22 Indeed, he returns to numbers of the form 12k ± 1, 12k ± 5 
and 10k ± 1, and he writes:  

In the progression of 3, all the prime numbers that differ by one from a mul-
tiple of 12 measure only the powers –1. Such are: 11, 13, 23, 37, etc.  

In the same progression, the prime numbers that differ by 5 from a multiple 
of 12 measure powers +1. Such are: 5, 17, 19, etc.  

In the progression of 5, all the prime numbers that end in 1 or 9 measure 
only powers –1. Such are: 11, 19, etc. 

The ones that finish in 3 or 7 measure powers +1. Such are: 7, 13, 17, etc.23 

Regardless of how one judges the correctness of these claims, note that 
if Fermat treats numerical right triangles, it is to find the properties of the 
pertinent families of integers. On this point, however, Fermat is not very 
far from his 10th century predecessors, a conclusion that the preceding 
example confirms. But this research into the extension of the new 10th-
century Diophantine analysis should not obscure the step that Fermat is 
taking. The issue for him is to lift out certain quadratic forms encountered 
during his research on numerical right triangles and to begin the process of 
studying them. Whereas the preceding example shows his interest, partial 
and indirect to be sure, in quadratic remainders, other examples from 1641 
suggest that Fermat is beginning to turn toward the study of forms. If this 
turns out to be the case, the distance he has covered is immense.  

 
On June 15, 1641, Fermat writes to Frenicle:  

There are triangles whose lesser sides differ only by one.24  

In other words, if c < b < a is one of them, another will be  
 

2a + 2c + b < 2a + 2c + b + 1 < the hypotenuse. 

 
22 R. Rashed, The Development of Arabic Mathematics, p. 210. 
23 Letter XLVII – Saturday 15 June 1641, from Fermat to Mersenne, vol. II, p. 220. 
24 Letter XLVIII, vol. II, p. 224. 
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As is often the case, Fermat does not explain. Let us therefore comment 
on this assertion, in order to display the means to which he appealed. 
Indeed the equation to be solved is  

 
(*)    c2 + (c + 1)2 = a2. 

 

Positing that a =
p

q
c +1, one gets 

c p2 − 2q2( ) = 2q q − p( ).  
 
If p2 = 1+ 2q2 ,  the solution has been found.  
This is the Diophantine algorithm interpreted as ‘the chord method’.25 

Through point (a = 1, c = 0) of the curve with equation (*), one draws a 

straight line with slope 
p

q
, and one finds the second point of intersection, 

c =
2q p − q( )
p2 − 2q2 , to be an integer if p2 – 2q2 = 1. 

Note therefore that one is led to a Fermat equation that, in the simplest 
case, has the coefficient 2. In the general case of equation 
y2 = αx 2 + βx + γ , which Euler will study later, the same method leads one 
to the general equation of Fermat, y2 − αx 2 = ±1.  

In other words, this problem boils down to a study of the form x2 – 2y2. 
The big question is to discover how Fermat might have proceeded.  

Given a = y, 2c + 1 = x; the problem amounts to finding integer solu-
tions to the equation  

 
(1)       1+ x 2 = 2y2 . 
 

If u and v satisfy the same equation, then 
 
(2)       1 + u2 = 2v2. 
 

One can therefore write 

(x – u)(x + u) = 2(y – v)(y + v) 

which is solved by assuming 
y + v = 2αβ,  x + u = 4αp, 

y – v = 2pq,  x – u = 2βq, 
 
25 See Diophante, Les Arithmétiques, ed. R. Rashed, vol. III; R. Rashed and 

C. Houzel, Les Arithmétiques de Diophante: Lecture historique et mathématique, 
Berlin/New York, Walter de Gruyter, 2013. 
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whence 
y = αβ + pq,  x = 2αp + βq, 
v = αβ – pq,  u = 2αp – βq. 

 
By rewriting equation (1) 

2y2 – x2 = 1 

 
or equation (2) 

2v2 − u2 = 1, 
 

one obtains  
2α 2 − q2( ) β 2 − 2 p2( ) = 1, 

 
and therefore 

2α 2 − q2( ) 2 p2 − β 2( ) = −1. 
 
One of the factors is therefore equal to 1 and the other to –1. For 

example 
 
(3)       2α 2 = 1+ q2 ,       β 2 = 1+ 2 p2 . 
 
Reciprocally, if α, β, p and q satisfy equation (3), x and y are solutions 

of equation (1). Specifically, if p = 2, β = 3, α = y0 , q = x0 , one obtains 
 
(4)        x = 4y0 + 3x0 , y = 3y0 + 2 x0 . 
 
This is the general solution, for, from equation (4) one gets 
 

x0 = 3x − 4y, y0 = 3y − 2x , 
 

and x0, y0 are solutions, if x and y are. One thus obtains a linear 
transformation (4) which leaves the curve of equation (*) invariant. 

Returning now to the right triangles y = a, x = b + c = 2c + 1, one has 
 

a = 3a0 + 4c0 + 2 = 3a0 + 2b0 + 2c0 ,

b = 2a0 + 3c0 + 2 = 2a0 + 2c0 + b0 +1= 2a0 + 2b0 + c0 ,

c = 2a
0
+ 3c

0
+1= 2a

0
+ 2c

0
+ b

0
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A reasoning by descent starting from x, y, by noting that x0 <
x

5
, as well 

as x ≥ 3, shows that, by iterating the operation of descent, one must reach 
x0 = 1, and one will therefore deduce all the solutions of x0 = 1, y0 = 1, by 
iterating (4). 

 
The preceding discussion suggests that in 1641, during his research on 

numerical triangles, Fermat advances farther than his predecessors, since he 
goes back to the study of equations of the preceding type: what we now call 
Fermat equations. This is the orientation that henceforth seems to govern 
his research. In order to show this, one need only read more of the same 
letter. Indeed, Fermat notes that one could handle in the same way research 
on right triangles whose lesser sides differ by a given number. In this case, 
one is likewise led to solve 

 
(5)         x 2 +1 = 2y2 . 
 

Fermat goes on to state that ‘there are triangles for which the least side 
always differs by a square from each of the other two’.26 One must 
therefore solve 

m2 − n2 = 2mn + p2 ,

m2 + n2 = 2mn + q 2
 

 
where (m, n) is the pair of generators for this triangle. 

One deduces from this that 
 

2n2 = q2 − p2 , q2 = p2 + 2n2 . 
 
If one gives q the form u2 + 2v2 , its square will also have this form; 

whence p = u2 – 2v2, n = 2 uv, and then 
 

m − n( )2
= q2  and m = n + q = u2 + 2v2 + 2uv . 

 
But Fermat gives as a rule: to form a triangle in which b0 – c0 is a 

square; then, starting from this triangle, to apply twice the given rule, that 
is,  

c = 2a0 + 2c0 + b0 . 
 

 
26 Letter XLVIII, from Fermat to Frenicle, vol. II, p. 224. 
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The second triangle will answer the question if the primitive does; 
otherwise, the first triangle obtained will do. Why then propose a method 
different from the one we just gave?  

Indeed, in a primitive triangle, one knows that the hypotenuse is odd 
and that the two sides have opposite parities. Or if 

 
c1 = 2a0 + b0 + 2c0 ,

b1 = 2a0 + 2b0 + c0 ,

a
1
= 3a

0
+ 2b

0
+ 2c

0
,  

 
one has b1 − c1 = b0 − c0  and it will always be square; and a1 − c1 = a0 + b0 ; 
whence,  

 if c0  is even, a0 − c0  is a square, and the triangle a0 ,b0 ,c0( )  will 
answer the question; 

 if c0  is odd, b0  is even, c1  is even, and the triangle a1 ,b1 ,c1( )  will 
answer the question.  

 
Finally, in the same letter Fermat raises the following problem: ‘Given a 

number, find how many times it can be the sum of the two lesser sides of a 
right triangle’,27 which amounts to solving  

 
       k(m2 + 2mn – n2) = a,   where a is a given number. 
 
An examination of this problem shows that we have come back once 

again to a Fermat equation. Let us divide a by one of its divisors, that is, let 
a = αk, then solve 

α = 2m2 – (m – n)2;  

 
then α must be odd. 

Here, the forms in question are x2 – 2y2 and 2x2 – y2, that is, forms to 
which the descent applies. From one of Legendre’s observations, we know 
that p = 8k + 1 (which is prime) divides x2 – 2y2. If p = 8k + 7, one has 

 
(6)      x8k+6 −1= x4k+3 −1( ) x4k+3 +1( ) ≡ 0(mod p) . 

 
Now equation (6) has 8k + 6 roots. 

If x = 2, one has 
 

 
27 Ibid., vol. II, p. 226. 
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 (2 · 24k+2 – 1) (2 · 24k+2 + 1) ≡ 0(mod p). 
 

But the form 2x2 + y2 has no prime divisor of the form 8k + 7; therefore 
2 · 24k+2 – 1 ≡ 0(mod p), and p is a divisor of the form 2x2 – y2. Whence, by 
descent, every prime number of one or the other form 8k + 1 and 8k + 7 is 
of the form 2x2 – y2; whence the solution.  

Everything seems to suggest that, around this period, Fermat is circling 
around these mathematical meanings and this type of demonstration. At 
least he has ideas about them. Everything also suggests that during the 
same period, he is formulating problems about numerical right triangles 
that reduce to the quadratic form x2 ± 2y2. One can therefore see that 
research on numerical right triangles is increasingly being inflected 
towards a study of the forms that Fermat was beginning to undertake, 
together with demonstrations by infinite descent. Our conclusion seems to 
be confirmed by the several years that follow. In this connection, one need 
only read the letter of 27 January 1643, in which Fermat responds to 
questions from M. de Saint-Martin. To keep the discussion brief, let us 
bring up only the problem that he raises for Mersenne in the letter of 16 
February 1643:  

To find two right triangles whose areas are in a given ratio, such that the two 
small sides of the larger triangle differ by one.28  

This problem is clearly linked to the form 2x2 – y2. One can give as a 
solution (20, 21, 29), (12, 35, 37). It remains to be discovered whether the 
problem has other solutions, and how many there are. One can appreciate 
the difficulty of these questions.  

So it was that Fermat’s double arithmetic membership – in both the 
Diophantine and the Euclidean traditions – led him to conceive of integer 
Diophantine analysis, the second such occurrence in history. Was he also 
influenced by the tradition of al-Khāzin and by the 10th-century school via 
Fibonacci’s Liber quadratorum, which belongs to precisely this tradition? 
Did he know Fibonacci’s work directly or via Bachet? These open-ended 
questions should be studied for their own sake. This new Diophantine 
analysis encompassed a privileged domain: numerical right triangles and 
the problems associated with them. With all of the strength he had, Fermat 
tackled this domain in order both to improve the methods he had inherited 
and to invent new ones. As we have seen, it was while carrying out this 
research that, beginning in 1640, he was led to the study of certain 
quadratic forms. 

 
28 Letter LV, from Fermat to Mersenne, vol. II, pp. 251–3, at p. 252. 
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THE ARCHIMEDEANS AND PROBLEMS WITH 
INFINITESIMALS 

 
 
 
The history of infinitesimal geometry, notably the part that treats areas 

and volumes, surfaces and solid curves, has one distinctive characteristic. 
After having reached a high peak of achievement in the writings of 
Archimedes, work on the subject stopped for more than a millennium, to 
start again in the 9th century, this time in Arabic civilization. During the 
next two centuries, the mathematicians of the time scaled even higher 
summits, before progress once again halted, no less suddenly than it had 
done in the third century BCE. A third beginning took place in the 17th 
century, and since this time, progress has continued unabated. Because it is 
so often insufficiently recognized, this historical development deserves 
close study in order to determine why the subject experienced two begin-
nings and two endings. 

An anomaly never occurs alone, however. Even the writings of 
Archimedes on infinitesimals appear in a somewhat paradoxical light from 
the 9th century on. Except for complete translations of The Measurement of 
the Circle and On the Sphere and Cylinder, very few of his works were 
known in Arabic. Despite the small number of translated texts, however, 
the field would undergo a rapid expansion of further research and reach 
new heights. In fact, for reasons tied to the preservation and transmission of 
the Archimedean corpus, only a small number of Archimedean texts were 
known in late Antiquity. Thus Eutocius seems to be aware of only the two 
works just mentioned. The situation was the same in the world of Classical 
Islam; all the evidence points to the fact that the translators could not have 
known the Archimedean corpus as extensively as they knew the works of 
Euclid and Apollonius. Without fear of contradiction, one can state that the 
mathematicians at that time did not know the works of Archimedes on infi-
nitesimals, except for what appears in the two works we have cited. An 
examination of their works in this field establishes this fact, which is 
further confirmed directly by one of them, the 12th-century mathematician 
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Ibn al-Sarī.1 The mathematicians of Classical Islam did not know, either 
directly or indirectly, the Quadrature of the Parabola, or On Conoids and 
Spheroids, or On Spirals, or The Method. This is an important fact, since 
Archimedes’ method for the sums of integrals, which completes the method 
of exhaustion, is applied only in On Conoids and Spheroids and On 
Spirals, that is, in treatises unknown to Arabic mathematicians. Likewise, 
the latter did not know about Archimedes’ methods either for determining 
the areas of segments of parabolas or for finding the volumes of segments 
of paraboloids, which are also given in these two works. 

The fundamental issue is to discover how the two works, The 
Measurement of the Circle and On the Sphere and Cylinder, were received 
in the world of Arabic mathematics. Indeed, their reception undoubtedly 
plays a part in determining the characteristics that distinguish the Arabic 
Archimedeans. To begin, these two books were received and studied by 
mathematicians who were engaged in the investigation of conic sections 
and, soon after these two works by Archimedes became available, also had 
access to Apollonius’s Conics. Such was certainly the case after the time of 
the Banū Mūsā brothers. These three mathematicians were also interested 
in other mathematical disciplines that are often today called ‘applied’: 
astronomy, statics, mechanics, optics. It should be noted that such interests 
gave birth to the development of research on conics: their optical proper-
ties, tracing out their point locus by using geometric transformations, tra-
cing their continuous locus with dedicated instruments, and also research 
into projective methods. It should therefore not be surprising that the 
mathematicians of the time introduced methods different from those of 
Archimedes, and systematized procedures that appear only in scattered 
places in Archimedes’ works. In point of fact, these Arabic mathemati-
cians, who were intent on the study of pointwise transformations and pro-
jections, did indeed combine such methods with infinitesimal ones. Finally, 
consider a fact that would influence research in infinitesimal geometry: 
these same mathematicians also knew about the works of their algebraist 
colleagues. Taken as a whole, this knowledge will in some sense mould the 
conceptions and methods of the Arabic Archimedeans, and determine the 
course of their investigations into infinitesimal geometry. Under these cir-
cumstances, one would expect to see them not only deepen their understan-
ding of asymptotic behaviour and of infinitely small objects, but also 
expand the field of inquiry into other domains of infinitesimal geometry 

 
1 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle. Vol. II: Ibn al-

Haytham, London, 1993, pp. 498–510; English translation: Ibn al-Haytham and Analy-
tical Mathematics. A History of Arabic Sciences and Mathematics, vol. 2, Culture and 
Civilization in the Middle East, London, 2012. 
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that Archimedes had not expressly treated, namely isoperimetric and equal-
area figures, solid angles, and lunes. It is also crucial to understand that 
these Archimedeans were not, like Eutocius, mere commentators on 
Archimedes, but also emulators of his work. It is also important to note that 
at that time, very few commentaries and writings on infinitesimal geometry 
were available in Arabic; for our part we know only of al-Kindī’s on The 
Measurement of the Circle, al-Māhānī’s on On the Sphere and Cylinder, 
and Naṣīr al-Dīn al-Ṭūsī on both of these treatises. Below, we shall consi-
der briefly but systematically the different fields of infinitesimal geometry 
in mathematics during the period of Classical Islam. 

 
 

1. CALCULATING INFINITESIMAL AREAS AND VOLUMES 
 

1.1. The Pioneers 
 

The earliest known text of Archimedean mathematics in Arabic is the 
philosopher and mathematician Abū Isḥāq al-Kindī’s commentary on 
Proposition 3 of The Measurement of the Circle (the approximation of π).2 
This commentary, The Epistle from al-Kindī to Yūḥannā ibn Māsawayh on 
the Approximation of the Ratio of the Circumference to the Diameter 
(Risālat al-Kindī ilā Yūḥannā ibn Māsawayh fī taqrīb al-dawr min al-
watar), was published by al-Kindī before 856. By this date, the influence of 
algebra on al-Kindī’s work is already evident. He used the vocabulary of 
algebra for some expressions and he also employed ratios of numbers and 
segments, that is, ratios that no Greek mathematician would have allowed. 
Note also that this commentary by al-Kindī was eventually known in a 
Latin translation, as apparently attested by the famous ‘Florence versions’.3 
But the truly innovative work in Archimedean geometry began with the 
contemporaries of al-Kindī, the three brothers Muḥammad, Aḥmad, and al-
Ḥasan, known collectively as the Banū Mūsā. They published a famous 
work, the Book on the Measurement of Plane and Spherical Figures (Kitāb 
maʿrifat misāḥat al-ashkāl al-basīṭa wa-al-kuriyya), the inaugural great 
work of the Arabic Archimedeans. 

The merest glance at the Banū Mūsā’s treatise clearly reveals a work in 
the Archimedean tradition, even though it is not modelled on Archimedes’ 
On the Sphere and the Cylinder. What is more, the Banū Mūsā do not 
adopt Archimedes’ approach, even though certain fundamental ideas 

 
2 R. Rashed, ‘Al-Kindī’s commentary on Archimedes’ The Measurement of the 

Circle’, Arabic Sciences and Philosophy, 3, 1993, pp. 7–53. 
3 Ibid. 
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remain the same. The treatise contains 18 propositions devoted to four 
themes: the measurement of the circle, the measurement of the surface and 
volume of the sphere, Hero’s formula for the area of a triangle, the matter 
of two mean proportionals and the trisection of the angle. At the end of 
their treatise, the Banū Mūsā declare their own assessment of their work, 
writing: 

Everything we describe in this book is our own work, with the exception of 
knowing the circumference of the circle from the diameter, which is the 
work of Archimedes, and the position of two magnitudes between two others 
such that [the four] are in continued proportion, which is the work of 
Menelaus, as stated earlier.4 

This statement, which has generally been overlooked, deserves our 
attention. We shall therefore consider briefly the work of the Banū Mūsā to 
understand better the significance of this statement and also to locate their 
precise position within the Archimedean tradition. The Banū Mūsā began 
by proving the following proposition: 

 

Given a circle of circumference p and a line of length l, two cases 
arise: 

 

1) if l < p, a polygon of perimeter pn can be inscribed in the circle, such 
that 

l < pn < p. 
 

2) if l > p, the circle can be circumscribed by a polygon of perimeter 
qn, such that 

p < qn < l. 
 

The proofs of these two propositions assume the existence of both a 
circle of given circumference p and a regular polygon. The Banū Mūsā 
grant the existence of a circle of given circumference. For the regular poly-
gon, they appeal to Proposition XII.16 of Euclid’s Elements: ‘Given two 
circles about the same center, to inscribe in the greater circle an equilateral 
polygon with an even number of sides that does not touch the smaller 
circle’. On the other hand, note that for a regular n-sided polygon to satisfy 
the conditions of the problem, the perpendicular distance from its center to 
the midpoint of one of the sides, its apotome an, must satisfy the condition: 

 
4 See Chapter I of Mathématiques infinitésimales du IXe au XIe siècle. Vol. I: 

Fondateurs et commentateurs, London, 1996, p. 132; English translation: Founding 
Figures and Commentators in Arabic Mathematics. A History of Arabic Sciences and 
Mathematics, vol. 1, Culture and Civilization in the Middle East, London, 2012, p. 109. 
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r1 < an < r2 ⇔ r1 < r2 cos π/n < r2 ⇔ p1/p2 < cos π/n < 1, 
 
where r1, r2 and p1, p2 are, respectively, the radii and circumferences of the 
two concentric circles (the existence of the integer n being dependent on 
the continuity of the cosine function; Fig. 41). It follows that, contrary to 
what some have asserted, appealing to Euclid XII.16 is insufficent fully to 
establish the proposition, the proof of which must be completed by means 
of a homothety (enlargement), a technique known to al-Ḥasan ibn Mūsā.5  
 

 

Fig. 41  
 

In the next proposition, the Banū Mūsā use a reductio ad absurdum to 
prove that the area of a circle is ‘the product of its semi-diameter and its 

semi-circumference’, that is, S = r · . Note that in this proof, they do not 

compare S to S′ > S or S to S″ < S in order to show that both S′ > S and 

S″ < S result in contradictions, as Archimedes had done; instead, they 
consider only the circumference and examine p′ < p and p″ > p, that is, 
they compare lengths. 

Having determined the area of the circle, the Banū Mūsā go on to 
approximate π using the method of Archimedes, which they acknowledge. 
Yet the approach of the Banū Mūsā, as just outlined, differs from that of 
Archimedes in several places. The first difference concerns the application 
of the method of exhaustion itself and its complement, proof by contradic-
tion. 

We have already pointed out that the Banū Mūsā avoided the most dif-
ficult part of the method of exhaustion (the passage to the limit, to use our 
language) by using Euclid XII.16 and completing the argument with a 
homothety – the proof of which does, however, require a limit process 
argument. As to the proof by contradiction, we have already noted that they 
compared lengths – not areas, as Archimedes had done. Finally, the Banū 

 
5 Ibid., p. 132. 
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Mūsā did not follow Archimedes in determining the area of the circle by 
comparing it with another figure, such as a right-angle triangle with one 
side equal to the radius and the other equal to the circumference; rather, 
they find it directly as the product of two magnitudes. Given these cir-
cumstances, it is easy to see why their proof is shorter than that of 
Archimedes. 

The key question is whether the Banū Mūsā took this approach delibe-
rately or as a simple response to the situation at hand. To answer this 
question, we must look at their treatment of the second topic: determining 
the surface and volume of a sphere. They began by proving the following 
propositions: 

 
PROPOSITION 11 – The surface area of a frustum of a cone with parallel 
bases is given by 

S =  l(p1 + p2), 

where l is the length of the sloping side and p1, p2 are the circumferences of 
the two bases, respectively. 

 
PROPOSITION 12 – If a quadrant of a circle A1B is divided into n equal arcs 
by the points A2, A3, … , An, then 

1°    

 

2°   B1M
2 < 1

2
BAn B1A1+2 BkAk

k=2

n

∑
⎛

⎝
⎜

⎞

⎠
⎟<B1B

2 . 

 
Fig. 42 

 
After some work and rearranging, 1° and 2° can be rewritten 

 

1°   2 sink ⋅ π
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2°    (valid for all n). 

 
In Proposition 13, the Banū Mūsā then consider a semicircle ABD with 

center M and radius R2 in which one inscribes a regular polygonal line with 
an even number of sides. Inside the latter, one inscribes another semicircle. 
By rotation about an axis through the center and perpendicular to the 
diameter, one generates a hemisphere, an inscribed solid of revolution of 
surface area S composed of a cone and several frusta of cones, and a second 
concentric hemisphere inscribed within the solid of revolution. The Banū 
Mūsā show that 

2π R1
2 < S < 2π R2

2 ; 
 

where R1 and R2 are, respectively, the radii of the inscribed and cir-
cumscribed circles. Note that the hypotheses concerning the plane figure 
lying in the plane ABD derive from Proposition 12 and that the proof uses 
Propositions 11 and 12, which depend on Elements XII.16. 

The Banū Mūsā can now use an argument by contradiction twice here: 
first in Proposition 14, to obtain the surface of the hemisphere, ‘twice that 
of its great circle’, as they put it, i.e. S = 2πR2; second, to deduce the 
volume of the sphere as ‘the product of its semi-diameter and one-third the 

surface area’, that is, . 

Here too, as in the case of the measurement of the circle, we find dif-
ferences between the approach of the Banū Mūsā and that of Archimedes. 
The first concerns the method of exhaustion. Here again the Banū Mūsā use 
Elements XII.16 completed by a homothety – not, as once scholars once 
thought, Elements XII.17, which considers a polyhedron enclosed between 
concentric spheres. The Banū Mūsā considered a solid inscribed in the 
hemisphere, made up of a cone and frusta of cones, whose surface lies 
outside the inner hemisphere but inside the outer hemisphere. Such a solid 
is generated from a regular line polygon inscribed in a great circle of the 
sphere that does not touch a great circle of the second sphere inscribed 
within the first, that is, proceeding always from Elements XII.16. This 
method dispenses with the need for a passage to the limit for the series of 
sines given above. Here again, when it comes to determining the volume of 
the sphere, the method of contradiction is carried out on surface, not 
volumes. Finally, the volume of the sphere is given as the product of two 
magnitudes – not, as in Archimedes, in terms of another volume: ‘four 
times the cone that has its base equal to the greatest circle in the sphere and 
its height equal to the radius of the sphere’.  

cos2  
π
4n
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π
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The Banū Mūsā’s work had a variety of important consequences for 
mathematics. First, in the Arabic world, this initial stage, which was 
quickly superseded, had some impact on mathematical research, but most 
especially on teaching. Beginning with the work of the Banū Mūsā’s colla-
borator Thābit ibn Qurra; for more than a century and a half thereafter, 
research was pursued on the measure of curved surfaces and curved 
volumes. This tradition rediscovered the method of integral sums and 
simultaneously developed geometrical methods for facilitating the applica-
tion of the method of exhaustion, for example, using affine transformations. 
Ibn al-Haytham later took up the measure of the sphere, now using integral 
sums (Darboux sums). The treatise of the Banū Mūsā would survive above 
all as a manual for teaching, evidence for which can be found in the many 
surviving Arabic manuscript copies of Naṣīr al-Dīn al-Ṭūsī’s commentary 
of this treatise and which were clearly intended for this purpose. 

 In the Latin world, the situation was altogether different. Once trans-
lated by Gerard of Cremona, Latin copies of the Banū Mūsā’s treatise 
constituted the essential reference work on research by Archimedean 
mathematicians, along with Archimedes’ Measurement of the Circle, itself 
rendered into Latin from an Arabic version. Among others, Fibonacci, 
Jordanus de Nemore, the anonymous author of Liber de triangulis, and 
Roger Bacon all consulted the treatise. 

We have noted that, however excellent in other respects, the most 
recent discussions on the Banū Mūsā’s Book on the Measurement of Plane 
and Spherical Figures err in believing that they relied on Elements XII.16 
alone, and especially when it is claimed that the brothers used Elements 
XII.17. It is by failing to notice the very explicit use of geometric 
transformations – homotheties – that these modern commentators have 
fallen into error: they have examined the contributions of the Banū Mūsā 
starting from the geometry of the Ancients. One need only consult al-
Ḥasan’s book on the ellipse to understand the explicit role of enlargement 
in the study of geometric transformations. Precisely this feature distin-
guishes Arabic geometry from its Hellenic and Hellenistic origins. This 
thesis, which is fundamental for us, has several consequences: in particular 
it obliges us to rewrite the history of geometry in this era. To mention only 
what interests us primarily here, we can see that, in order to develop an 
infinitesimal geometry, the Archimedean tradition from the outset had to 
redirect geometrical research in order to deal with pointwise transforma-
tions. Seen in such a light, the history of this tradition becomes clear, and 
the position of the Banū Mūsā within it is illuminated. Let us then consider 
their second book, which in our view, must be studied in order to make 
sense of the first. 
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Al-Ḥasan ibn Mūsā’s purpose is to determine the area of an ellipse and 
of elliptical sections. Ibn Mūsā, as we know, did not possess yet an 
intelligible version of Apollonius’s Conics. I mean that Ibn Mūsā’s 
research was also aimed at the study of conic sections, beginning with a 
study of plane sections of a cylinder. Not until after al-Ḥasan’s death did 
his brother Aḥmad come across the Eutocius edition of the first four books 
of the Conics, which made it possible to translate a manuscript containing 
seven of the books into Arabic (the Greek original of the eighth was 
already lost). In other words, al-Ḥasan ibn Mūsā in his book attempted to 
reach two goals; the first was, so to speak, Archimedean: to determine an 
area bounded by a curve; the second was in the tradition of Apollonius 
(even though al-Ḥasan did not truly know the Conics): a study of the 
geometric properties of curves. It is in this book that al-Ḥasan ibn Mūsā 
combines concepts of projection and of affine orthogonal transformations 
for applications of Elements XII.2 and of the method reductio ad 
absurdum: here we see the first inflection in the meaning of Archimedean 
mathematics. Let us consider this development briefly.  

According to Ibn al-Samḥ (born in 1035 in Cordoba), whose book 
summarizes al-Ḥasan ibn Mūsā’s lost treatise, the latter proceeded as fol-
lows. He began with an ‘elongated circular figure’ defined by the bifocal 
property MF + MF′ = 2a, where 2a is the length of the major axis, in order 
to establish that the plane section of a cylinder of revolution, cut by a plane 
not parallel to its base – an ellipse – has the very same properties as the 
former figure. He then went on to determine the axes of the ellipse in order 
to study the properties of its chords, its chord midpoint distances to the arc, 
etc. The deduction graph shows that the first set of six propositions pertains 
the ‘elongated circular figure’, its vertices, its center, its diameters, its 
chords, its minor axes, its inscribed circle with the minor axis as diameter, 
as well as its circumscribed circle with the major axis as diameter. The next 
set of five propositions concerns the ellipse as a plane section of a cylinder, 
as well as its identification with the ‘elongated circular figure’. Finally, a 
set of eight propositions treats the area of the ellipse. We shall now sum-
marize these sets of propositions. 

The fifth proposition of the first set of propositions can be expressed 
as: 

If to a point M of the ‘elongated circular figure’ is associated on the 
inscribed circle a point T with the same ordinate (MT  BD at K), then 
 

MK2 = KT 2 + (OA − MF)2. 
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Fig. 43 
 
Then, using MK = x and MH = y as a coordinate system and letting 

AC = 2a, BD = 2b, and 2c = FF′ = KT = X; and setting MF = a − cx
a

, the 

above relation becomes: 
 

(*)  x2 − c2

a2
x2 + y2 = b2 . 

 
Dividing throughout by b2 yields once again the equation of the ellipse. 
 
The sixth proposition deals with the orthogonal affine transformation 

pertaining to the minor axis 
 

MK
TK

= OA
OB

⇔ x
X

= a
b

⎡
⎣⎢

⎤
⎦⎥
; 

 

from (*) one has 
 

x2 1− c2

a2

⎛

⎝
⎜

⎞

⎠
⎟ = b2 − y2 = X 2 ⇔ b2x2 = a2X 2 , 

and so  

 

 

which is an orthogonal affine transformation – an elongation – with axis 

BD and scale factor , in which the ellipse ABCD is the image of the 

circle with diameter BD. 
The second set of propositions deals with the ellipse as a plane section 

of a right cylinder. After recalling the property that the section of a right 
circular cylinder by a plane not parallel to its base, is an ellipse whose 
center lies on the axis of the cylinder, al-Ḥasan ibn Mūsā, considers a 
family of curves that deform continuously from the circle to the ellipse. He 
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then considers the orthogonal affine transformation associated with the 
minor axis (Proposition 7): 

 
Let ADBG be an ellipse and EDZG its inscribed circle. If a line parallel 

to AB cuts GD at H, the circle at K, and the ellipse at T, then 
 

HT
HK

= AB
GD

= a
b

. 

 

 
Fig. 44 

 
In the course of his proof, al-Ḥasan ibn Mūsā considers the ellipse 

ADBG as a rabatment of the ellipse DLG (see Fig. 44), which is found by 
making ADBG pivot around DG onto the plane perpendicular to the axis of 
the cylinder at N. The circle DEG is the cylindrical projection of the ellipse 
DLG onto this same plane.  

In the next proposition – the eighth – he considers a transformation 
perpendicular to the major axis. The ellipse is then the image of a cir-
cumscribed circle under an orthogonal affine transformation with scale 

factor b
a

, that is, a contraction. 

In other words, and to use modern algebraic symbolism, if we let the 
ellipse be 

E = x, y( ), x2

a2
+ y2

b2
=1

⎧
⎨
⎩

⎫
⎬
⎭   

where a > b, 

 
then the ellipse can be transformed into two circles 
 

X2 + Y 2 = b2  and  X2 + Y 2 = a2
 

 

by means of the mappings 
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ψ : X,Y( ) → x, y( ) :
x = a

b
X

y = Y

⎧
⎨
⎪

⎩⎪

φ : X,Y( ) → x, y( ) :
x = X

y = b
a

Y

⎧
⎨
⎪

⎩⎪

 

 
where ψ, φ are a one-way elongation and a one-way contraction, respect-
ively. In this way, al-Ḥasan ibn Mūsā shows that the two figures, an elon-
gated circular figure and the ellipse, are superposable (Proposition 9).  

By these conceptual means, al-Ḥasan ibn Mūsā also went on to deter-
mine the area of the ellipse. He showed first, by means of an elongation, 
that the ratio of the area of a polygon inscribed in the ellipse to the area of a 
polygon inscribed in a circle is equal to the ratio of the axes of the ellipse. 
He then refined his results to show that the area of an ellipse is π ab.  

This briefly describes al-Ḥasan ibn Mūsā’s approach while simulta-
neously shedding some light on the first book of the Banū Mūsā and the 
results that these Archimedean mathematicians obtained amongst their 
followers. The use of a homothety in the first book now seems entirely 
natural in the context of this geometry; the use of pointwise transformations 
by the successors of the Banū Mūsā, like Thābit ibn Qurra, his grandson 
Ibrāhīm ibn Sinān, and many others, has its origin in the works of the Banū 
Mūsā. In this way, our image of the Banū Mūsā changes somewhat: they 
are no longer to be seen as a pale reflection of Archimedes, mere 
commentators on his work, but as mathematicians in their own right who, 
in order to begin a new tradition, reshaped the old one. Their successors 
were eminent mathematicians who made rapid progress. By doing so, 
however, they paradoxically obscured the importance of the Banū Mūsā’s 
work. Historians of mathematics also contributed to this outlook by attri-
buting to others, especially to Thābit ibn Qurra, some of the achievements 
of the Banū Mūsā, and thus blending what were two distinct portraits: the 
one transmitted by Latin mathematics, and the other found in Arabic 
mathematics. 

We have just seen that, at the very moment when the two texts of 
Archimedes were being translated into Arabic, the mathematicians of the 
9th century were seeking alternative acceptable methods of obtaining 
Archimedes’ results and of making new discoveries. The search for new 
paths of discovery was not confined to the Archimedean scholarship of the 
Banū Mūsā and their successors; it was also found in their works on 
mechanics and astronomy. Furthermore, the same tendency is evident in 
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other mathematical disciplines – arithmetic, theory of numbers, algebra,
trigonometry, projective methods, etc. – and also in other scientific disci-
plines, such as optics with al-Kindī, and statics with Ibn Qurra. 

This new spirit of scientific inquiry that was developing in the 9th 
century in the tradition of Hellenic science, but with greater freedom – the 
freedom to invent, to criticize, and to look to other sources such as Indian 
ones – explains at least in part the ever-surprising phenomenon of the 
enormous number of translations from the ancient heritage. 

 
The contemporaries and successors of the Banū Mūsā actively conti-

nued research in the areas they had explored. Thus, Thābit ibn Qurra (826–
901), the collaborator of the Banū Mūsā made major contributions to the 
subject. In quick succession, he published three treatises: one on the area of 
the segment of a parabola, the second on the volume of a paraboloid of 
revolution, and the third on sections of the cylinder and its surface area. 
These works by Thābit ibn Qurra would themselves lead to new departures 
for mathematics, both by reducing the number of preliminary lemmas 
required, and by improving the method. Thus the measure of the parabola 
was taken up by al-Māhānī, Ibrāhīm ibn Sinān, and Ibn Sahl; the measure 
of the paraboloid was treated by al-Qūhī and later by Ibn al-Haytham. This 
in itself demonstrates the seminal role of Thābit ibn Qurra’s works in this 
field as in many others. 

In the first of his treatises, On the Measure of the Section of a Cone 
Called a Parabola (Fī misāḥat qiṭʿ al-makhrūṭ alladhī yusammā al-
mukāfiʾ),6 which sought to determine the area of a segment of a parabola, 
Thābit ibn Qurra, who was unaware of Archimedes’ treatment of the sub-
ject, began by proving twenty-one lemmas, fifteen of which were arith-
metic. These lemmas mainly concerned the sums of numerous arithmetic 
progressions. For example, he proved the results: 

 

; ; … 

 
After eleven arithmetic lemmas, Thābit ibn Qurra stated four lemmas 

on sequences of line segments, sequences whose upper bounds need to be 
found. Thus, in Lemma 14, he proved: 

Let a, b be line segments such that a
b  

is known; then there exists an 

n N* such that the sequence (uk)1≤k≤n of n successive odd numbers 

 
6 Rashed, Mathématiques infinitésimales, vol. I, Chap. II. 
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beginning with 1, and the sequence (vk)1≤k≤n of n successive even numbers 
beginning with 2 satisfies 

 

(*)  n

vn ⋅ uk

k=1

n

∑
< a

b
. 

 
Here Thābit ibn Qurra introduced an approximation that he went on to 

use in the next proposition in order to find subdivisions of segments. The 
proposition stated: 

 

Let AB, H be two line segments and a, b two line segments such that  

is given. For any given n, 
 

1° there exists a partition (Ak)0≤k≤n with A0 = A, An = B and such that 
 

          (0 ≤ k ≤ n – 2), 

 
with (uk)1≤k≤n being the sequence of successive odd numbers beginning 
with 1; 

 
2° there exists a sequence of line segments (Hj)1≤j≤n with Hn = H and 

such that 

             (1 ≤ j ≤ n – 1),

 
with (vj)1≤j≤n being the sequence of successive even numbers beginning 
with 2. 

 

If n satisfies condition (*), then 
 

 

 
The proof depends on the partition of a given line segment into a 

sequence of segments proportional to the terms of a given numerical 
sequence, and thus on the generalization of the preceding proposition, 
which introduced approximation, to sequences of segments, leading to the 

a

b

Ak Ak+1

Ak+1Ak+2

=
uk+1

uk+2

H j

H j+1

=
vj

vj+1

n A0A1 ·
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2
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generalization of determining the upper bound of a sequence of ratios of 
segments.  

It is after these fifteen lemmas – eleven purely arithmetical ones and 
four concerning sequences of line segments – that Thābit ibn Qurra began 
his calculation of the area of a parabola segment. To do this, he proved four 
propositions. These lemmas and propositions show that Thābit ibn Qurra 
understood perfectly and rigorously the concept of the upper bound of a 
sequence of real square numbers, and also the uniqueness of this upper 
bound. Thābit ibn Qurra identified the upper bound in the following way: 

Let BAC be a parabola segment with diameter AD. Let S be the area of 
the parallelogram with base BC associated with the parabola. Then for all 
ε > 0 there exists a partition A, G1, G2, … , Gn−1, D, of the diameter AD, 
such that 

 

area BAC – area of the polygon BEn−1AF1F2 … Fn−1C < ε. 

 

Fig. 43 
 

Thābit ibn Qurra proves rigorously that  of the area BHMC is the 

upper bound of the areas of the derived polygons. He then comes to his 
theorem: 

The area of the parabola is infinite but the area of any one of its seg-
ments is equal to two-thirds of the area of the parallelogram associated 
with this segment. 
 
The proof is argued along the following lines:  
Let S be the area of the segment of the parabola P and let S be the 

area of the parallelogram associated with this segment. 

If 2
3

 S ≠ S,  there are two cases: 
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1.  S  > 2
3

 S.  Let ε > 0 be such that 

 

(1)   S  – 2
3

 S = ε. 

 
From Proposition 18, for this ε, there exist an N such that for all n > N 

the polygon Pn  of area Sn satisfies 
 
(2)  S − Sn < ε; 
 

from (1) and (2), it follows that  

( 2
3

 S + ε) – Sn < ε,  

whence 
2
3

 S < Sn. 

 
But, from Proposition 17, we have 
 

2
3

 S > Sn, 

which is a contradiction. 
 

2.  S  <  S.  Let ε > 0 be such that 

 
(3)   2

3
 S – S  = ε. 

 
From Proposition 19, for this ε, there exist an N such that for all n > N 

the polygon Pn  of area Sn satisfies 
 

(4)  2
3

 S – Sn < ε; 

 
from (3) and (4), it follows that we have 
 

(S  + ε) – Sn < ε, 

whence 
S  < Sn. 

 

2

3
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But, Pn is inscribed in P, so Sn < S,  which is a contradiction. Hence, 
from both contradictions, it follows that 

 
2
3

 S = S. 

 
This theorem depends on establishing the uniqueness of the upper 

bound and the proof essentially uses the properties of the upper bound. In 

fact, the assignment is to establish that 2
3

 S = S, given that 

 
1) S  = sup. (Sn)n≥1 

2) 2
3

 S = sup. (Sn)n≥1. 

 

Suppose, by reductio ad absurdum, S  ≠ 2
3

 S. There are two cases: 

a) S  > 2
3

 S, then there exists ε > 0 such that S  – 2
3

 S = ε. But from 1) 

S is the least upper bound of the Sn, so for this ε, there exists an Sn such 
that 

Sn > S  – ε, 
 

hence 

2
3

 S < Sn; 
 

which is absurd since, from 2), 2
3

 S is an upper bound of the Sn. 

 

b) S  < 2
3

 S, then there exists ε > 0 such that 2
3

 S – S  = ε. But from 2) 

2
3

 S is the least upper bound of the Sn, so for this ε, there exists an Sn such 

that 

Sn > 2
3

 S – ε, 

 
hence 

S  < Sn; 
 

which is absurd since from 1), S is an upper bound of the Sn. 
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Of course we do not claim that either Thābit ibn Qurra, or his predeces-
sors, or his successors down to the 18th century had defined the concept of 
an upper bound. On the other hand, it seems to us that he used the proper-
ties of upper bounds as a guiding principle when measuring areas bounded 
by convex borders. 

In fact, in Ibn Qurra’s approach, we can discern the fundamental idea 
that underpins Riemann integration. For the particular case in which the 
diameter is the axis of the parabola, Thābit ibn Qurra’s method is to consi-
der a partition σ = AG1G2 … Gn−1 of the diameter AD, so as to obtain the 
sum 

 
 

and to show that ∀ ε > 0, ∃ σ  such that area ACD − Sσ < ε, and to prove 
finally that Sσ  converges to that area. 

 
Fig. 46 

 
 

Let us translate the preceding argument into the language of analysis: 
let xi be the abscissa of Gi and let y = f (x) be the equation of the parabola. 
Sσ can then be written 

; 

 

but since 

 
 

Sσ = AGi − AGi−1( )
i=1

n

∑ Gi−1Fi−1 + GiFi
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and f is continuous, we can deduce that 
 

 
 

is a value that f takes at point ξi of the interval [xi−1, xi]. But Sσ can then be 
written in the form 

, 

 
which is none other than the sum used in the definition of the Riemann 
integral of a function f. We note finally that, given the definition of the 
parabola, the quadrature achieved by Ibn Qurra is equivalent to calculating 

the value of the integral . The historian of mathematics M. A. 

Youschkevitch had this to say about Ibn Qurra’s procedure: 

Thanks to this procedure, Ibn Qurra revived a method for calculating integral 
sums that had fallen into obscurity. Furthermore, by using this same 
procedure, Ibn Qurra had, for the first time, effectively evaluated an integral 

 for a fractional value of the exponent n, namely . In doing 

this, he proceeded, also for the first time, by a subdivision of the integral 
interval into unequal parts. It was by an analogous procedure, consistent with 
dividing the abscissa axis into segments forming a geometric sequence, that 
P. Fermat, in the middle of the 17th century, undertook the quadrature of 
curves of the form y = xm/n, with (m/n) ≠ 1.7 

After having calculated the area of the parabola, Thābit Ibn Qurra went 
on to find the volume of a paraboloid of revolution. This entailed a change 
from the two-dimensional plane to three-dimensional space. First, he 
needed to establish thirty-six lemmas, arranged in groups. Finally, he 
proved the following theorem: 

 

The volume v of a parabolic cupola ABC with axis BD is half the 
volume V of the cylinder with height h whose circular base has 
diameter AC, 

v = V = π h · . 

 

 
7 M. A. Youschkevitch, ‘Note sur les déterminations infinitésimales chez Thābit 

ibn Qurra’, Archives internationales d’histoire des sciences, vol. 17, no. 66, 1964, p. 43. 
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Thābit ibn Qurra’s approach here was similar to the way he determined
the area of a parabola segment. He used a subdivision of the diameter of a 
part of the parabola arranged in segments proportional to successive odd 
numbers. The points of the parabola associated with this division were then 
abscissas proportional to the squares of integers and the ordinates were 
proportional to successive integers. 

These points determine: 
 

in the plane: in space: 
a polygon inscribed in the parabola and 
decomposed into trapeziums  

a solid of revolution inscribed in the 
paraboloid and decomposed into conical 
type solids 

s area of the parabola 
S area of the associated parallelogram 
si area of a trapezium 
 

v volume of the paraboloid 
V volume of the associated cylinder 
vi volume of a conic solid 
 

Thābit shows that, given ε > 0, an N can be found such that, for all 
n > N, one has 

 
2
3

s – si

i=1

n

∑ < ε  (17 and 19) 
V
2

– vi

i=1

n

∑ < ε  (32 and 35) 

s – si

i=1

n

∑ < ε  (18) v – vi

i=1

n

∑ < ε  (33 and 34). 

 

In other words, he showed that: 
 

= upper bound of   = upper bound of   

s = upper bound of   v = upper bound of .  

 

By reductio ad absurdum, he then showed the uniqueness of the upper 
bound, that is: 

 

s =  (20)           v =  (36). 

 
The contributions that Ibn Qurra made to this area of mathematics did 

not end here. He also published a substantial volume, The Book on the 
Sections of the Cylinder and its Surface Areas (Kitāb fī quṭūʿ al-usṭūwāna 
wa-basīṭihā), in which he explored different sections of the right and 
oblique cylinder, and then determined the area of the ellipse and the area of 
elliptical segments, discussed the greatest and least sections of the cylinder 

2

3
S si
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n

∑ V

2
vi

i=1
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∑
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n

∑ vi
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and their axes, and determined the area of that part of the surface bounded 
by two plane sections. 

This treatise, like the two earlier ones, is not only significant in the 
history of infinitesimal geometry, but also one of the most important texts 
in geometry. In fact, since he showed how to use pointwise geometrical 
transformations, he was responsible for taking geometry in a new direction, 
and thereby enriching algebra. Evidence for this can be found in the works 
of Ibrāhīm ibn Sinān, Ibn Sahl, al-Qūhī, Ibn al-Haytham, and Sharaf al-Dīn 
al-Ṭūsī, among others.8 

It is not possible here to give a full account of the results and proofs 
contained in this rich and profound work. We shall present only two of his 
propositions, numbers 14 and 31, so as to give a flavour of the work and to 
illustrate his ideas. 

In Proposition 14, Ibn Qurra proves the following: 

If S is the area of the ellipse E with axes 2a and 2b, and Σ the area of 

the circle E with radius r = ab, then S = Σ. 

We give here a translation of his proof in modern notation, using the 
following symbols: 

 
S area of the ellipse E  → Sn area of polygon Pn inscribed in E 

Σ area of the circle equivalent to E → Σn area of polygon Πn inscribed in E 

S′ area of the circumscribing circle C →  area of polygon  inscribed 
in C . 

 
The proof is by contradiction, considering the two cases: 
 

Case I: if S > Σ, then 
 
(1) S = Σ + ε. 
 
Let Pn be the polygon of 2n+1 sides inscribed in the ellipse E obtained 

from Pn−1 by doubling the numbers of vertices, the new vertices being 
located where the diameters through the midpoints of the opposite sides of 
Pn−1 meet the ellipse. The first polygon P1 is a rhombus with vertices at the 
ends of the axes of the ellipse. If Sn is the area of Pn, then we have, 
successively 

 
8 See R. Rashed, Les Mathématiques infinitésimales, vol. I, pp. 458 ff.; English 

transl. pp. 333 ff. 

′ S n ′ P n
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S1 > 1
2

S ⇒ S − S1 < 1
2

S  

S2 − S1 > 1
2

S − S1( ) ⇒ S − S2 < 1
22

S  

… 

Sn − Sn−1 > 1
2

S − Sn−1( ) ⇒ S − Sn < 1
2n

S ; 

 

thus for ε defined by (1), there exists an n N such that 1
2n

S  < ε, whence 

 
S – Sn < ε 

 
Sn > Σ. 

 
Now consider the circle C and the polygon  obtained from E

through the orthogonal affinity with ratio . Let ′Sn  be the area of and 

let S′ be the area of C, 

; 

 
but Sn > Σ , whence ′Sn  > S′, which is impossible. 

 
Case II: if S < Σ , then 

; 

so 
 

(2)  . 

 
For the circle C and polygons ′Pn  referred to above, we have, succes-

sively: 

      

      

     … 

     , 

 

′ P n
a

b
′ P n

Sn

′ S n
=

b

a
=

ab

a2 =
Σ

′ S 

S

′ S 
<

Σ
′ S 

Σ
′ S 

=
S

′ S − ′ ε 

′ S − ′ S 1 <
1

2
′ S 

′ S − ′ S 2 <
1

22 ′ S 

′ S − ′ S n <
1

2n ′ S 
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thus for ε′ defined by (2), there exists an n N such that 1
2n

′S < ′ε , 

whence 
 
(3)   S′ – ′Sn  < ε′. 
 

If Pn is the polygon inscribed in E corresponding to , by means of an 

orthogonal affinity with ratio b
a

, we have 

 

 
.
 

 

But from (3), 
′Sn  > S′ – ε′, 

 
which means that Sn > S, which is absurd. From a) and b), we therefore 

deduce that S = Σ. 
Of course, we can see that the ellipse E can be transformed into the 

circle C by an orthogonal dilation f with ratio k1 =  and from the circle C

with radius a into the circle E of radius r, where r2 = ab, by a homothety h 
of ratio  

k2 = r
a

= ab
a

= b
a

. 

 
Hence E = h ◦ f (E ) and the transformation h ◦ f preserves area since

k1 ⋅ k2
2 =1. 

The aim of Proposition 14 is to establish precisely this property in the 
case of the ellipse, which he proves by contradition.  

Using our notation, Ibn Qurra uses 
 

and shows that 

 
whatever the choice of n, whence 

 . 

 
Ibn Qurra’s method corresponds to the two following steps: 
 

(a)
 
 , therefore 

 
(1). 

′ P n

Sn

′ S n
=

Σ
′ S 

=
S

′ S − ′ ε 

a

b

Σ
′ S 

=
b

a
= k2

2

Sn

′ S n
=

b

a
=

1

k1

S = Σ ⇔
S

′ S 
=

Σ
′ S 

⇔
S

′ S 
=

Sn

′ S n

Sn

′ S n
<

S

′ S 

Sn

′ S n
=

S − ε1

′ S 
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It can be shown that ∃  Pn E, such that S – ε1 < Sn < S. But f(Pn) = 

  C satisfies (1)  and hence  > S′, which is impossible. 
 

(b) , therefore  (2). 

It can be shown that ∃   C,  such that S′ – ε2 <  < S′. But  f 
–1( ) 

= Pn  E satisfies (2) and hence Sn > S, which is impossible. It has 
therefore been shown that 

 
.
 

 

Hence, beginning with the property of affine orthogonality, that the 
ratio of the areas  and Sn of the two corresponding polygons Pn and ′Pn  

whatever the value of n, is equal to the ratio  of the affinity, Ibn Qurra is 

able to deduce that the same holds for the area S of the ellipse E  and the 
area S′ of the circle C.  This amounts to saying that the ratio is preserved 
during the passage to the limit, or symbolically:  

 

 

 
and 

. 

 
We may note that Luca Valerio used this type of assumption as the 

basis of his method.9 This method does not involve the sums of integrals. 
Finally, we should note that Archimedes obtained the same result ear-

lier in On Conoids and Spheroids. This work was, however, not known to 
any mathematicians of the time, including Thābit ibn Qurra. Comparing 
these two works has a double advantage for us: first, we are in a better 
position to appreciate the contribution of the 9th-century mathematicians 
and, second, we can better understand their awareness of the Archimedean 
corpus at that time. 

Moving on to Proposition 31, Thābit ibn Qurra now proves: 

 
9 Luca Valerio, De centro gavitatis solidorum libri tres, Bologna, 1661, Book II, 

Propositions I–III, pp. 69–75.  
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The surface area Σ of a segment of an oblique cylinder taken between
two parallel plane sections is given by 
 

Σ = p · l 
 
where p is the circumference of the minimal ellipse and l the length of 
the generator between the two sections. 

The proof likewise proceeds by using a double contradiction. 
Let E be one of the sections, K its center and 2a its major axis. We 

consider two cases: 
 

Case I: 
If Σ < p · l, there is a length g, g < p such that Σ = g · l. 
Let h be such that g < h < p, then there exists an area ε such that 

Σ + ε = h · l and so ε = l(h – g). 
Now construct an ellipse E1 = ϕ(E), where ϕ is an homothety – an 

enlargement with center K and ratio  such that . The cir-

cumference p1 of the ellipse E1 is such that  from Proposition 26, 

hence 
 
and so p1 > h. 

Let Pn be a polygon inscribed in E and not in contact with E1, and let
′Pn  be its projection onto the other plane section, and pn the perimeter of 

each of them. If Σn is the surface area of the prism with end faces Pn and
′Pn,  then Σn = pn · l. But pn > p1 > h and so Σn > hl. 

  
(1) Σn > Σ + ε. 
 

a) If  ≥ s, the areas s and s′ of the two bases which are the minimal 

ellipses being equal, we have ε ≥ s + s′, and so Σn > Σ + s + s′. The surface 
area of the prism inscribed in the cylinder will be greater than the total 
surface of the cylinder, which is absurd. 

b) If ε
2

 < s, we can impose on a1 the additional condition , 

but since s1 is the area of E1, then , and so s – s1 < . 

If sn is the area of Pn, and ′sn  the area of ′Pn , we have 

a1

a
1>

a1

a
>

h

p
p1

p
=

a1

a
p1

p
>

h

p

ε
2

a1
2

a2 >
s −

ε
2

s
s1

s
=

a1
2

a2

ε
2
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sn = ′sn , s > sn > s1, s – sn <  and ε > (s – sn) + (s′ – ′sn ). 

 
From (1) this gives Σn > Σ + (s – sn) + (s′ – ′sn ), which is absurd. 

From a) and b) we deduce that Σ ≥ p · l.
 

Case II: 
If Σ > p · l, there exists a length g,  g > p such that Σ = g · l.  
Let h, p < h < g and ε be the area such that Σ = h · l + ε. 

Let E1 = ϕ(E), where ϕ is an homothety with center K and ratio  

such that 

a1

a
< h

p
  and a1

2

a2
<

s + ε
2

s
. 

 

If p1 is the perimeter of E1, we have  and so p1 < h. 

Let there be inscribed in E1 a polygon Pn having no points in common 
with E. Expressed in the notation of the first part, we have Σn = pn · l. But 

h > p1 > pn and so Σn < h · l and it follows that  
 

(2)     Σ > Σn + ε. 
 

But  

, 

and so 

s1 < s + ; 

however, 
s1 – s > sn – s, 

whence  

sn – s < . 
 

We know from the convexity of the cylinder that 
 

Σn + (sn – s) + ( ′sn  – s′) > Σ, 
and so 

ε
2

a1

a
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p
=

a1

a
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2

a2

ε
2
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Σn + ε > Σ,  

which contradicts (2). Hence we have Σ  ≤ p · l. 
From the results of Cases I and II, we deduce that Σ = p · l. 
We should add that, up to this point, the only surfaces that had been 

evaluated were those of the right cylinder and the sphere (Archimedes, On 
the Sphere and the Cylinder). Ibn Qurra was the first to consider the sur-
face of an oblique cylinder, which today is evaluated by means of an ellip-
tic integral (with an elliptical base of circumference p). 

This proposition constitutes a step in the direction of determining the 
lateral surface of an oblique cylinder with circular bases and also the sur-
face of the whole of an oblique cylinder contained between two plane sec-
tions, whether they are parallel or not. It is precisely this result that Ibn 
Qurra establishes in the propositions that follow.10 

 

1.2. The Heirs 

For the Banū Mūsā and Thābit ibn Qurra, work in infinitesimal geo-
metry was based on solid foundations and had also made considerable pro-
gress. These mathematicians accumulated a substantial corpus of knowl-
edge, sufficient to provide a foundation for new departures. The time had 
come for the heirs of their work to take up the challenge. This corpus went 
well beyond the awareness of certain results and theorems; it also com-
prised mathematical methods, both newly discovered and rediscovered. We 
have witnessed the development of two types of methods. Geometrical 
methods based on transformations were already evident in the work of al-
Ḥasan ibn Mūsā, as well as that of his brothers Muḥammad and Aḥmad, 
and also Thābit ibn Qurra’s final treatise. On the other hand, we have seen 
how Thābit ibn Qurra had reintroduced the concept of integral sums. To be 
sure, this idea is already present in Archimedes, but not in any of the works 
translated into Arabic at the time. It was the intensive study of 
Measurement of a Circle and On the Sphere and Cylinder, the two 
Archimedean works then available in Arabic, that led a mathematician of 
the stature of Thābit ibn Qurra to the rediscovery of the method of integral 
sums. In Thābit ibn Qurra, however, integral sums are more general than in 
Archimedes, to the extent that Thābit used subdivisions of the interval that 
were not necessarily regular. As for his treatment of the paraboloid, in 
which he always used integral sums, he did not consider cylinders of equal 
height, as Archimedes had, but a cone and frusta of cones with heights pro-
portional to successive odd numbers beginning with 1. 

 
10 See R. Rashed, Les Mathématiques infinitésimales, vol. I, pp. 493 ff. 
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One could therefore anticipate that in the period that followed, when 
research into mathematics accelerated by growing both more intense and 
more extended, mathematicians did their best to improve the demonstra-
tions of their predecessors and to develop both the method of integral sums 
and the method of geometrical transformations. 

The first to follow this path was al-Māhānī (d. c. 860), who took up 
again the area of the parabola, and found a proof much shorter than Thābit 
ibn Qurra’s. Unfortunately, since al-Māhānī’s text has never been found – 
if indeed it still exists – we cannot know precisely how he proceeded. 

The second heir of this tradition was Thābit ibn Qurra’s grandson, 
Ibrāhīm ibn Sinān (909–946). This mathematician of genius, who lived 
only thirty-eight years, was, in his own words, not pleased that al-Māhānī 
had produced ‘a study more advanced than that of my grandfather, without 
there being, amongst us, one whose work surpasses it’.11 Thus he thus 
wanted to provide a demonstration that was shorter than the proof not only 
of his grandfather, which had required twenty lemmas, but also of al-
Māhānī. 

Indeed, Ibn Sinān published a particularly economic and elegant 
treatment of the area of the parabola (Kitāb fī misāḥat qiṭʿ al-mukāfiʾ). His 
central idea, which he set out to establish at the beginning, was that the 
ratios of areas remain invariant under affine transformations. For this, all he 
needed was three propositions. 

 
PROPOSITION 1 – Let there be two convex polygons A = (A0, A1, … , An) 
and B = (B0, B1, … , Bn). Let the points A1, A2, … , An−1 be projected to the 

points A′1, A′2, … , A′n-1 = An by a projection parallel to An−1An onto the 

line A0An, and let the points B1, B2, …, Bn−1 be projected to the points B′1, 
B′2, … , B′n-1 = Bn by a projection parallel to Bn−1Bn onto the line B0Bn. 
Then if 

A0 ′A1

B0 ′B1

=…=
′An−2An

′Bn−2Bn

= λ  

 
and 

A1 ′A1

B1 ′B1

=…=
′An−1An

′Bn−1Bn

= μ , 

 

then one has the following ratio of proportion between the areas of the 
triangles and the areas of the polygons 

 
11 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe siècle, 

Leiden, E.J. Brill, 2000, p. 18. 
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tr A0, An–1, An( )
p. A0A1, …, An( )

=
tr B0, Bn–1, Bn( )
p. B0B1, …, Bn( )

. 

 

 
Fig. 47 

 

To establish this proposition, Ibn Sinān uses the transformation T defi-
ned in Proposition 1, which is an affine transformation. He shows that T 
preserves the ratio of areas for the case of triangles and polygons. 

The second proposition is: 
 

PROPOSITION 2 – The ratio of the areas of two segments of a parabola is 
equal to the ratio of their two corresponding triangles. 

 
Here, Ibn Sinān shows that under the affine transformation the ratio of 

the area of a segment of a parabola to that of its corresponding triangle is 
the same as the corresponding ratio of their images under projection. In 
other words, it depends on the result that an affine transformation preserves 
ratios of areas, even when, as here, they are curvilinear. To establish this, 
Ibn Sinān uses the axiom of Archimedes to show that it is possible to ins-
cribe in the segment of the parabola a polygon whose area differs by as 
little as one wishes from that of the segment of the parabola. 

Having proved these two lemmas, Ibn Sinān is now able to prove his 
main result concerning the ratio of the area of a segment of a parabola to 
that of its associated triangle. For this he did not need to use an infinitesi-
mal argument but only the fact that the ratio was independent of the 
segment being considered, which is what he established in his third 
proposition. 
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PROPOSITION 3 – The area of a segment of a parabola is four-thirds of its 
associated triangle. 

 
Thus, to improve his grandfather’s proof and to reduce the number of 

propositions required from twenty to three, Ibn Sinān’s strategy was based 
on a combination of affine transformations and infinitesimal methods. 

 
In the second half of the 10th century, al-Qūhī also achieved a similar 

economy by reducing to just three propositions the thirty-six propositions 
of Thābit ibn Qurra for calculating the volume of a paraboloid of revolu-
tion. But whereas Ibn Sinān had extended the use of transformation 
geometry that had appeared in the work of Thābit ibn Qurra, al-Qūhī 
picked up and extended the other strand of mathematics in that work, which 
led to the rediscovery of integral sums, present in the work of Archimedes, 
but unkown at that time to the Islamic mathematicians. 

For the paraboloid of revolution, Archimedes had considered cylinders 
of the same height. In contrast, Thābit ibn Qurra had used frusta of adjacent 
cones, the bases of which determine a partition of the parabola’s diameter 
(which generates the paraboloid), the steps of which are proportional to the 
sequence of odd numbers beginning with one, and the heights of which are 
the steps of this partition. In order to reduce the number of propositions that 
Thābit ibn Qurra used to just three, as was his boast, al-Qūhī had to redis-
cover independently the integral sums that had appeared in the work of 
Archimedes, particularly when he needed to prove that he could make the 
difference between the inscribed and circumscribed cylinders as small as he 
wished. Here are his three propositions. 

 
PROPOSITION 1 – Let there be a paraboloid of revolution with vertex X and 
axis XF and any partition of the axis by abscissae points (bi)0≤i≤n, with b0 = 
0 and bn = XF. Let (Ii)2≤i≤n and (Ci)1≤i≤n be respectively the volumes of the 
inscribed and circumscribed cylinders associated with this partition and let 
V be the volume of the cylinder associated with the paraboloid. Then 

 

Ii

i=2

n

∑ < 1
2

V < Ci

i=1

n

∑
  

for all n N*. 
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Fig. 48 

 

PROPOSITION 2 – Consider a segment of a paraboloid between any two 
sections perpendicular to the axis, and let I, C be the volumes of the cor-
responding inscribed and circumscribed cylinders respectively. If this 
segment is cut by a third section half-way between the two sections, this 
will determine two inscribed cylinders with volumes I1, I2, and two 
circumscribed homologous cylinders with, respectively, volumes C1 and C2; 
then we have 

 (C1 – I1) + (C2 – I2) = 1

2
 (C – I). 

C – I = v (ring HGEC),  

C1 – I1 = v (ring NLMC), 

C2 – I2 = v (ring LKGS). 
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Fig. 49 

 
Al-Qūhī’s proof proceeds as follows. Let (bi)0≤i≤n be a partition of the 

axis XF and let the volumes of the inscribed and homologous cir-
cumscribed cylinders be Ii and Ci, where I1 = 0. If we then consider the 

sequence (cj)0≤j≤2n, with b0 = c0, bn = c2n, where c2i+1 =
bi + bi+1

2
, and let the 

volumes of the associated cylinders be respectively ( ′I j )1≤j≤2n, ( ′Cj )1≤j≤2n, then 

 

′Cj − ′I j( )
j=1

2n

∑ = 1
2

Ci − Ii( )
i=1

n

∑ . 

 
Finally, al-Qūhī proves: 
 
 

PROPOSITION 3 – If P is the volume of a segment of a paraboloid and V the 
volume of its associated cylinder, then 
 

P = V. 
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The proof is as follows. If we let respectively Ii
q( )

1≤i≤n⋅2q
 and Ci

q( )
1≤i≤n⋅2q

 

be the volumes of the cylinders associated with the partition of the axis, we 
know from the preceding proposition that 

 

 
 

for a fixed n and any q in N*. 
 

This allows al-Qūhī, thanks to a rider to X.1 of the Elements, to claim 
that, after a certain number of operations, one has 

 

(*)  .
 

 
Stated in a different language, he shows that for all ε > 0, there exists 

an N such that, for all q > N, the inequality (*) holds. But we know that if P 
is the volume of the paraboloid, then 

 

 

and so 

 
 

Now, if P = V
2

 + ε, then we have , which is impossible given 

Proposition 1. If P = V
2

 – ε, we can reason similarly, since 

 

Ci
q

i=1

n⋅2q

∑ − P < Ci
q − Ii

q( )
i=1

n⋅2q

∑ < ε , 

 
and so 

Ci
q

i=1

n⋅2q

∑ − V
2

−ε( ) < ε , 

 
whence 

(Ci
q

i =1

n.2q

∑ − Ii
q ) =  

1

2
 (Ci

q −1

i =1
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which is also impossible from Proposition 1, and therefore 
 

P = V
2

. 

 
Al-Qūhī’s proof is short and direct thanks to Proposition 1, which 

directly compares the sums of inscribed and circumscribed cylinders to the 
volume of the large cylinder. This obviated the need for him to evaluate 
these sums as Archimedes had done, by reducing them to the sum of a 

geometric progression. The proof here depends on the inequalities ui ui−1 

< 2Ci and ui − ui−1 > 2Ii, which come from considering equal cylinders 
such as QGHR and SBCO (see Fig. 48), which are neither inscribed nor 
circumscribed, and thus do not establish themselves a priori. 

Proposition 2 establishes that when the partition is refined by dividing 
each interval by two, the excess of the circumscribed cylinders over the 
inscribed cylinders is itself halved. This strategy plays the same role as 
Proposition 19 in Archimedes’ On Conoids and Spheroids. 

Al-Qūhī’s method of using integral sums appears to be similar to 
Archimedes’ method, but it is applied differently. Everything points to al-
Qūhī’s having himself rediscovered the method of integral sums. 

 
 

1.3. Later developments 
 
Starting from the work of the Banū Mūsā, and especially of Thābit ibn 

Qurra, Ibn Sinān developed a line of research that effectively combined 
geometric transformations and infinitesimal methods. And, as we have 
seen, al-Qūhī rediscovered the method of integral sums. These mathemati-
cians thus left to their successors not only another perspective of research 
into infinitesimal geometry, but also other methods. The next generation of 
Islamic mathematicians will be quick to exploit and to take up the problems 
solved by their predecessors, and also to add solutions to new problems. 

Ibn Sahl seems to have been the first to take up the challenge.12 He 
once again tackled the problem of the quadrature of the parabola, but his 
treatise unfortunately remains undiscovered. However, given his status 

 
12 R. Rashed, Géométrie et dioptrique: Ibn Sahl, al-Qūhī et Ibn al-Haytham, Paris, 

1993. English version: Geometry and Dioptrics in Classical Islam, London, 2005. 
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among mathematicians of his period, his knowledge of the works of al-
Qūhī, and his many mathematical contributions, which we have succeeded 
in reconstructing, we believe that he must have proceeded by the use of 
integral sums. This conjecture, which seems entirely justifiable for the rea-
sons just advanced, gains added weight from the fact that his successor Ibn 
al-Haytham applied himself to the problem of the measure of the sphere 
and the paraboloid, without reconsidering that of the parabola, as if that had 
already been established by the same methods. 

To Ibn al-Haytham, known in the west as Alhazen (d. after 1040), fell 
the task of bringing the mathematical tradition of a century and a half to its 
culmination. With him, as we shall see, the calculation of curvilinear areas 
and the volumes of curved figures attained a level comparable to that which 
would be encountered at the beginning of the 17th century in an altogether 
different climate. 

Ibn al-Haytham revisited the proof of the volume of the paraboloid of 
revolution, but he did not stop there. He also determined the volume of a 
parabaloid generated by a rotation about an axis perpendicular to the axis 
of the parabola. In addition, he used infinitesimal methods to determine the 
volume of the sphere. But before giving a necessarily brief description of 
his approach, let us note a fundamental trait in the work of this mathemati-
cian, physicist, and astronomer. Whereas such predecessors as al-Qūhī had 
used infinitesimal methods for determining surface areas and volumes of 
curved figures, and whereas they had also used such methods for finding 
the centers of gravity of these shapes, Ibn al-Haytham dealt the entire set of 
problems of this type: infinitesimal calculations of surface areas and 
volumes, centers of gravity, isoperimeters and equal surface areas, and the 
solid angle, and also entered into a new chapter loosely connected with 
these: the calculation of lunes. Even more, both in his studies here and 
elsewhere, he used true differential methods. Everything suggests that he 
had traveled through most of the regions that would later constitute the 
continent of analysis. 

The structure of Ibn al-Haytham’s treatise on The Measurement of the 
Paraboloid (Maqāla fī misāḥat al-mujassam al-mukāfiʾ) is simple but 
significant. In his introduction, he recalls the works of his predecessors 
Thābit ibn Qurra and al-Qūhī. He blames the former for having ‘followed a 
course without any plan, forcing him to weave a path through his explana-
tion that was both long and laboriously difficult’.13 About al-Qūhī, he 
simply states that his treatise ‘albeit less cluttered and easier to follow, 

 
13 See R. Rashed, Les Mathématiques infinitésimales, vol. II, p. 208; English 

translation p. 177. 
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includes a proof for only one of the species of paraboloid’.14 Ibn al-
Haytham follows this introduction with a section devoted only to arithmetic 
lemmas necessary for his proofs. The next section first treats the paraboloid 
of revolution before moving on to the second type of paraboloid. In a final 
part, he discusses the method that he had applied in that chapter. 

Thus Ibn al-Haytham begins by proving, with the aid of a finite 
recurrence, a general formula for calculating the sum of n integers raised to 
any given power. This law can rewritten as  

 

  
n +1( ) ki

k=1

n

∑ = ki+1

k=1

n

∑ + ki

k=1

p

∑
⎛

⎝
⎜

⎞

⎠
⎟

p=1

n

∑ ,   for i = 1, 2, … 

 
This result enables him to establish an inequality that he needs to apply 

throughout the work: 
 

8
15

n n +1( )4
≤ n +1( )2

− k2⎡
⎣

⎤
⎦

k=1

n

∑
2

≤ 8
15

n +1( ) n +1( )4
≤ n +1( )2

− k2⎡
⎣

⎤
⎦

2

k=0

n

∑ . 

 
Ibn al-Haytham’s proof of this lemma is very long, but serves to illus-

trate the high level of his achievement in this branch of arithmetic, as well 
as the his virtuosity as a mathematician.15 
 

Ibn al-Haytham then goes on to determine the volume of the paraboloid 
of revolution. He considers three cases, depending on whether the angle 
ACB (see Fig. 50) is right-angled, acute, or obtuse. We will examine the 
first case, closely following his own argument. 

 
Letting V be the volume of the circumscribed cylinder and v the 

volume of the paraboloid, we shall show that 
 

v = 
1

2
V. 

 

First, suppose that this is not the case and that v > 
1

2
V, so that 

 

v – 
1

2
V = ε. 

 

 
14 Ibid. 
15 See R. Rashed, Les Mathématiques infinitésimales, vol. II, pp. 182–5. 
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Let M be the midpoint of AC and draw MU BC, cutting the parabola 

at E and BH at U. Draw SEO′ AC, cutting BC at O′ and AH at S. Let 

[EC] represent the solid generated by the rotation of MCO′E about AC and 
let the other solids formed by rotation be similarly represented. Then we 
have 

(1)  [HE] + [EC] = 1

2
V and [BE] + [AE] = 1

2
V.  

 

 
Fig. 50 

 
The construction can now be repeated beginning with point L, the mid-

point of AM, and then with K, the midpoint of MC. This gives 
 

[SEl] + [MEl] = 1

2
 [MS] = 1

2
 [AE], 

 

[UEk] + [EkO′] = 1

2
 [UO′] = 1

2
 [BE]; 

 
Therefore  
 

(2)  [SEl] + [MEl] = [UEk] + [EkO′] = 
1

2
 [AE] = 

1

2
 [BE] = 

1

4
V. 
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Repeating the construction again, for the points O, P, N, J, the mid-
points respectively of AL, LM, MK, KC. Then the sum of the volumes of 

the eight solids will be half of (2), that is, 
1

8
V. 

Proceeding in the same way, that is, by removing solids of the type (1) 
and (2) from the circumscribed cylinder, we shall remove from V, succes-
sively 

1

2
V, 

1

2

1

2
V⎛ 

⎝ 
⎞ 
⎠ , 

1

2

1

2

1

2
V⎛ 

⎝ 
⎞ 
⎠ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , 

 

and so on. After a finite number of these operations, we shall necessarily 
arrive at a remainder smaller than ε, by virtue of Euclid’s lemma X.1 (or 
Ibn al-Haytham’s theorem). 

Let us assume that we have carried out the partition to the point at 
which the remainder is less than ε.  

Let Vn be the volume of the solids remaining after n steps, then Vn < ε 
and let vn be the volume of the portion of the solids inside the paraboloid, 

then vn < Vn and vn < ε, and so v − vn > 1

2
 V, from our hypothesis. But 

from the properties of the parabola, we have 
 

AC
AM

= CB2

EM 2
 

and so 
BC2 = 2 EM2. 

 
Likewise, 

BC2

AC
=

JEj
2

AJ
=

OE0
2

AO
=

JEj
2 + OE0

2

AC  
 

and so 

JEj
2 +OE0

2 = BC2 = 2EM 2 . 
 

One likewise proves that 

KEk
2 + LEl

2 = BC2 = 2EM2
 

and so on. 
If we now relabel our points E with a numerical subscript, so the points 

on the parabola are given by E0 = A, E1, …, En = B, with n = 2m, and we also 
label the corresponding points on the axis 

 

F0 = 1, …,  Fn
2

= M, …, Fn = C, 
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we have 

 EiFi

2
+ En−iFn− i

2
= BC

2
= 2EM

2
 (0 ≤ i ≤ n) 

 

and 
1
2

 

 
and hence 

EiFi

2

i =1

n −1

∑ =
1

2
n −1( )EnFn

2
. 

 
Now let Si = π EiFi

2
 (1 ≤ i ≤ n – 1) be the areas of the disks of radius Ei Fi 

and Sn the area of the disk of radius En Fn = BC, then since these areas are 
proportional to the square of the radii, we have 

 

Si
i =1

n −1

∑ =
1

2
n −1( )Sn . 

 

Let Wi be the volume of the cylinder with base Si and height h  = 1
n  AC 

and Wn the volume of the cylinder with base Sn and height h; then  
 

Wi
i =1

n −1

∑ =
1

2
n −1( )Wn ; 

 

but 
1

2
n −1( )Wn <

1

2
V

  

since V = n Wn; hence 

;  

 
but 

Wi
i =1

n −1

∑ = v − vn >
1

2
V , 

 

which is impossible, and so 
 

(3)  v ≤ 
1

2
V.  

 

Suppose now that v < 
1

2
 V, that is, v + ε = 

1

2
V. We proceed as before, 

successively subtracting half the volume of the cylinder, then half the 
remainder, and continuing until the remaining volume Vn is less than any 
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2
+… + En

2
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given ε. Let un be the part of Vn lying outside the paraboloid, then we have 
un < Vn, therefore un < ε, and so 

 

v + un < 
1

2
V; 

 

but 

, 

 

therefore 

. 

 
But we have shown that 

; 

 

but 

, 

therefore 

Wi
i =1

n −1

∑ − Wn =
1

2
n −1( )Wn , 

and so 
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2
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n

2
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1

2
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hence 

Wi
i =1

n

∑ >
1

2
V , 

which is impossible, and so 
 

(4)  v ≥ 
1

2
V. 

 
From (3) and (4), we therefore have, finally 

 

v = 
1

2
V, 

for the case in which A ˆ C B  = π
2

. 
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For the other two cases, where A ˆ C B is acute or obtuse, Ibn al-Haytham 
reduces them to the first case by means of an affine transformation, chan-
ging oblique axes to rectangular axes. More precisely still, he associates, 
point by point, the figures of each of these two cases to the figure of the 
first case and uses the fact that the relations within each figure are pre-
served under the transformation. What we have here, then, is the method of 
integral sums and an application of the method of exhaustion, with both 
placed on a solid arithmetical base. 

Ibn al-Haytham’s style becomes stunningly apparent when he deals 
with the second type of paraboloid, that obtained by a rotation about a line 
orthogonal to its axis. We present his method here using modern termino-
logy, the better to understand his approach. 

Let the paraboloid be generated by a rotation of the plane ABC of the 
parabola x = ky2 about the ordinate BC (see Fig. 51). Let AC = c and BC = b 

and let σn = (yi), 0 ≤ i ≤ n = 2m, be a partition of [0, b] with step . 

Let Mi be the points of the parabola with coordinates (xi, yi). Then, if 
ri = c − xi, we have 

. 

 

Fig. 51 
 

Now, summing the inscribed and circumscribed cylinders between the 
ordinates, generated by rotation about AC, we obtain 

 

 and . 

 
By the inequality (1) he had established in his arithmetic lemmas, Ibn 

al-Haytham therefore finds 

h =
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n
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In ≤
8

15
V ≤ Cn

 
 

where V = πk2b4 · b is the volume of the total circumscribing cylinder. 
To express it in a modern form, let g(y) = ky2 be continuous over [0, b] 

and let v(p) be the volume of the paraboloid, then Ibn al-Haytham’s calcu-
lation amounts to: 

v p( ) = lim
n→∞

πk 2

i=1

n

∑ h5 n2 − i2( )2
, 

 
so 

v p( ) = lim
n→∞

πk 2

i=1

n

∑ b4 − 2b2yi
2 + yi

4( )h , 

 
so 

v p( ) = π k 2 b4 − 2b2 y2 + y4( )dy
0

b

∫ , 

 
hence 

v p( ) =
8

15
πk2b5 =

8

15
V , 

 
where V is the volume of the circumscribed cylinder. 

 
Ibn al-Haytham finally investigated the behaviour of the solids enclo-

sing the surface of the paraboloid as the number of points of the partition is 
increased indefinitely. This presents the problem of the variation of the 
ratios between these infinitesimal solids, that is those parts that are exterior 
or interior to the paraboloid. For paraboloids of the first type, these parts 
will have equal volumes, but this is not the case for the second type of 
paraboloid. 

Letting vn, un be respectively the small internal and external volumes 
enclosing the paraboloid, he shows that 

 

vn = v − Wi
k =1

n−1

∑ = W
 

 
and 

. 
 

Let u(m), W(m) be the values of u and W corresponding to the mth 
partition, n = 2m. Ibn al-Haytham shows that 

un = Vn −W = u
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and so the ratio increases as the points of the partition increase.16 

 
After this treatise on paraboloids, Ibn al-Haytham considers the 

measurement of the sphere in a treatise by that name (Qawl fī misāḥat al-
kura) in which he applies the same method as he had used for the 
paraboloids. As before, he begins by establishing the arithmetic lemmas he 
will need. He recalls that 

 

 

 

and so establishes the inequality
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3
+

2

3
n2 .

 
 
Using the same method as before, he shows that the volume of the 

sphere is equal to two-thirds the circumscribed cylinder. Let us examine 
this method, using the integral calculus in order to bring out the ideas on 
which it is based. 

In order to find the volumes of revolution about any given axis, Ibn al-
Haytham takes slices of inscribed and circumscribed cylinders, whose axes 
are the same as the axis of revolution. This allows him to find over- and 
under-approximations of the volume to be determined, by using integral 
sums – Darboux sums – of the function corresponding to the curve 
generating the solid of revolution. For the volume of the sphere, for 
example, he considered 
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Cn = πyi−1
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16 See R. Rashed, Les Mathématiques infinitésimales, vol. II, p. 196–200. 
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We note that the function f is monotonic, so that mi and Mi are the 
values of f at the extremities of the ith interval of the partition; f being the 
function defined by 

 
f(x) = π (R2 – x2) = πy2, mi = inf

xi−1≤x≤xi

f (x) = πyi
2 , and Mi = sup

xi−1≤x≤xi

f (x) = πy
i−1

2 , 

 
mi and Mi being the points with ordinates yi and yi−1. 

 

Fig. 52 
 
 
Moreover, Ibn al-Haytham then uses the inequalities 
 

In < v < Cn 

 
and shows that, for all ε  > 0, there exists an N such that, for n ≥ N, we 
have 

v − In < ε,   Cn − v < ε, 
 

which proves that In tends to v and similarly for Cn. Thus we certainly have 
 

v = f (x)0

R

∫  dx . 
 

In other words, Ibn al-Haytham’s calculation is equivalent to a simple 
Cauchy-Riemann integral. 

But this mathematical equivalence should not obscure the following 
question: having once determined these volumes by this integral method, 
why did Ibn al-Haytham never explicitly set out the general method for 
determining other volumes and surface areas? Certainly we cannot offer a 
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satisfactory answer based on an examination of Ibn al-Haytham’s 
mathematical requirements – it is not as if he needed just these results, and 
having obtained them saw no need to go further; in fact, in his works of 
mathematics, optics, and astronomy, he never had any need to calculate the 
volume of the paraboloid, nor the volume of a hyperboloid of revolution, 
for example. It must therefore be the method itself that accounts for an 
absence of generalization. 

We may note that Ibn al-Haytham – like his predecessors who determi-
ned surface areas – always had recourse to another solid of known volume 
to which he could compare the volume of the solid to be determined. This 
prior knowledge was in no way merely an artefact of the method: it allowed 
Ibn al-Haytham, like his predecessors, to carry out a direct and exact 
calculation of the limits of the corresponding upper and lower integral sums 
(Darboux). Now, in the most general case, these solids of comparison do 
not necessarily exist, which makes the method adopted by Ibn al-Haytham 
unsuitable for carrying out effectively the summations of upper and lower 
integral sums. Ibn al-Haytham’s method is thus characterized by an internal 
limitation. We must, however, be careful not to exaggerate the significance 
of this limitation, which will recede with the much more massive 
introduction of arithmetic calculation. If the use of a reference volume for 
determining unknown volumes is hallmark of the Archimedean tradition, 
the increasingly arithmetical cast of the investigations in the Arabic tradi-
tion shows that we are moving beyond the Archimedean heritage. It was 
not geometry alone that guided Ibn al-Haytham’s approach: he was already 
using arithmetic, and his lemmas had been conceived by thinking 
arithmetically about geometrical figures. 

In this investigation, we can already see the development of methods 
and techniques from this domain in Arabic mathematics. As we have seen, 
in his investigation of the paraboloid, Ibn al-Haytham achieved results that 
historians would later attribute to Kepler and Cavalieri, for example. 
However, progress in this domain stopped at this point, probably for lack of 
an effective symbolism. 

 
 

2. THE QUADRATURE OF LUNES 
 
Among the problems concerned with finding the areas of curved 

figures, the exact quadrature of lunes – surfaces bounded by two circular 
arcs – is one of the most ancient. According to the late evidence supplied 
by Simplicius, the 6th-century commentator on Aristotle, this problem can 
be traced back to Hippocrates of Chios in the 5th century BC. In his 
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commentary on Aristotle’s Physics, Simplicius provides a long quotation 
from Eudemus’s History of Geometry that gives an account of Hippocrates’ 
quadratures of certain lunes.17 This passage, which raises several other 
philological and historical problems that we cannot address here, is the 
only known source for the history of the problem in Greek mathematics. It 
also indicates that the context in which the problem of the quadrature of 
certain lunes was posed was the problem of the quadrature of the circle. 

Approximately five centuries after Simplicius, Ibn al-Haytham returned 
to this same problem on several occasions, first in connection with the 
quadrature of the circle, and then for its own sake. In fact, he wrote three 
memoirs, only one of which has so far been studied: his memoir on the 
quadrature of the circle, another succinct study of the quadrature of lunes, 
and later, another treatise in which he obtained results that were later 
attributed to mathematicians of the 17th and 18th centuries. It is for lack of 
knowledge about Ibn al-Haytham’s works, particularly this third treatise, 
that historians have in good faith made erroneous judgments about his 
contribution to this topic. 

Everything suggests Ibn al-Haytham’s point of departure was the text 
attributed to Hippocrates of Chios. In his first memoir, A Treatise on Lunes 
(Qawl fī al-hilāliyyāt), he begins by writing: ‘Upon my examining […] the 
shape of the lune, equal to a triangle as mentioned by the Ancients […]’.18 
Later, in a second memoir, An Exhaustive Treatise on the Figures of Lunes, 
Ibn al-Haytham refers to his first text: ‘I wrote a brief treatise on the figures 
of lunes according to specific methods’.19 Furthermore, Ibn al-Haytham’s 
works incorporate Hippocrates of Chios’s results. Did he, perhaps, know 
the latter from an Arabic translation of Simplicius’s commentary on 
Aristotle’s Physics? Unfortunately no known documents allow us to give a 
definitive answer. Certainly Ibn al-Haytham refers to the ‘ancients’ in his 
first treatise, but strictly speaking he did not reproduce any of Hippocrates’ 
figures. His first result does, however, rest on a slight generalization of one 
of Hippocrates’ propositions, which Simplicius cites from a text by 
Alexander of Aphrodisias, thereby rather complicating the problem. This is 
Proposition 3 of his first treatise, which also appears in his memoir The 
Quadrature of the Circle (Qawl fī tarbīʿ al-dāʾira), and again as Proposi-

 
17 T. Heath, A History of Greek Mathematics, 2 vols, Oxford, 1921, vol. 1, pp. 191–

201 and O. Becker, Grundlagen der Mathematik, 2nd ed., Munich, 1964, pp. 29–34. 
18 See R. Rashed, Les Mathématiques infinitésimales, vol. II, pp. 69–81; 

commentary pp. 32–4; English transl. p. 93. 
19 See R. Rashed, Les Mathématiques infinitésimales, vol. II, p. 103; English transl. 

p. 107.  
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tion 8 of his second treatise. Whatever may be the genesis of his ideas, let 
us turn to Ibn al-Haytham’s two memoirs on lunes. 

In both his treatises, Ibn al-Haytham’s approach to studying lunes 
bounded by any arcs whatever, amounts to finding equivalent areas. He 
usually introduces circles generally equivalent to sectors of the circle given 
in the problem and expressed as fractions of that circle. He justifies the 
existence of the circles he introduces, which are to be added to, or sub-
tracted from, polygonal areas, so as to obtain an area equivalent to that of 
the lune, or the sum of two lunes. 

In his first short treatise, in Propositions 1, 2 and 5, he uses a semicircle 
ABC to determine lunes L1 and L2 bounded by arcs AB and BC, and by a 
semicircle (see Fig. 53). He takes the arc AB as being equal to a sixth of the 
circumference, and he establishes the results: 

 

 

 

 

 

, 

 
where L3 is a lune similar to L1, such that L3 = 2L1.  

 

Fig. 53 
 
In Proposition 3 of this treatise, Ibn al-Haytham generalizes the proof 

of Hippocrates’ result by letting point B lie anywhere on the semicircle 
ABC: 

L1 + L2 = tr(ABC), 
 

and in Proposition 4, he considers the ratio of two similar lunes. 

L1 +
1

24
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2
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Note that in these propositions the lunes L1 and L2 are associated with 
three semicircles ABC, AEB, and BGC. 

Ibn al-Haytham’s first treatise thus reads as following Hippocrates of 
Chios’s line of research. This is also true for the part of his The Quadrature 
of the Circle that concerns lunes.20 In his proof, Ibn al-Haytham, like 
Hippocrates, uses the fact that the area of a circle is proportional to the 
square of its diameter, and also uses Pythagoras’s theorem. Both cases 
consider the lune associated with the right-angled isosceles triangle. Even if 
Ibn al-Haytham’s reasoning is slightly more general than that of 
Hippocrates, this does not significantly alter the similarity between the two 
approaches to the problem. As a point of interest, note that the important 
issue in Ibn al-Haytham’s memoir on the quadrature of the circle is not the 
results he obtained for lunes (unlike in the first memoir) but the clear dif-
ference he establishes between the existence of a square equivalent to a 
circle – for us, the existence of a transcendental ratio – and the constructi-
bility of that square or ratio.21 

The situation is profoundly different in his second treatise devoted to 
lunes, An Exhaustive Treatise on the Figures of Lunes (Maqāla mustaqṣāt 
fī al-askhāl al-hilāliyya).22 Not only does Ibn al-Haytham obtain more 
general results here, but his approach is different: he takes the problem of 
the quadrature of lunes back to fundamentals, recasts it in terms of trigo-
nometry, and attempts to deduce different cases in terms of the properties 
of a trigonometric function, just as Euler would do more precisely much 
later. 

From the very beginning of his treatise, Ibn al-Haytham explicitly 
recognizes that the calculation of the areas of lunes involves the sums and 
differences of areas of sectors of circles and of triangles, for which he 
needs to compare the ratios of angles and the ratios of line segments. This 
is why he begins with four lemmas about a triangle ABC, right-angled at B 
in the first lemma and obtuse in the other three, which shows that the 
essential point henceforth comes down to a study of the function 

 

 
20 Cf. H. Suter, ‘Die Kreisquadratur des Ibn el-Haiṯam’, Zeitschrift für Mathematik 

und Physik, Historisch-litterarische Abteilung, 44, 1899, pp. 33–47. 
21 R. Rashed, ‘L’analyse et la synthèse selon Ibn al-Haytham’, in Mathématiques et 

philosophie de l’antiquité à l’âge classique, Paris, 1991, pp. 131–62; reprod. in id., 
Optique et mathématiques. Recherches sur l’histoire de la pensée scientifique en arabe, 
Aldershot, 1992, Variorum Reprints, XIV. 

22 See R. Rashed, Les Mathématiques infinitésimales, vol. II, pp. 102–75; 
commentary pp. 37–68. 
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(1)  f (x) =
sin2 x

x
   0 < x ≤ π. 

 

These lemmas can be expressed as: 
 

1° If 0 < C < π
4

< A < π
2

 , then sin2 C
C

< 2
π

< sin2 A
A

; it is evident that

if C = A = π
4

, then sin2 C
C

= sin2 A
A

= 2
π

. 
 

 
Fig. 54 

 

2° Let π – B = B1, if C < π
4

 < B1 < π
2

, then sin2 C

C
<

sin2 B1

B1

. 

 

Fig. 55 

 

3° Again, with π − B = B1: if A ≤ π
4

, then sin2 A

A
<

sin2 B1

B1

. 

 

4°  Here, Ibn al-Haytham wanted to consider the case A > π
4

; but the 

study is incomplete. He shows that for a given A, a B0 can be found, such 
that 

B1 ≥ B0 ⇒ sin2 A
A

>
sin2 B1

B1

. 

 
This incomplete study seems to have kept Ibn al-Haytham from reco-

gnizing the equality 
sin2 A

A
=

sin2 B1

B1

. 
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Ibn al-Haytham proves these lemmas by comparing arc lengths, areas,
and sides of triangles. 

Note that these lemmas, because they link the question of the quadra-
ture of lunes to trigonometry, change the perspective of the problem and 
allow particular cases to be considered together. But incompleteness men-
tioned above masks the possibility of determining those lunes that are sus-
ceptible to quadrature. Let us now consider briefly the main propositions of 
Ibn al-Haytham’s second treatise. 

In nine propositions – numbers 8 to 16 – the lemmas are associated 
pairwise and in all cases, the three arcs ABC, AEB and BCG are similar. Let 
O, O1, and O2 be the centers of the corresponding circles (see Fig. 56) and 

let AÔC = AÔ1B = BÔ2C = 2α , AÔB = 2β , and BÔC = 2 ′β ; with β ≤ β′ 

and β + β′ = α. 

 

Fig. 56  
 
The lune L1 is characterized by (α, β) and the lune L2 by (α, β′). Consi-

der the case in which α = π
2

; we have the following results: 

1. Given any (β, β′ ) such that β + ′ β =
π
2

, then L
1
 + L

2
 = tr (ABC). 

2. If β = ′ β =
π
4

, then L
1
 = L

2
 =  tr (ABC); in this case 

α
β

=
2

1
, and this 

is the only lune susceptible of quadrature studied by Ibn al-Haytham. 
For β < β′ we have 

    L
1
 =  tr (ABC) – circle (N), 

 

    L
2
 =  tr (ABC) + circle (N); 

 

the circle N depending on the ratio of 
α
β
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3. If β =
π
6

, then L
1
 =  tr (ABC) –  circle (ABC); in this case 

α
β

=
3

1
. 

 

If ′ β =
π
3

, then L
2 
=  tr (ABC) +  circle (ABC); in this case 

α
′ β 

=
3

2
. 

 
 

Up to this point, Ibn al-Haytham has only used his Lemma 1 in his 
proofs; for the next proposition, he needed three additional lemmas. The 
key idea is to take points M, N on the chord AC such that 

AB̂C = BM̂C = AN̂B = π – α , and to define a point P on AB and a point Q 

on BC such that NP  OA and MQ  OC (see Fig. 57). The results cannot 

be established from the triangle ABC, as in the previous propositions. 

 
Fig. 57 

 
 

For any pair (β, β′), such that β + β′ < 
π
2

, Ibn al-Haytham defines two 

circles K, Z, such that the areas 
 

L
1
 + L

2
 + (K) = quadraliteral (OPBQ) 

 
L

1
 + (Z) = tr (OPB); 

 
and he examines the following cases: 
 

If β = β′, then (Z) =  (K), L
1
 = L

2
, L

2
 + (Z) = tr (OQB) = tr (OPB).  

 

If β′ < 
π
4

, then (Z) < (K), L
2
 + (K) – (Z) = tr (OQB). 

 

If β′ > 
π
4

, there are three cases 
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(Z) < (K), then L
2
 + (K) – (Z) = tr (OQB), and L

2
 < tr (OQB), 

 
(Z) = (K), then L

2
 = tr (OQB), 

 
(Z) > (K), then L

2
 = tr (OQB) + (Z) – (K), and L

2
 > tr (OQB). 

 
Ibn al-Haytham then gave some examples to illustrate these results, 

after which he proved these propositions: 

4. If α = π
3

,   β = ′β = π
6

,  then α
β

= 2
1

 and we have 

 

L
1
 = L

2
 =  tr (ABC) –  circle (ABC). 

 

5. If α = π
3

,   β = π
12

,   ′β = π
4

,  then α
β

= 4
1

,   α
′β
= 4

3
; in this case, the required 

circle is not a fraction of circle (ABC). 
 

6. If α = π
3

+ π
8

,   β = π
8

,   ′β = π
3

,  then α
β

= 11
3

,   α
′β
= 11

8
; in this case, the 

required circle is not a fraction of circle (ABC). 
 

Excepting Proposition 21, in the propositions that follow, Ibn al-
Haytham considers figures consisting of the sums and differences of lunes, 
segments of circles, and triangles. In Proposition 21, he indicates one pro-
perty of a lune whose two arcs belong to two equal circles. This property is 
derived from the translation that maps one circle onto the other, a property 
that was studied by Ibn al-Haytham in his treatise Analysis and Synthesis.23 

With this second treatise of Ibn al-Haytham’s, the study of the quadra-
ture of lunes takes a new path, which will later lead to Euler: it displaces 
the problem in the direction of trigonometry, and in a certain sense 

recognizes its dependence on the function (1) above, f (x) =
sin2 x

x
, where 

0 < x ≤ π. 
 
 

 
23 R. Rashed, ‘L’analyse et la synthèse selon Ibn al-Haytham’ and Les Mathéma-

tiques infinitésimales du IXe au XIe siècle, vol. IV: Méthodes géométriques, transforma-
tions ponctuelles et philosophie des mathématiques, London, al-Furqān, 2002, Chap. II. 
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3. EQUAL PERIMETERS AND EQUAL SURFACE AREAS:  
A PROBLEM OF EXTREMA 

 
Infinitesimal geometry, as noted earlier, arose from areas other than 

just the determination of surface areas and volumes of curved figures. 
Isoperimeters and equal areas was one such study. Whereas investigations 
into minimum perimeters and minimum surface areas were closely linked 
to the science of astronomy, the subject began to attract the attention of 
mathematicians to such an extent that it become itself a chapter in the his-
tory of infinitesimal geometry. 

Of all plane shapes of a given perimeter, the circle has the largest area; 
and of all solids with a given surface area, the one with the greatest volume 
is the sphere. This is the statement of a proposition about boundary condi-
tions that has been of interest to mathematicians and astronomers since 
Antiquity. Astronomers needed to establish the sphericity of the heavens, 
and mathematicians attacked the problem in order to provide the proof that 
the astronomers lacked. 

If one can believe the 5th-century commentator Simplicius, the question 
of isoperimetry is of considerable antiquity. Simplicius wrote: 

It has been shown, not only before Aristotle, where it appears as a proven 
[proposition], but also by Archimedes, and in a more detailed (πλατύτερον) 
way by Zenodorus, that, of the isoperimetric figures, that which is the 
greatest among plane figures is the circle, and, among solids, it is the 
sphere.24 

This important, if late, text shows, as Schmidt noted,25 that these funda-
mental propositions were known before Zenodorus. This idea encouraged 
Mogenet to attribute to Zenodorus only an outline of the theory of iso-
perimeters in ‘a general way’ and to take that as an argument for placing 
Zenodorus in the third century BC.26 This position remains controversial. 
All that can be said for the present is that Zenodorus lived after Archimedes 
and before Pappus, that is, between the second century BC and the third 
century of our era. 

This interval of half a millenium was bound to generate controversy in 
the absence of any of the supplemental evidence for which historians still 
hope. But the controversy that has raged since the beginning of the 20th 
century has not prevented historians from agreeing that Zenodorus had 

 
24 Simplicius VII, 4/2, lines 12–17. 
25 W. Schmidt, ‘Zur Geschichte der Isoperimetrie’, Bibliotheca Mathematica, 2, 

1901, pp. 5–8. 
26 J. Mogenet, ‘Les isopérimètres chez les Grecs’, Scrinium Lovaniense, Mélanges 

historiques, Louvain, 4e série, 24, 1961, pp. 69–78. 
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indeed himself treated the mathematical problem and had found a proof. 
Fortunately for us, Theon of Alexandria summarizes Zenodorus’ work in 
his Commentary on the First Book of the Almagest where, after stating the 
isoperimetric problem, he says that he will ‘give the proof of these proposi-
tions in a summary taken from the proofs by Zenodorus in his book On 
Isoperimetric Figures’.27 Theon goes back to Zenodorus to quote the 
famous formula given by Ptolemy in this first book: 

Since, among figures having an equal perimeter, those with the greatest 
number of sides are the greatest, among plane figures, the circle that is the 
greatest, and among solids, the sphere, and the sky is greatest of all bodies.28  

Commentators on the Almagest since Theon did not let this formula 
stand without feeling the need for further comment, since it incorporates a 
fundamental doctrine of astronomy, cosmology and philosophy: the nature 
of the sphericity of the heavens and of the world. As we have remarked, 
there was a need for a convincing proof. It was also natural that the pro-
blem should evoke the interest of other mathematicians, such as Hero of 
Alexandria and also Pappus, who addressed the problem in Book V of his 
Collection.29 Both the Commentary of Theon and the Almagest itself were 
known to astronomers and mathematicians in the 9th century, who insti-
gated a new tradition of study of isoperimeters and equal areas. The first to 
tackle the question was al-Kindī. He treated the problem in his ‘book on 
spheres’. In his The Grand Art (Fī ṣināʿat al-uẓmā), he wrote: 

In the same way that the largest of figures inscribed in a circle is that which 
has the most angles, and the greatest of solid figures having equal plane 
surfaces is the sphere, as we have explained in our book On Spheres, the sky 
is therefore the greatest of all other bodies, and it is spherical since it must 
have the greatest figure.30 
 
The 13th-century bibliographer Ibn Abī Uṣaybiʿa cites, among al-

Kindī’s books, a title dedicated explicitly to this problem: The Sphere is the 
Greatest of the Solid Figures. However that may be, his book The Grand 
Art itself testifies to the strong influence of Theon of Alexandria on al-
Kindī. 

 
27 A. Rome, Commentaires de Pappus et Théon d’Alexandrie sur l’Almageste, II, 

Roma, Cité du Vatican, 1936, p. 33. 
28 Claudii Ptolemaei opera quae exstant omnia. I. Syntaxis mathematica, ed. J. L. 

Heiberg, Leipzig, 1898, p. 13, lines 16–19. 
29 Pappus d’Alexandrie, La Collection mathématique, French transl. by Paul Ver 

Eecke, Paris and Bruges 1933, t. I, pp. 239 sq. 
30 Ms. Istanbul, Aya Sofya 4860, fol. 59v. 
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Many were to contribute to the study of isoperimeters and equal surface 
areas: we can name, for example, the astronomer Jābir ibn Aflaḥ and the 
mathematician Ibn Hūd. But the two who most transformed investigation 
into the problem, each in his own different way, were al-Khāzin and Ibn al-
Haytham. These are the two principal figures presently known to us. A 
reading and analysis of their writings reveals the gulf between them. 
Whereas al-Khāzin developed his work from the scholarship of the past, 
Ibn al-Haytham, half a century later, completed this work and touched the 
shores of the future. 

 
 

3.1. Al-Khāzin: the mathematics of the Almagest 
 

Abū Jaʿfar al-Khāzin (mid-10th century) had himself written a 
Commentary on the First Book of the Almagest (Sharḥ al-maqāla al-ūlā 
min al-Majisṭī). Doubtless it was on account of Ptolemy’s famous assertion 
on isoperimetry that he included in this Commentary a kind of treatise 
aimed at providing a rigorous proof.31 Al-Khāzin is clear about this; he 
intends to justify Ptolemy’s claim, not by calculation (ḥisāb), but by means 
of geometry. An examination of his text shows that, whether or not he 
knew Zenodorus’s results as given in Theon’s summary, his approach to 
the proof took a different direction, as we shall see. Al-Khāzin’s key idea, 
of which he was perfectly aware, was that of all convex figures of a given 
type (triangle, rhombus, parallelogram, …), the most symmetric instan-
tiates an extremum for a certain magnitude (area, ratio of areas, peri-
meter, …). The procedure is as follows: having set a fixed parameter, the 
figure is changed so as to make it symmetrical with respect to a certain line 
segment. Thus, upon fixing the perimeter of a parallelogram, the figure is 
transformed into a rhombus by making it symmetrical about a diagonal; in 
doing so, the area is increased. Not only does this idea distinguish the con-
tribution of al-Khāzin from that of his predecessors, but also we cannot 
understand his contribution without being aware of this idea. 

Al-Khāzin’s treatise follows a simple structure. The first part deals with 
isoperimeters, the second with equal areas. These two parts rely on 
unarticulated notions and unstated axioms. One of the former is the notion 
of convexity. In fact, all the polygons and polyhedra that al-Khāzin consi-
ders in his treatise are convex. Among others, important axioms of 
convexity, which he does not declare are: 

A1 If a convex polygon is inscribed in a circle, then its perimeter is less 
than that of the circle. 

 
31 See R. Rashed, Les Mathématiques infinitésimales, vol. I, chap. IV.  
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A2 If a convex polygon circumscribes a circle, then its perimeter is 
greater than that of the circle. 
 

A3 If a convex polyhedron is inscribed in a sphere, then its area is less 
than the surface of the sphere. 
 

A4 If a convex polyhedron circumscribes a sphere, then its area is 
greater than that of the sphere. 
 
These axioms are needed in order to establish an important lemma (the 

eighth) and a proposition (19). Let us now look, briefly, at how al-Khāzin’s 
treatise is presented. 

 
3.1.1. Isoperimeters 

Al-Khāzin first proves eight lemmas before his theorem on isoperime-
ters. The first four deal with isosceles and equilateral triangles, and he 
shows that the area of an equilateral triangle is greater than that of any 
isosceles triangle of the same perimeter. The fifth lemma shows that the 
area of an equilateral triangle is greater than that of any other triangle of the 
same perimeter. In the course of his proof, al-Khāzin proves a result 
already established by Zenodorus and Pappus, namely, that ‘among isope-
rimetric figures having the same number of sides, the greatest is that which 
is equilateral and equiangular’. The sixth lemma compares a parallelogram 
to a square with the same perimeter, and in the seventh lemma al-Khāzin 
takes the example of a regular pentagon, changes it into an irregular penta-
gon of the same perimeter, and shows that the second has a smaller area 
than that of the first. 

Before continuing, let us compare this approach with that of 
Zenodorus. The Greek mathematician begins by comparing any triangle to 
an isosceles triangle with the same base and the same perimeter, in order to 
arrive at the lemma: ‘The sum of two similar isosceles triangles, not having 
equal bases, is greater than the sum of two non-similar isosceles triangles 
which are isoperimetric to the two similar triangles.’ By ‘isoperimetric’ 
here, we are to understand that the sums of the sides are equal, excluding 
the bases. Now, this lemma of Zenodorus is incorrect, and it is quite 
surprising that neither Pappus nor Theon remarked on the error.32 In fact, to 
use modern symbolism, this lemma comes down to finding the maximum 

of ax + by, given that . A maximum is found when 

 
32 J. L. Coolidge, History of Geometrical Methods, Oxford, 1940; reprod. Dover, 

1963, p. 49. 

a2 + x2 + b2 + y2 =1
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ax′ + by′ = 0, from which x′ = b and y′ = –a; hence, from differentiating the 
second, we have: 

bx

a2 + x2
= ay

b2 + y2
; 

 
now, if we put x = au and y = bv, this reduces to: 
 

u

a 1+ u2
= v

b 1+ v2
, 

 
whereas the assertion of the lemma requires that u = v. 

Might this error have been the reason for al-Khāzin’s method of attack 
on the problem? 

 
In Lemma 8, al-Khāzin went on to consider convex polygons with ins-

cribed and circumscribed circles. 
Everything is now in place for establishing the isoperimetric properties 

of regular polygons before finally considering the circle. First of all, he 
proves:  

If two regular polygons P1 and P2 have, respectively, n1 and n2 sides, 
with n1 > n2, and have the same perimeter, then the area of P1 is greater 
than that of P2.  

He then proves the theorem: 

Of all plane figures, regular convex polygons, and the circle that have 
the same perimeter, it is the circle that has the greatest area. 

Al-Khāzin’s method for dealing with isoperimeters is therefore to 
proceed by: a) comparing regular polygons that have different numbers of 
sides but the same perimeter; b) comparing a regular polygon to a circle of 
the same perimeter with the aid of a similar polygon circumscribing the 
circle. This approach is common to both al-Khāzin and Zenodorus. It is an 
approach that we may characterize as static, in the sense that we have, on 
the one hand, the given polygon and, on the other, the circle. We shall see 
that Ibn al-Haytham later uses a) to establish b) by considering the circle as 
the limit of a sequence of regular polygons, which is a dynamic approach to 
the problem. To sum up, even if the method chosen by al-Khāzin differs 
from that of Zenodorus or Pappus, it belongs essentially to the same genre 
of approach, whereas that taken by al-Haytham is of an altogether different 
species. 
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3.1.2. Equal areas 

The second part of al-Kāzin’s treatise deals with the same problem of 
determining an extremum, but this time for the area of solids. This part also 
begins by establishing a number of lemmas, nine in all, which deal with the 
surface area and volume of the pyramid, and similarly of the cone and the 
frustum of a cone. The first lemma deals with the area of a regular pyramid 
and the second concerns the volume of a regular pyramid containing an 
inscribed sphere. In the third lemma, al-Khāzin considers the surface area 
and volume of a cone of revolution. In the fourth lemma, he takes up the 
following problem: given a circle C, to construct two similar polygons of 
area S1 and S2, respectively, the one circumscribing C and the other ins-
cribed in C, such that the ratio S1/S2 = k is equal to some given value k. 

In the fifth lemma, al-Khāzin gives an expression for the surface area 
of a cone and proceeds, in Lemma 6, to do the same for the frustum of a 
cone. Lemma 7 is deduced from Lemma 6 and reads: 

If a regular rectilinear polygonal is inscribed in a circle of area S1 and 
circumscribes a circle of area S2, then the area S generated by rotating 
the polygonal line about one of its axes satisfies 4S2 < S < 4S1. 

 

Recall that Archimedes had obtained the same results for a solid obtai-
ned from a regular polygon inscribed in a sphere, where the number of 
sides of the polygon is a multiple of 4 (Propositions 27–30 of On the 
Sphere and Cylinder). The Banū Mūsā later treated the same problem for a 
solid defined by a polygonal line inscribed in a semicircle, where the num-
ber of sides is even (Propositions 12 and 13 of their Book on the 
Measurement of Plane and Spherical Figures). This is precisely the case 
treated by al-Khāzin. Later, Johannes de Tinemue in his Proposition 5 
would also treat the same problem,33 starting from a regular polygon 
inscribed in a circle, the number of sides being a multiple of 4 or even 
simply an even number. 

Al-Khāzin concludes by establishing two fundamental propositions. In 
the first, he showed that the surface area S of a sphere is equal to four times 
the area of its great circle. Archimedes had given the same result in I.33 of 
On the Sphere and Cylinder and the Banū Mūsā did so as Proposition 14 of 
their Book on the Measurement of Plane and Spherical Figures. 

 
33 M. Clagett, Archimedes in the Middle Ages, vol. I: The Arabo-Latin Tradition, 

Madison, 1964, pp. 469 sqq. 
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In the second proposition, al-Khāzin revisits the proof that the volume 

of a sphere is V = 1
3

 R · S, where R is the radius and S the surface area. 

To establish this, he applies the method of contradiction and uses 
Euclid XII.17;34 this is equivalent to the method formerly used by the Banū 
Mūsā. Finally, he proves the theorem:  

Of all convex solids having the same surface area, the sphere is the one 
with the greatest volume. 

The proof runs as follows: Let there be a sphere, with center O, radius 
R, surface area S and volume V, and let there be a polyhedron with the 
same area S and volume V1 which one supposes circumscribing another 
sphere of radius R′ and surface area S′. Then we have 

 

V1 = 1
3

 S · R′. 

 
The surface area S′ is less than that of the polyhedron, therefore S > S′, 

and so it follows that 

R′ < R  and  1
3

S · R′ < 1
3

S · R, 

 

that is, V1 < V. 
 

Note that the nature of the polyhedron is not specified, but it must cir-
cumscribe the sphere, which is the case for a regular polyhedron. But the 
proof given here cannot be applied to any arbitrary polyhedron or solid. 

As we have just seen, al-Khāzin’s approach was not the same for three-
dimensional space as it is for the plane. For solid figures, he compared not 
polyhedra having the same area but polyhedra having a different numbers 
of faces, but he got his result by using a formula relating the volume of the 
sphere to its surface area, a formula that was obtained by approaching clo-
ser to the sphere with non-regular polyhedra. Ibn al-Haytham’s method of 
attacking the problem was, as we shall see, quite different. 

 
 

3.2. Ibn al-Haytham: a new theory 
 
Half a century after al-Khāzin, Ibn al-Haytham addressed the same 

problem of isoperimeters and equal areas, but he recast it to fit his own 
domain of research, that of asymptotic behaviour. His brief was not a new 

 
34 See R. Rashed, Les Mathématiques infinitésimales, vol. I, pp. 771–5.  
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introduction to the Almagest, serving as justification for revisiting 
Ptolemy’s famous claim in the first book of his work. Instead, he wrote a 
treatise dedicated entirely to the problem itself and explicitly bringing to it 
this asymptotic characteristic. Ibn al-Haytham declares that he intends to 
establish that ‘of all the figures with similar <and equal> perimeters, the 
circle has the greatest <area>; and, of all the polygons, that which is closest 
to being circular in shape is greater than that which is less circular in 
shape’.35 More generally, he seeks to prove that among ‘solid and plane 
figures those having a shape close to being circular are greater than those 
whose shape is far from being circular’.36 Let us examine Ibn al-Haytham’s 
approach. 

 
 

3.2.1. Isoperimeters 

Ibn al-Haytham lays out the question of isoperimeters in three proposi-
tions and one lemma. Here, in order, are the three propositions. 

 
PROPOSITION 1: Let p be the perimeter of a circle of area A, and p′  the 
perimeter of a regular polygon of area A′:  

 

if p = p′, then A > A′. 
 

PROPOSITION 2: Let P1, P2 be two regular polygons with n1, n2 sides, with 
perimeters p1, p2, and areas A1 and A2, respectively:  
 

if p1 = p2 and n1 < n2, then A1 < A2. 
 

PROPOSITION 3: Let P1, P2 be two regular polygons inscribed in the same 
circle, using the previous notation:  

 
if n1 < n2, then p1 < p2 and A1 < A2. 

 
For this third proposition, Ibn al-Haytham first established a lemma, 

equivalent to  

  

α
β

=
sin α
sin β

,   for 
π
2

> α > β . 

 
35 See R. Rashed, Les Mathématiques infinitésimales, vol. II, p. 394; English 

translation pp. 309–10. 
36 Ibid., p. 385; English translation p. 305. 
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We see that in order to establish the isoperimetric property, Ibn al-
Haytham shows that the area of the circle is a sort of ‘limit’ of an increa-
sing sequence of areas of regular polygons. He assumes the limit exists, 
which is in any case assured by Archimedes’ Measurement of the Circle. 
Ibn al-Haytham’s approach here is intentionally ‘dynamic’ and thus evi-
dently different from that of his predecessors. This explains the author’s 
statement at the beginning of his treatise: ‘Mathematicians have mentioned 
this notion [isoperimetry and equal surface area] and have used it. 
Nonetheless, none of their proofs have come down to us’.37 It is, however, 
hardly credible that Ibn al-Haytham was unaware of the results of his pre-
decessors, including those of al-Khāzin. It would seem, therefore, that his 
intention is to alert the reader to the novelty of his own approach. And it is 
precisely this new approach that he used to deal with the case of solids. 

 
 
3.2.2. Equal surface areas 

After presenting his solution to the isoperimetric problem, Ibn al-
Haytham went on to consider the problem of equal areas, using an analo-
gous method. But the passage from the plane to three-dimensional space is 
not simple. In fact, one obstacle prevents Ibn al-Haytham from reaching his 
goal, but not from writing one of the most advanced mathematical texts 
before the mid-17th century. 

Analogously to his approach in the first part, Ibn al-Haytham wished to 
demonstrate the two propositions: 

 
1. Of two regular polyhedrons with similar faces and having the same 
total area, the one with the larger number of faces has the greatest 
volume. 
 
2. Of two regular polyhedrons with similar faces inscribed in the same 
sphere, the one with the larger number of faces has the greatest total 
area and the greatest volume. 
 
Ibn al-Haytham thought that, just as he had done with isoperimeters, he 

would be able to establish the greatest-area problem as the limit of a 
sequence of areas of polyhedra; that is, he could approach the sphere from 
an infinite series of polyhedra that it circumscribes. The obstacle is that the 
two propositions given above concern regular polyhedra with a finite num-
ber of faces. The passage from this case to the sphere is therefore not rigo-

 
37 Ibid., p. 386; English translation p. 306. 
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rously established. The core of Ibn al-Haytham’s treatise rests essentially 
on demonstrating these two propositions. 

Ibn al-Haytham begins by establishing five lemmas (numbers 6 to 10 in 
the treatise). All of these lemmas are based on inequalities between the 
ratios of solid angles and the ratios of areas. As far as we know, this is the 
first important and extensive application of solid angles and therefore the 
first substantial study of some of their properties (to be discussed below). 
By using these lemmas, Ibn al-Haytham is able to establish the two propo-
sitions with complete generality. But the lemmas apply only to polyhedra 
with triangular faces, that is, to tetrahedra, octahedra, and icosahedra, since 
the number of faces of a regular polyhedron with square or pentagonal 
faces is fixed (six or ten, respectively). The first lemma shows that if regu-
lar tetrahedra, octahedra, and icosahedra have the same total area, then their 
volumes increase in the following order: tetrahedron, octahedron, icosahe-
dron. The second proposition shows that if regular tetrahedra, octahedra, 
and icosahedra are inscribed in the same sphere, their volumes will increase 
in the same order. The issue is thus clearly not to approach the sphere from 
an infinite sequence of polyhedra. Such an oversight on the part of a 
mathematician who knew Euclid’s Elements better than anyone is discon-
certing. How could he not see that his polyhedra reduce to those of Euclid 
and that their number is finite? This should not, however, prevent us from 
admiring the mathematical richness of this treatise. For the moment, let 
consider how he proved his two propositions. 

The idea behind his proof of the first proposition can be summarized 
thus: 

Let A, B be respectively the centers of the spheres circumscribing the 
two polyhedra; let AE, BG, be respectively the distances from the center to 
the plane of one of the faces (see Fig. 58) and let the areas of the polyhedra 
be respectively SA, SB and their volumes VA, VB. Then we have 

 

VA = 1
3

SA · AE   and  VB = 1
3

SB · BG . 

 
Let nA, nB be respectively the number of faces of each polyhedron, and 

let nB > nA. 
Ibn al-Haytham now proves that BG > AE and thus VB > VA. His proof 

consists in comparing the lengths of AE and BG.38 We shall follow his 
reasoning in order to illustrate his approach and the style of his argument. 

 
38 See R. Rashed, Les Mathématiques infinitésimales, vol. II, pp. 379–81. 
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On EC, take a point K such that GH = EK and on ED, a point L such 
that EL = GI. If AE = BG, the pyramid AEKL will be equal to the pyramid 
BGHI and thus solid angle (A, EKL) = solid angle (B, GHI). 

 

 
Fig. 58 

 
 
From Lemma 2 of his Proposition 4, it is known that 
 

solid angle A, ECD( )
4π

=
pyr. AECD( )

VA

=
area ECD( )

SA

 

 

and 
solid angle B,GHI( )

4π
=

pyr. BGHI( )
VB

=
area GHI( )

SB

. 

 
Since SA = SB, we can deduce that 
 

(*)  
area ECD( )
area GHI( )

=
solid angle A, ECD( )
solid angle B,GHI( )

, 

 
therefore 

area ECD( )
area GHI( )

=
solid angle A, ECD( )
solid angle A, EKL( )

, 

 
which is absurd, according to Lemma 8. Therefore, AE ≠ BG. 

Now suppose BG < AE, in which case there is a point M on AE such 
that EM = BG, and we have 

 

solid angle (M, EKL) = solid angle (B, GHI). 
 

A

C

K E

L
D D

L

E

K C

A B

H

G

I
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But we would then have EM̂K > EÂK , EM̂L > EÂL  and (from the apex 
angles of two isosceles triangles with the same base, respectively, KE, EL, 

and KL) KM̂L > KÂL . Hence 
 

EM̂K + EM̂L + KM̂L > EÂK + EÂL + KÂL , 
 

and thus solid angle (M, EKL) > solid angle (A, EKL). But, from Lemma 8, 

area ECD( )
area EKL( )

>
solid angle A, ECD( )
solid angle A, EKL( )

; 

therefore 
area ECD( )
area EKL( )

>
solid angle A, ECD( )
solid angle M, EKL( )

, 

that is, 
area ECD( )
area BHI( )

>
solid angle A, ECD( )
solid angle B,GHI( )

, 

 
which is absurd in light of (*). 

Hence, by this double contradiction, BG > AE, and it follows that 
VB > VA. 

To prove his second proposition, Ibn al-Haytham considers two regular 
polyhedra P1, P2 inscribed in the same sphere, with areas S1, S2, volumes V1, 
V2 and number of faces n1, n2, respectively, and with n1 > n2. If A is the 
center of the sphere, there will be n1 regular pyramids, each with the vertex 
A, associated with the faces of P1 and similarly n2 pyramids with vertex A 
associated with the faces of P2. 

Let P′1 be one of the regular pyramids of P1 with vertex solid angle α1, 
base area s1 and height h1, and similarly let α2, s2, h2 be these elements of a 
pyramid P′2 of P2. 

Now, we have: n1α1 = n2α2 = 4π, and since n1 > n2, then α1 < α2. Let us 
suppose that the pyramids P′1, P′2 have the same axis AH. Since α1 < α2, 
the solid angle at the vertex of P′1 lies inside the solid angle at the vertex of 
P′2 and so the edges of P′1

 cut the sphere beyond the base of P′2. The bases 
of the two pyramids are parallel, and where they cut the sphere circles on 
the sphere circumscribe them; from this, we deduce that s1 < s2 and h1 > h2. 

On the other hand, we have 

α1

4π
=

s1

S1

= 1
n1

  and  α2

4π
=

s2

S2

= 1
n2

, 
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whence 
α2

α1

=
s2

S2

·
S1

s1

=
s2

s1

·
S1

S2

. 

 

But, it has already been established (Proposition 9) that α2

α1

>
s2

s1

, there-

fore s2

s1

⋅
S1

S2

>
s2

s1

, and hence S1 > S2. 

It is known that V1 = 1
3

S1h1 and V2 = 1
3

S2h2, so from S1 > S2 and h1 > h2, 

we deduce the desired result that V1 > V2. 
Finally, it should be emphasized, as we have said, that although Ibn al-

Haytham has proved the theorem in a perfectly general manner, the result 
can apply only to the tetrahedron, octahedron, and icosahedron, since these 
are the only regular polyhedra with the same faces. 

Ibn al-Haytham went on to prove the following corollary:  

Let P1, P2 be two regular polyhedra inscribed in the same sphere having 
respectively n1, n2 faces where the faces of the polyhedra are regular 
polygons with n′1 and n′2 sides. If n1 > n2 and n′1 > n′2, then S1 > S2 and 
V1 > V2. 
 
What this states is that, since the polyhedra are regular, if a tetrahedron, 

a cube, and a regular dodecahedron are inscribed in the same sphere, their 
total surface areas and their volumes increase in that order. 

We have just seen that Ibn al-Haytham’s intentionally dynamic 
approach to solving the problem of equal surface areas, conceived by ana-
logy with the successful method of treating isoperimeters, foundered 
because of the fact that there is only a finite number of regular polyhedra. 

This work of Ibn al-Haytham, and that of al-Khāzin before him, make 
by far the most important contributions to the study of isoperimetry and 
equal surface areas found in the mathematics of classical Islam. To our 
knowledge, no other work matches it. The work of later mathematicians, 
like Ibn Hūd, Jābir ibn Aflaḥ, and Abū al-Qāsim al-Sumaysāṭī, among 
others, was not at the level attained by al-Khāzin, and certainly did not 
equal that of Ibn al-Haytham. While Ibn Hūd did study the isoperimetric 
problem in his book al-Istikmāl (The Completion), he only reproduced Ibn 
al-Haytham’s proof, with some small variations.39 As for al-Sumaysāṭī, he 
added nothing of substance to the results of al-Khāzin.40 Jābir ibn Aflaḥ, 

 
39 See R. Rashed, Les Mathématiques infinitésimales, vol. I, pp. 1014–27. 
40 Ibid., pp. 777–8 and 830–3. 
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the astronomer of Andalusia, handled only the equal area problem, and 
considered only regular polyhedra in his proof.41 It was quite probably from 
the Latin translation of this latter book that Bradwardine borrowed a propo-
sition appearing in his Geometria Speculativa, Book II, which also turned 
up later in Cardano’s De Subtilitate: ‘Of all plane isoperimetric figures, 
having the same number of sides and equal angles, the greatest has its sides 
equal’. This is precisely al-Khāzin’s sixth proposition. 

Only further historical research may reveal whether there were other 
contributions to this mathematical topic at the level of al-Khāzin and Ibn al-
Haytham, and in particular whether the latter’s work was taken up and 
developed by other Islamic scholars. Were any elements of this work 
transmitted to Latin scholars? Without wishing to prejudge future discove-
ries, it nevertheless seems to us doubtful that much further progress could 
have been made without suitable analytical tools that had yet to be 
invented; Ibn al-Haytham’s work on the solid angle confirms this. 

 
 

4. THE THEORY OF THE SOLID ANGLE 
 
In his research on the total surface areas of solids, Ibn al-Haytham, as 

we have seen, developed a theory of the solid angle. This was in fact the 
first real theory of the solid angle after the modest work of Euclid. Ibn al-
Haytham’s contribution to the theory would not be equaled, let alone 
superseded, for several centuries. Ibn al-Haytham’s work in the 11th century 
greatly enriched the development of Archimedean research into a new 
branch of geometry. We should, therefore, sketch out the history of the stu-
dies into the solid angle prior to Ibn al-Haytham so as better to locate his 
own contribution. 

The first study of the solid angle that has come down to us is that of 
Euclid in the Elements. In Book XI, which treats solid geometry, Euclid 
defines the solid angle and elaborates a theory in Propositions 20–23 and 
26, before applying the theory in Propositions 27, 36 and 37 of the same 
book, and then in the Scholia of Book XIII (the so-called ‘Book XIV’). 
This theory, we should immediately point out, is based less on the solid 
angle as such, than on the ratios of the plane angles which form it. 

Euclid begins by defining the solid angle: 

A solid angle is the inclination constituted by more than two lines which 
meet one another and are not in the same surface, towards all the lines. 

 
41 Iṣlāḥ al-Majisṭī, ms. Escorial 390, fol. 12r–v. 
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Otherwise: A solid angle is that which is contained by more than two plane 
angles which are not in the same plane and are constructed to one point.42 

This is the eleventh of the 28 definitions that begin Book XI. It is clear 
in this double definition that the first is based on the definition of a plane 
angle in Euclid I Def. 8 (a plane angle is the inclination to one another of 
two lines in a plane which meet one another and do not lie in a straight 
line). It is also quite evident that, taken as such, this definition raises all 
sorts of problems. When we consider a solid angle formed by the inclina-
tion of three curved lines, the latter, taken in pairs, do not form a plane 
angle because the lines are not coplanar. The second definition, in its turn, 
seems only to speak of one sort of solid angle (a polyhedral angle): the 
solid angle at the vertex of a cone of revolution, for example, would be 
excluded. Whatever it may be, this double definition has caused a great 
deal of ink to flow and doubts have been raised as to whether the first defi-
nition is actually authentic.43 The second proposition is the one retained in 
the Arabic tradition in different copies of Isḥāq-Thābit’s translation of the 
Elements. This is the definition that Ibn al-Haytham reproduces in his work 
(Book on the Solution of Doubts of Euclid in the Elements).44 The first 
definition is found, however, in a fragment containing the preface to Book 
XI, the translation of which is explicitly attributed to the father of Isḥāq, 
that is to Ḥunayn ibn Isḥāq (the fragment was intercalated between the 
pages of the ms. Malik 3586, Teheran). 

Euclid proved, in order, the following five propositions, which provide 
the basis of his theory of solid angles: 

 
PROPOSITION 20 – If a solid angle be contained by three plane angles, any 
two, taken together in any manner, are greater than the remaining one. 

 

PROPOSITION 21 – Any solid angle is contained by plane angles less than 
four right angles. 

On this proposition, Heath justly remarks: ‘It will be observed that, 
although Euclid enunciates this proposition for any solid angle, he only 
proves it for the particular case of a trihedral angle’.45 Euclid’s proof 
depends on I.32 and consequently on the parallel postulate. However, we 

 
42 Euclidis Opera Omnia, Leipzig, 1945, vol. VII: Euclidis optica, opticorum 

recensio Theonis, catoptrica, cum scholiis antiquis, edidit I. L. Heiberg, p. 2; The 
Thirteen Books of Euclid’s Elements, vol. I-III, English translation and commentary by 
T. L. Heath, Cambridge, 1926, vol. III, p. 261. 

43 The Thirteen Books of Euclid’s Elements, ed. T. L. Heath, vol. III, pp. 267–8. 
44 Kitāb fī ḥall shukūk kitāb Uqlīdis fī al-Uṣūl, ms. Istanbul, University 800, fol. 

157r. 
45 The Thirteen Books of Euclid’s Elements, ed. T. L. Heath, vol. III, p. 210. 
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know, since Lobachevsky and Bolyai, that spherical geometry does not 
depend on the parallel postulate. 
 

PROPOSITION 22 – If there be three plane angles of which two, taken 
together in any manner, are greater than the remaining one, and they are 
contained by equal straight lines, it is possible to construct a triangle out of 
the straight lines joining the extremities of the two equal straight lines. 

 
This proposition serves as a lemma to prove the most important of this 

set of propositions, namely: 
 

PROPOSITION 23 – To construct a solid angle out of three plane angles two 
of which, taken together in any manner, are greater than the remaining 
one; thus the three angles must be less than four right angles. 

 

PROPOSITION 26 – On a given straight line, and at a given point on it, to 
construct a solid angle equal to a given solid angle. 

 
Without having defined the equality of two solid angles in terms of 

their measurement, Euclid proves this last proposition by assuming the 
equality of two trihedral angles; as Heath put it: ‘This proposition again 
assumes the equality of two trihedral angles which have the three plane 
angles of the one respectively equal to the three plane angles of the other 
taken in the same order.’46 In other words, Euclid supposes, without proof, 
that two solid trihedral angles are equal if the plane angles enclosing them 
are equal to each other in pairs. This implicit hypothesis that two solid 
angles are equal if the plane angles constituting them are respectively equal 
to each other is not, however, always valid. To be convinced of this, consi-
der a solid angle made by four plane angles meeting at a vertex; it is easy to 
see that an infinite number of different solid angles can be formed in this 
way. Nonetheless, the statement of Proposition 26 carries no restrictions. 
The difference between the generality of the proposition and his limitation 
of the proof to solid trihedral angles alone is a clue. It shows that in the 
Elements Euclid considered only solid angles that were trihedral. This was 
not the only restriction. We have just seen that Euclid attempted to esta-
blish the equality of two solid angles without, however, having explicitly 
defined the concept of equality. It follows that Euclid supposes that the 
solid angle has a magnitude of the same genus as other magnitudes, like the 
plane angle, for example. But at no time did he give any rules for treating 
this magnitude, for example for comparing solid angles to each other with 
the aid of the solid angle formed by three plane right angles at a vertex. 

 
46 Ibid., vol. III, p. 329. 
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This comparison, even if restricted to trihedral angles, is independent of the 
sum of the plane angles which define the solid angle. Hence, we would 
look in vain to find in the Elements any such study of the solid angle as a 
magnitude. In Euclid, the theory of the solid angle remains rather weak. 

After Euclid, the history of the solid angle is sparse. The only informa-
tion we have comes from the second part of Book V of Pappus’s 
Collection, dedicated to solid figures. Of the thirteen semi-regular poly-
hedra, he writes: 

In fact, if, for the polyhedra whose solid angles are enclosed by three plane 
angles, one simply counts the number of plane angles possessed by all the 
bases [faces] of the polyhedron, it is evident that the number of solid angles 
is one third of the number obtained; whereas for polyhedra whose solid 
angles are enclosed by four plane angles, if one counts all the angles of the 
bases of the polyhedra, the number of the solid angles is one quarter of the 
number obtained. Finally, in the same way for polyhedra whose solid angles 
are enclosed by five plane angles, the number that expresses the quantity of 
solid angles is one fifth of the quantity of plane angles.47 

What we have here, as Pappus himself reminds us, is a reference to the 
thirteen polyhedra discovered by Archimedes and given in his lost book.48 
This means that, after Euclid, Archimedes must at least have referred to the 
solid angle in his work on the semi-regular polyhedra. But our knowledge 
is limited to this remark by Pappus: we cannot know more without access 
to this lost work. Such was, it seems, the extent of research into the solid 
angle until the subject was explored again in the 9th century. Since then, 
even though no comprehensive history of the solid angle has been written, 
we can observe two lines of research. The first is based on Euclid XI, with 
the intention of improving on the proofs given there; the second is directly 
linked to approximating solids by convex polyhedra. Examples of the first 
type are found in the works of al-Sijzī, Ibn al-Haytham, and doubtless 
others; whereas the second direction of research belongs to Ibn al-
Haytham. 

As far as we know, the first Islamic mathematician who showed an 
interest in the solid angle was Aḥmad ibn ʿAbd al-Jalīl al-Sijzī in the 
second half of the 10th century. Al-Sijzī considered the solid angle on at 
least two occasions. In his Introduction to the Science of Geometry (al-
Madkhal ilā ʿilm al-handasa), he classified different types of solid angle: 
‘one is comprised of a single surface, the second is comprised of a surface 

 
47 La Collection mathématique, French transl. Paul Ver Eecke, vol. I, p. 274. 
48 Ibid., pp. 272–3. 
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and a plane, and the third is comprised of planes’.49 Al-Sijzī provided 
examples of each type: the angle at the vertex of a cone and that at the 
summit of an ellipsoid; the vertex of a half-cone; the angle comprised of 
three plane angles – a trihedral angle – and whose sum is less than four 
right angles. 

In a second memoir, a Treatise on the Resolution of the Doubt in 
Proposition Twenty-Three of the Eleventh Book of the Treatise of Euclid 
(Risāla fī ḥall al-shakk alladhī fī al-shakl al-thālith wa-al-ʿashrīn min al-
maqāla al-ḥādiyya ʿashara min kitāb Uqlīdis fī al-Uṣūl),50 al-Sijzī 
examines Euclid’s proposition and lemma. In the preface to the text, he 
addresses other mathematicians who have raised doubts about Euclid’s 
proof. In other words, at that time, al-Sijzī was not the only mathematician 
interested in the solid angle, albeit from a Euclidean perspective. 

The second mathematician was Ibn al-Haytham himself. In his Book on 
the Resolution of Doubts Concerning the Elements of Euclid (Kitāb fī ḥall 
shukūk kitāb Uqlīdis fī al-Uṣūl), he also returned to Euclid’s proof in order 
to correct it.51 These manuscripts are as interesting for what they have to 
tell about the history of Book XI of the Elements as they are for informa-
tion about the solid angle; these studies do not, however, radically alter the 
nature of the Euclidean theory. 

The third study is by far the most novel and the most important. It is in 
Ibn al-Haytham’s book on isoperimetry and equal surface areas that he ela-
borates a theory of the solid angle. How then was he led to do this? 

As we have seen above, one of the aims of his book was to demonstrate 
the maximal surface area property of the sphere. Following in the footsteps 
of his predecessors like al-Khāzin, Ibn al-Haytham had opted for a strategy 
employing infinitesimals that approach the volume of the sphere by a 
sequence of volumes of convex polyhedra. His unfortunate choice of regu-
lar polyhedra changes nothing about the intention that lay behind his stra-
tegy, but the approach does require him to compare the volumes of convex 
polyhedra. Such a comparison is more manageable if it involves the solid 
angle and if, consequently, one compares solid angles with each other. But 
comparisons are only possible among magnitudes and by means of magni-
tudes. Thus it was necessary to conceive of the solid angle explicitly as a 
magnitude, and therefore as subject to those operations applicable to 
magnitudes, including the theory of proportions. Ibn al-Haytham estab-
lished many lemmas on the solid angle in order to prove the extremal 

 
49 Ms. Dublin, Chester Beatty 3652, fol. 7v. 
50 Ibid., fol. 33r–34v. 
51 Ms. Istanbul, University 800, fol. 161r–165v. 
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property of the sphere. But these lemmas themselves constitute a new 
theory of the solid angle. Let us see how he proceeded to establish the 
theory. 

In such a situation, the most natural method, without necessarily being 
the simplest, would be to proceed by analogy: to begin with the theory of 
the plane angle in order to generalize it to three dimensions. But we should 
not be naïve: analogy here has only a heuristic value; it is a means of disco-
very. The move from the plane to three-dimensional space has too many 
pitfalls to be simple. In fact many valuable properties of the plane angle 
turn out to be invalid in three dimensions. For Ibn al-Haytham, the 
knowledge he had of the relations between chords and the angles at the 
center of the circle provided him with strong intuitive ideas but not, even 
so, a theory of the solid angle. 

This mathematician found himself in an entirely new situation: he was 
within the landscape of Archimedean geometry, but using the tools of 
spherical geometry. This is a far cry from the world of Euclid. To explain 
what we mean, let us examine the elements of his theory. 

Ibn al-Haytham began by recalling a result of Archimedes that he 
proved again in his treatise On the Measurement of the Sphere (Qawl fī 

misāḥat al-kura): The volume of the sphere is equal to 
4

3
πr3 , where r is the 

radius. Following this, he wrote: 

Any regular polyhedron inscribed within a sphere is such that, if planes are 
drawn from the center of the sphere passing52 through the sides of one of its 
bases, then these planes divide off a sector from the sphere whose ratio to the 
entire sphere is equal to the ratio of the spherical surface at the base of this 
sector to the entire surface of the sphere, and is also equal to the ratio of the 
solid angle, that is the angle at the center of the sphere which is surrounded 
by the surfaces of a regular pyramid53 whose lines are straight and whose 
base is one of the bases of the polyhedron, to the eight solid right angles 
which is the sum of all the solid angles at the center of the sphere and which 
are also at the center of any regular polyhedron, as the sphere and the surface 
of the sphere are divided by these planes into equal parts.54  
 
In this text Ibn al-Haytham introduces the concept of the solid angle 

with its relationship to spherical surfaces and spherical sectors. More pre-
cisely, he proposes that if a sphere has surface area A and volume V, and a 

 
52 Lit.: planes to the sides. 
53 Lit.: rectangular cone. 
54 On the Sphere which is the Largest of all the Solid Figures, in R. Rashed, Les 

Mathématiques infinitésimales, vol. II, p. 401–2; English translation, pp. 313–14. 
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sector of the sphere with solid angle α has surface area s and volume v, 
then 

 

(1)  v
V

= s
A

= α
8D

, 

 

where D is a solid right angle, and each of these fractions is equal to 
1

n
 if n 

is the number of faces of the polyhedron. 
It is only after this that Ibn al-Haytham defines and constructs a solid 

right angle: 

As for the angles, if a great circle is drawn within the sphere, and if two 
diameters are drawn within this circle which cross each other at right angles, 
and if a perpendicular to this plane is drawn passing through its center, and if 
this is extended on both sides until it meets the surface of the sphere, and if 
<perpendicular> straight lines are drawn from these two extremities onto the 
extremities of the two diameters, then they form eight equal pyramids within 
the sphere whose vertices are at the center of the sphere and whose angles at 
the vertices are equal. Each of these angles is called a ‘solid right angle’, and 
the sum of these angles is equal to the sum of the angles of any polyhedron 
inscribed within the sphere.55  

Ibn al-Haytham concludes then that v =
1

3
sr . We can already see that 

Ibn al-Haytham has not chosen to use the Euclidean definition of the solid 
angle, instead using a polyhedron inscribed in a sphere. Each face of the 
polyhedron is associated with a regular pyramid whose vertex is at the 
center of the sphere, B say. By (1) he defines the solid angle at the vertex B, 
a spherical surface, and a sector of the sphere.  

Ibn al-Haytham then goes on to attempt to establish the following pro-
positions: 

 
PROPOSITION 1: Let A be the center of a sphere and let P1(ABCDE) and 
P2(AHFG) be two pyramids, where B, C, D, E, F, G, H lie on the surface of 
the sphere; consider the two pyramids P1, P2 with solid angles α1, α2 
respectively. Let the faces of these pyramids be extended so as to cut the 
surface of the sphere to determine spherical surfaces s1, s2 and spherical 
sector volumes v1, v2 respectively. Then 

α1

α2

=
s1

s2

=
v1

v2

. 

 
55 Ibid., p. 403; English translation, p. 314. 
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Fig. 59 

 

If we take nP1 pyramids, the portion of the sphere associated with them 
will have a spherical surface area ns1 and spherical sector volume nv1, with 
a total solid angle nα1, and the same is true for P2. Ibn al-Haytham then 
states: 

 

If nv1 > nv2, then nα1 > nα2 and ns1 > ns2. 
If nv1 < nv2, then nα1 < nα2 and ns1 < ns2. 
If nv1 = nv2, then nα1 = nα2 and ns1 = ns2. 
 
If nα1 > nα2, then ns1 > ns2 and nv1 > nv2. 
If nα1 < nα2, then ns1 < ns2 and nv1 < nv2. 
If nα1 = nα2, then ns1 = ns2 and nv1 = nv2. 
 

We note that the explanations given by Ibn al-Haytham do not in any 
way constitute a proof of his assertion that: 

 
α1

α2

=
s1

s2

=
v1

v2

. 

 

PROPOSITION 2: Let ABCD be a pyramid such that AB̂C  ≥ π
2

 and AB̂D  ≥ 

π
2

, E is a point on BD such that AÊC  ≥ π
2

 or AĈE  ≥ π
2

, then 

 

area DBC( )
area EBC( )

>
solid angle A, BDC( )
solid angle A, EBC( )

. 
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Fig. 60 
 

Consider a sphere Σ of center A and radius AB cutting AC, AD, AE at 
H, I, L, respectively, such that AB = AH = AI = AL. Thus lying in the planes 
BAC, BAD, ACD, ACE, we have arcs BH, BLI, HI, HGL respectively. The 

line segment BL lies in the plane BAD and cuts AD at K (since AB̂L  is 

acute and BÂD  is acute). The arc LGH lies on Σ, so K is outside the sphere 
and AK > AI. The conical surface with vertex B defined by the arc LGH 
cuts the plane ADC following an arc KFH, since any straight line BG cuts 
this plane at a point F exterior to Σ, the arc KFH lies entirely outside the 
sphere, except for the point H. Thus the sector of the sphere AILGH lies 
inside the solid AKFHGL, bounded by planes and a part of the conical 
surface, since the part GF of the generator lies outside Σ; and the sector of 
the sphere ALHB is greater than the solid ALHB, bounded by the planes and 
another part of the conical surface, since the part BG of the generator lies 
inside Σ. 

 
Fig. 61 
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sect. (A, ILH ) < sol. (A, KFHGL) 

sect. (A, LHB) > sol. (A, HGLB)    

⎫
⎬
⎭

 ⇒   
sect. (A, ILH )

sect. (A, LHB)
 < 

sol. (A, KFHGL)

sol. (A, LGHB)
. 

By composition, this gives 

 (*)  sect. (A, IHB)

sect. (A, LHB)
<

sol. (B, AKFH )

sol. (B, AHGL)
. 

 

In the course of his proof of Lemma 6, Ibn al-Haytham introduces 
another proposition, namely: 

 

(**)  area tr. (AEC)

area sect. (ALGH )
≤

area tr. (ADC)

area sect. (AKFH )
. 

 
In other words, the conical projection from center B of the plane AEC 

onto the plane ADC increases some ratios of star-shaped areas in relation to 
A. The proof of this proposition reduces, by the method of contradiction, to 
the case where we consider areas of triangles with the vertex at A. Let us 
examine the steps of this proof. 

Let us suppose that 
 

(1)   
area AEC( )

area sect. ALGH( )
>

area ADC( )
area sect. AKFH( )

; 

 
then there exists an area La (a fourth proportional) such that 

 

(2)   
area AEC( )

La

=
area ADC( )

area sect. AKFH( )
. 

 
Hypothesis (1) can therefore be written: La > area sect. (ALGH) and 

thus there exists a polygon LSQH circumscribing the circular arc LGH, 
such that 

 
(3)  area (ALSQH) < La. 
 

Ibn al-Haytham considers the case where this polygon has three sides, 
LS, SQ, QH tangent to the arc at points L, G, H, respectively. The polygon 
LSQH, projected onto the plane ADC, is mapped to the polygon KRPH, 
whose sides KR, RP, PH are tangents at K, F, H, respectively, to KFH (the 
arc of a conic), which is itself the projection of the circular arc LGH (see 
Figs 61 and 62). 
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Fig. 62 
 
Note that Ibn al-Haytham is certainly aware of the fact that a conical 

projection preserves contact, which recalls the properties of the tangent 
plane of the conic, known to Ibn Sahl.56 

The inequality (*) thus reduces to 
 

(4) 
area ADC( )

area AKRPH( )
>

area AEC( )
area sect. ALSQH( )

. 

 
But the ratio on the right hand side of (4) is, according to (3), greater than 

 

area AEC( )
La

=
area ADC( )

area sect. AKFH( )
 

 

from which we deduce that 
 

area(AKRPH) < area sect.(AKFH), 
 

which is absurd, since the polygon circumscribes the curved arc. 
Ibn al-Haytham then asserts that the following inequalities result from 

inequality (4): 

 (5)  
area AEN( )
area ALS( )

<
area ADV( )
area AKR( )

;  
area ANU( )
area ASQ( )

<
area AVO( )
area ARP( )

;  

  

area AUC( )
area AQH( )

<
area AOC( )
area APH( )

. 

 

 
56 R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2006; Géométrie 

et dioptrique, pp. XVIII–XXXIX.  
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Unfortunately Ibn al-Haytham’s last claim is not true in every case.57 
The proposition is, however, true whenever the points C, D are on the same 
side of the plane perpendicular to ABD through AB. This condition escaped 
Ibn al-Haytham, but his error did not affect the propositions that followed 
and that depend on it. Ibn al-Haytham somehow always manages to situate 
himself in favourable conditions.  

The other propositions on the solid angle follow: 
 

PROPOSITION 3: Let ABCD be a pyramid such that AB is perpendicular to 

the plane BCD, with BĈD  ≥ π
2

. If E lies on CD, between C and D, then 

 
area DBC( )
area EBC( )

>
solid angle A, BDC( )
solid angle A, EBC( )

. 

 
The argument is as follows. In the plane ABE, construct a perpendicular 

to AE at E to cut AB at G. Since BĈE  ≥ π
2

, then BE > BC, and since 

AB ⊥ plane BCD, we have AE > AC. If BC is produced to E′ such that 

BE′ = BE, then A ˆ′E G  = AÊG  = π
2

, and so AĈG  is obtuse. Hence the 

pyramid AGCD fulfils the conditions of Proposition 2. For the case in 

which AÊG  is a right angle, we have pointed out that the situation is 
ambiguous; the lemma, however, remains true.58 

 
Fig. 63 

 
57 See R. Rashed, Les Mathématiques infinitésimales, vol. II, pp. 346 sqq. 
58 Ibid., pp. 370 sqq. 
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First we show that AĈD  ≥ π
2

:  

• If BĈD  = π
2

, then CB ⊥ CD whereas CD is orthogonal to AB, 

therefore CD is perpendicular to the plane ABC, and consequently 

CD ⊥ AC, i.e. AĈD  = π
2

. 

• If BĈD  > π
2

, we can draw CD′ inside BĈD  such that D′C ⊥ BC, and 

so CD′ is perpendicular to the plane ACB and AC ⊥ CD′; thus AĈ ′D �= π
2

 

and D′ � ]BD[. 
Now, in the plane ACG, draw CG′ ⊥ AC, where G′  � ]BG[. Then the 

plane CD′G′ is perpendicular to AC and meets the plane ABD in the line 
G′D′, which meets AD between A and D, at D′′, say. We then have 

AĈ ′′D   = π
2

, and hence AĈD  > π
2

. 

Ibn al-Haytham then continues the argument thus: 
 

area GCD( )
area GCE( )

>
solid angle A,GCD( )
solid angle A,GCE( )

; 

 
but 

area GCD( )
area GCE( )

=
CD

CE
=

area DBC( )
area EBC( )

 

 

and  
solid angle (A, GDC) = solid angle (A, BCD) 

 
solid angle (A, GCE) = solid angle (A, BCE), 

 

from which 
area DBC( )
area EBC( )

>
solid angle A, BCD( )
solid angle A, BCE( )

. 

 
PROPOSITION 4: Let ABCD be a pyramid such that AB is perpendicular to 
the plane CBD with BC = BD. If EG CD then 

 

area CDB( )
area EBG( )

>
solid angle A, BCD( )
solid angle A, BEG( )

. 
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Fig. 64 

 

Since EG  CD, the triangle BGE is isosceles. If I is the midpoint of 

EG, then BI ⊥ EG and BI cuts DC at H, the midpoint of CD. But 
AB ⊥ CBD and so ABC and ABH are both perpendicular to CBD. But, since 
BH = ABH ∩ BCD, and GI in BCD is perpendicular to BH, then GI is also 

perpendicular to the plane ABH; hence AÎG  = π
2

, likewise AĤC  = π
2

.  

Since we have AÎH  and AÎC  both obtuse and BĤC  = π
2

, we can 

apply Proposition 2, with AÎC  obtuse. Again we have the doubtful case, 
but it is valid here, since the points C, H both lie on the same side of the 
plane perpendicular to ABH passing through AB (CH is parallel to this 
plane). Hence 

area BCH( )
area BCI( )

>
solid angle A, BCH( )
solid angle A, BCI( )

. 

The same Proposition 2, with AÎG  a right angle (this is true in all 

cases,�AÎG  playing the same role as AĈE  in Proposition 2), gives 
  

area CBI( )
area IBG( )

>
solid angle A, BCI( )
solid angle A, BIG( )

 

 
and multiplying together both sides of these last inequalities gives  

 
area HBC( )
area IBG( )

>
solid angle A, BCH( )
solid angle A, BIG( )

. 
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Finally, doubling the areas and solid angles, since AHB is a plane of 
symmetry, we have the result 

 
area DBC( )
area BEG( )

>
solid angle A, BCD( )
solid angle A, BEG( )

. 

 
The integral calculus now makes it possible to establish this result 

directly, without first having to prove Proposition 2.  
 

PROPOSITION 5: Let P1, P2 be two right pyramids with the same vertex A 
whose bases are similar but unequal regular polygons, and let them be ins-
cribed in a sphere of center A. Let P1 have the greater base. Then 

 
solid angle at A of P1

solid angle at A of P2

>
base of P1

base of P2

. 

 
In al-Haytham’s proof, the key idea, here, as elsewhere, is to measure 

the solid angle in terms of the area of the surface of the sphere it inter-
cepts.59 

 
PROPOSITION 6: Let P1, P2 be two right pyramids with the same vertex A 
whose bases are regular polygons of sides n1, n2 and let them be inscribed 
in a sphere of center A. Let the areas of their bases be s1, s2. 

If n1 > n2 and s1 < s2, then 
 

. 

 
These, then, are the elements that Ibn al-Haytham conceived for a 

theory of the solid angle. As we have seen the principal unifying ideas of 
the theory are: the solid angle is a magnitude with the same status as other 
magnitudes; and the size of a solid angle can be measured by the area of the 
spherical surface it intercepts, which allows one to define the ratios 
between polygons inscribed in a sphere and the solid angles at the center of 
the sphere subtended by the polygons. 

 
59 R. Rashed, Les Mathématiques infinitésimales, vol. II, p. 373–7 and Les 

Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-Haytham. Théorie 
des coniques, constructions géométriques et géométrie pratique, London, 2000, 
pp. 942–3: English transl., Ibn al-Haytham and Analytical Mathematics, pp. 288–95. 

solid angle at A of P2

solid angle at A of P1

>
s2

s1
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At this point, any analogy with the theory of the plane angle no longer 
holds. 

An examination of the proofs of the foregoing properties shows that 
Ibn al-Haytham combines conical projections with infinitesimal processes. 
This episode thus marks one of the most advanced and sophisticated chap-
ters of mathematics of the time. As far as we know, the theory of the solid 
angle was not treated again for six centuries, until Descartes’s Progymnas-
mata de solidorum elementis and Florimond de Beaune’s La doctrine de 
l’angle solide: the latter pursued his own path; the former handled ideas 
close to those of Ibn al-Haytham. Not until Euler and the Abbé de Gua does 
one witness further advances in the theory, thanks to the invention of the 
differential and integral calculus. 
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THE TRADITIONS OF THE CONICS AND THE BEGINNING OF 
RESEARCH ON PROJECTIONS* 

 
 
 

INTRODUCTION 
 

From the middle of the 9th century, mathematicians began to proceed 
by geometrical transformations much more than they had before. Some of 
the best evidence of this trend is found in the works of al-Farghānī, the 
Banū Mūsā brothers (especially the youngest, al-Ḥasan), and Thābit ibn 
Qurra. One century later, the names of Ibn Sahl, al-Qūhī, and al-Sijzī, for 
example, are linked to the study of these mathematical concepts, which 
quickly replace the objects studied. A careful reading of their writings 
shows indeed that geometers were interested not only in the study of fig-
ures, but also in the relations that united them. It is true that transfor-
mations had made a modest showing before the 9th century: Archimedes 
and Apollonius, among others, drew upon them. The former, in his 
Conoids and Spheroids, had brought orthogonal affinity into play, but 
Arabic mathematicians did not know this work. If we can believe Pappus, 
Apollonius allegedly had used certain transformations in his Plane Loci, a 
book that the 9th–10th century mathematicians did not have, but from which 
they certainly knew indirectly at least a few propositions from it (see 
‘Archimedeans and the problems with infinitesimals’). 

In the 9th century, however, the use of geometrical transformations 
grew much more frequent and their field of application much more exten-
sive. The difference between ancients and moderns is significant: among 
the former, certain transformations arise in the course of demonstrations; 
among the latter, it is a new point of view that emerges. The first chapter in 
which this new orientation of geometry is pronounced will soon get the 
name of ‘science of projection (ʿilm al-tasṭīḥ)’.1 This chapter of geometry 
separated itself from astronomy and was established when it became neces-

 
* In collaboration with Philippe Abgrall. 
1 See especially R. Rashed, Geometry and Dioptrics in Classical Islam, London, 

al-Furqān, 2005 and Les Mathématiques infinitésimales du IXe au XIe siècle. 
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sary to give a firm foundation to the procedures for representing the sphere 
exactly in order to construct astrolabes. We must remember two significant 
historical facts. In the middle of the 9th century, questions of projection 
were already topics of discussion, not to say controversy, in which mathe-
maticians such as the Banū Mūsā, al-Kindī, al-Marwarūdhī (the astronomer 
of the caliph al-Maʾmūn), and al-Farghānī, among others, took part. In 
addition, it has not been sufficiently emphasized that mathematicians who 
knew about the recent translation of Apollonius’s Conics raised or debated 
these questions of projection. This cross-fertilization between research on 
projections and the geometry of conic sections occurred in, among others, 
al-Farghānī’s al-Kāmil, which devotes an entire chapter to the geometry of 
projections. In it al-Farghānī offers the first truly geometrical study of 
conic projections. From al-Farghānī to al-Bīrūnī in the 11th century, 
through al-Qūhī and Ibn Sahl, one witnesses both a deployment and a clear 
confirmation of this geometrical research. Moreover, in two of al-Bīrūnī’s 
works – Tasṭīḥ al-ṣuwar wa-tabṭīḥ al-kuwar (The Plane Projection of 
Figures <= Constellations> and of the Spheres), Istīʿāb al-wujūh al-
mumkina fī ṣanʿat al-asṭurlāb (On All Possible Methods for Constructing 
the Astrolabe) – he retraces in his own way this history of projective 
methods. He makes an inventory of the different kinds of projection known 
in his day, and elaborates a few of them himself. He not only takes credit 
for the invention of the cylindrical projection, but also illustrates the pro-
jection that is today called zenithal equidistant projection, reminding the 
reader that it was the focus of several controversies. 

Overall, in their research on projections, mathematicians took several 
paths. The most frequent of these was that traced by theoretical research on 
the stereographic projection, a conical projection of the sphere from one of 
its poles. In it, they included the study and the demonstration of its proper-
ties, accompanied by a discussion of its applicability to the astrolabe, that 
is, the exactitude of its representation of a sphere on a plane. Other paths 
consisted in generalizing, in the context of this astrolabe, this projection by 
displacing its pole along the axis or off the axis, or in considering cylindri-
cal and conic projections of the sphere in all of their generality. Finally, yet 
other paths were explored to elaborate new projections, independently of 
the studies we just mentioned, and among which one finds the projection 
nowadays called zenithal equidistant or globular projection. This new 
chapter on projections, for which Ptolemy’s Planisphere is at best only a 
distant ancestor, was also enriched by geometrical research carried out on 
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sundials by many a geometer, including Thābit ibn Qurra2 and his grand-
son, Ibn Sinān.3 Add to this the fact that, beginning with al-Ḥasan ibn 
Mūsā and especially Thābit ibn Qurra in the 9th century, an entire tradition 
of research on the cylindrical projection comes into being in the context of 
works on cylindrical sections, and that this tradition in fact also stands at 
the origins of the chapter on pointwise transformations. 

 
 

1. CYLINDRICAL PROJECTIONS 

1.1. Al-Bīrūnī’s testimony and his priority claim  

In several of his works, al-Bīrūnī claims credit for the invention of 
cylindrical projection. In his Chronology (al-Athār al-bāqiyya ʿan al-qurūn 
al-khāliyya), after having asserted al-Ṣāghānī’s priority in generalizing the 
conic projection by displacing its pole along the axis of the sphere,4 he 
claims priority for cylindrical projection. 

There is a type that I have called cylindrical. I have no evidence that, before 
me, any of the specialists of this art ever mentioned it. It consists in passing 
straight lines and planes through the circles and the points of the sphere, par-
allel to the axis. One thus produces in the plane of the equator [literally: the 
diurnal plane] only straight lines, circles, and ellipses.5  

This is the orthographic projection. A passage on the same subject 
appears in his treatise on the Plane Projection of Figures (Tasṭīḥ al-
ṣuwar), already cited; here, the author admits having gotten the idea of the 
cylindrical projection from a critical reading of al-Farghānī’s al-Kāmil, in 
which the latter asserted the impossibility of such a projection:  

As to the cylindrical projection, it came to my mind on account of the abun-
dance of absurdities in which al-Farghānī engaged at the end of his book, 
concerning the refutation of the astrolabe in the shape of a melon. I believe 
that I am the first to have attained this projection which I have called the 
[cylindrical] projection for a reason I will not go into here. It consists of an 
intermediate species, neither from the north nor from the south, and by 

 
2 Thābit ibn Qurra, Œuvres d’astronomie, edited and translated by R. Morelon, 

Paris, 1987. 
3 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān, Logique et géométrie au Xe siècle, 

Leiden, 2000. 
4 See below Section 2.4. 
5 Al-Bīrūnī, Al-Athār al-bāqiya ʿan al-qurūn al-khāliya, Chronologie orienta-

lischer Völker, ed. C. E. Sachau, Leipzig, 1923, p. 357. 
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which one can project the stars of the celestial sphere in their totality on the 
plane of the celestial equator or on the plane of any given great circle.6 

In his great book On All Possible Methods for Constructing the 
Astrolabe (Istīʿāb al-wujūh al-mumkina fī ṣanʿat al-asṭurlāb), al-Bīrūnī 
describes more precisely the principles of this projection, which he now 
calls ‘perfect’ (kāmil), because it makes possible the representation of the 
entire celestial sphere:  

This projection is constructed from the intersections of the equatorial plane 
with the lateral surfaces of cylinders with <a right circular section> and of 
cylinders with a right elliptical section with parallel sides (generatrices) and 
parallel to the axis of the sphere. Indeed, whenever one makes the surfaces 
of cylinders subject to the preceding condition pass through the circumfer-
ences of the celestial circles <parallel to the plane of the equator>, these 
surfaces cut the equatorial plane following circles that are parallel and equal 
to the sizes of the celestial circles. And when, through the circumferences of 
circles inclined to the sphere, whether large or small, one passes cylinders 
with a right elliptical section in the aforementioned position, the intersection 
forms on the equatorial plane ellipses of different positions and sizes.7 

Al-Bīrūnī does not abandon the context of orthographic projection, 
perhaps because his project consists in studying workable methods for the 
astrolabe. We shall see that, one half-century before him, the mathemati-
cians al-Qūhī and Ibn Sahl considered cylindrical projections more gener-
ally, but al-Bīrūnī very likely did not know of his predecessors’ 
contributions.  

He does not mention either the scientist who, under the stimulus of the 
Banū Mūsā (especially of al-Ḥasan, the youngest of them) studied the 
cylindrical projection in the context of their works on the cylinder and its 
plane sections. These works go back to antiquity: Serenus of Antinoeia’s 
treatise On the Cylindrical Section and on the Conic Section applies 
Apollonius’s method to the case of the cylinder, and thus develops the 
sketch of a theory of plane sections of the right or oblique cylinder with a 
circular base, which are ellipses. This work had no known sequel until this 
area of research was revived in 9th-century Baghdad. 

 

 
6 Al-Bīrūnī, Tasṭīḥ al-ṣuwar wa-tabṭīḥ al-kuwar, ed. A. Saidan in Majalla 

ʿIlmiyya, al-Jāmiʿa al-Urduniyya, vol. 4, nos. 1 and 2, 1977, pp. 7–22, at p. 14. 
7 Ms. Leiden 1066, fol. 93r. 
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1.2. Al-Ḥasan ibn Mūsā’s study of the ellipse 

According to the biobibliographers, al-Nadīm and al-Qifṭī, al-Ḥasan 
ibn Mūsā in the 9th century composed a treatise on the ellipse called The 
Elongated Circular Figure (Kitāb fī al-shakl al-mudawwar al-mustaṭīl), 
which is unfortunately lost. We have witnesses that attest to its authentic-
ity, and contribute a few details about its content. The first are his brothers 
Muḥammad and Aḥmad, who, in their short treatise on The Lemmas to the 
Book of Conics (Muqaddamāt kitāb al-Makhrūṭāt), mention that al-Ḥasan 
composed a work on the generation of elliptical sections as well as on the 
demonstration of their areas.  

Thanks to his capabilities in geometry and the prominence of his standing in 
[this field], it became possible for al-Ḥasan ibn Mūsā to examine the science 
of the section of the cylinder cut by a plane not parallel to its base, and such 
that the line that surrounds the section does so completely. He then discov-
ered the science, and the science of the fundamental properties associated 
with it, relative to diameters, axes and chords, and he discovered the science 
of its area.8 

As if it were necessary, this testimony is confirmed by the late-10th- 
century mathematician al-Sijzī, who, in his treatise on The Description of 
Conic Sections (Risāla fī waṣf al-quṭūʿ al-makhrūṭiyya), cites the title of 
the work, attributing it to the Banū Mūsā without distinguishing them, and 
summarizes the procedure they applied for the continuous drawing of the 
ellipse by means of the bifocal property.9 Al-Ḥasan very probably had only 
approximate knowledge of Apollonius’s treatise, insofar as the version he 
had was not very readable, not to say incomprehensible. It was probably 
only after his death that his brother Aḥmad brought back from Damascus 
Eutocius’s redaction, which then made it possible to understand The 
Conics. 

Nevertheless, we know that these works by al-Ḥasan ibn Mūsā inspired 
a genuine research tradition on cylindrical sections beginning with the use 
of projections, among other geometrical transformations. Among these, 
one must count the magisterial study of Thābit ibn Qurra, a collaborator of 
the Banū Mūsā, and, a century later, that of Ibn al-Samḥ, the student of 
Maslama al-Majrīṭī in Cordoba, one of whose treatises takes up al-Ḥasan’s 

 
8 Apollonius: Les Coniques, Tome 1.1: Livre I, historical and mathematical com-

mentary, ed. and transl. from Arabic text by R. Rashed, Berlin/New York, Walter de 
Gruyter, 2008, Appendix I, p. 505, 4–8. 

9 R. Rashed, Œuvre mathématique d’al-Sijzī, vol. I: Géométrie des coniques et 
théorie des nombres au Xe siècle, Les Cahiers du Mideo, 3, Louvain/Paris, Éditions 
Peeters, 2004, p. 246. 
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results on this question. We will therefore return to al-Ḥasan’s contribution 
by studying the works of his two successors.  

1.3. Thābit’s treatise on the cylinder  

In his On the Sections of the Cylinder and on its Lateral Surface (Kitāb 
fī quṭūʿ al-usṭūwāna wa-basīṭihā), Thābit ibn Qurra goes farther down the 
path that al-Ḥasan ibn Mūsā had opened, and refers directly to him in his 
introduction. 

We shall continue by discussing [first] the area of a cylindrical section, 
which was determined by Abū Muḥammad al-Ḥasan ibn Mūsā – may God 
be pleased with him – and which is the ellipse that belongs to conic sections, 
and [second] the area of the kinds of portions of this section.10 

In contrast to his predecessor, Thābit knew Apollonius’s Conics very 
well, having translated Books V to VII and revised the translation of 
others. He drew inspiration from it for his own project, which is therefore 
distinct from al-Ḥasan’s. Thābit elaborated a theory of the cylinder and of 
its plane sections analogous to that of Apollonius for the cone, but by using 
additional means, namely geometrical transformations: projections, homo-
thetic transformations, and affinities. This same characteristic stands out 
when one compares the works of Thābit and of Serenus. The many analo-
gies between them show that Thābit was immersed in Serenus’s work, all 
the more so because his knowledge of the Conics allowed him direct access 
to results that Serenus had borrowed from Apollonius. One can, however, 
see the two paths diverge when Thābit ibn Qurra introduces projections. In 
effect, it was the means that al-Ḥasan ibn Mūsā put to work, utilized in the 
context of Apollonius’s (and therefore Serenus’s) method, that made it 
possible for Thābit to blaze his own trail. Even though this possibility was 
an option for both of them, thanks to their general definitions of the cone 
and the cylinder by generatrices, neither Apollonius nor Serenus took the 
projective path.  

It is in Proposition 7 of his own treatise that Thābit introduces for the 
first time a cylindrical projection p of a plane (P) on a plane (P′) parallel to 
(P), in the direction of (AE).  

 
10 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: Fondateurs et 

commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-Qūhī, Ibn al-
Samḥ, Ibn Hūd, London, al-Furqān Islamic Heritage Foundation, 1996, p. 500; English 
translation: Founding Figures and Commentators in Arabic Mathematics. A History of 
Arabic Sciences and Mathematics, vol. 1, Culture and Civilization in the Middle East, 
London, Centre for Arab Unity Studies, Routledge, 2012, p. 381. 



 2. THE TRADITIONS OF THE CONICS 561 
 

G

F E

(P)

AB

C

� �

� �
(P )

I
 

Fig. 65 
 
This projection is indistinguishable from the translation of vector AE, 

but what follows proves that this is indeed a projection, notably in Propo-
sition 10, where (P′) is now no longer parallel to (P). In Proposition 7, 
Thābit shows that if a figure (ϕ) is contained in plane (P) and if (ϕ′) = p(ϕ), 
then the two figures (ϕ) and (ϕ′) are similar. He considers two points A and 
B of (ϕ), and their images E and F through p. Then E and F are on figure 
(ϕ′) and ABFE is a parallelogram, which has the consequence that AB = EF 
and allows one to superpose (waḍaʿa ʿalā) the segments [AB] and [EF]. By 
reductio ad absurdum he shows that figure (ϕ) is superposed (inṭabaqa 
ʿalā) upon figure (ϕ′) by supposing that a point C of (ϕ) is superposed, in 
the plane (P′), on a point I that is not on (ϕ′). By considering point G = 
p(C), which by hypothesis is on (ϕ′), he reaches a contradiction because G 
and I must be the same. Hence the conclusion. 

In the next proposition, he applies this result to the case in which (ϕ) is 
a circle. He thus uses the cylindrical projection to study the nature of the 
intersections of a cylinder’s lateral surface with a plane parallel to the 
bases. Indeed, if a plane cuts a cylinder parallel to its bases, then the sec-
tion one obtains is the image of one of the bases through the cylindrical 
projection in the direction of the axis of the cylinder, and therefore it is 
similar to the bases, that is circular, and even equal.  

This Proposition 8 corresponds to Proposition I.4 of the Conics, and 
Thābit could have applied Apollonius’s method to the case of the cylinder 

and shown that every point L of the section verifies ML =
d

2
, if M is the 

point where the secant plane meets the axis, and d is the diameter of the 
base, using Proposition 1.  

In Proposition 9, which corresponds to Conics I.5 and concerns sub-
contrary or antiparallel sections, he obviously does not use a cylindrical 



562 PART II: GEOMETRY 

  
projection. In this case, he naturally draws on Apollonius’s method, which 
brings into play ‘the equation’ of the circle in relation to one of its diame-
ters and to the tangent to one of the endpoints of its diameter, namely, the 
equation y2 = x d − x( ) , if d is the diameter. 

Conversely, he reintroduces the cylindrical projection in Proposition 
10, to demonstrate that the projection of a circle (ABC) of center D and 
contained in plane (P) on a plane (Q) not parallel to (P), is a circle or an 
ellipse. In this proposition, as in Proposition 7, he does not consider the 
cylinder, but only the projection p of (P) onto (Q) in the direction (CG). 
This time, the demonstration relies on the characterization of the ellipse 
that results from the reciprocal of Conics I.21. Thābit distinguishes two 
cases, according to whether or not plane (Q) passes through the center D of 
the circle to be projected. 

In the first case (Fig. 66), plane (Q) passes through the center D of 
circle (ABC); it therefore cuts plane (P) according to a diameter (AB) of 
this circle. Let E be any point of circle (ABC) and F = p(E), let C be one of 
the endpoints of the diameter of (ABC) perpendicular to (AB), and let (CG) 
be the direction of projection, with G = p(C), then (CG) || (EF). 

(P)

(Q)

A

B

C
D

E

FG

H

I

K

 

Fig. 66 
 
Thābit ibn Qurra constructs the rectangle EHDI that leans on the two 

perpendicular diameters under consideration, and then draws point K = 
p(I). He shows that K is on (CG), and then that (FK) || (HD) || (EI), there-
fore FH = KD. Consequently the triangles FEH and GCD are similar. Thus 
EH2

HF2 =
CD2

DG2 , whence 
AH ⋅ HB

HF2 =
AD ⋅ DB

DG2 , which characterizes the ellipse 
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with center D and one of whose axes is AB, according to the reciprocal of 
Conics I.21.  

For the case in which plane (Q) does not pass through D, Thābit intro-
duces plane (Q′), which is parallel to (Q) and passes through D. He then 
decomposes projection p into two projections p′ of (Q′) onto (Q), and p″ of 
(P) onto (Q′). According to the first case, the image of (ABC) is determined 
in (Q′) by p″; the last remaining step is to apply projection p′ between two 
parallel planes by using Proposition 7. 

In Proposition 12, which opens the second part of his work devoted to 
measuring the area of the ellipse and portions of it, Thābit will again draw 
on projections to prove that a plane cuts two cylinders with the same axis 
and the same base planes according to two homothetic sections. 

 
Fig. 67 

 
He considers the cylinder (C1) with, as bases circles (ABC) and (DEF) 

of diameter d1, and the cylinder (C2) with, as bases the circles (GHI) and 
(KLM) with diameter d2, such that circles (ABC) and (GHI), which have 

the same center N, are contained in the same plane (Π), and that circles 
(DEF) and (KLM), which have the same center S, are contained in the same 
plane (Π′). The two cylinders therefore have NS as their axis. If the plane 
(Φ) cuts the two cylinders without intersecting their bases, then the two 
sections obtained, (OPU) in (C1) and (QRV) in (C2), are similar, that is, 
that the first is the image of the second by means of the homothetic trans-
formation, whose center Ω is their common center located on (NS), and 

whose ratio is that of the diameters of the base circles 
d1

d2
.  
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The problem arises only if plane (Φ) is neither parallel nor antiparallel 

to planes (Π) and (Π′), that is, if the sections (OPU) and (QRV) are ellipses 
with axes, (2a1, 2b1) and (2a2, 2b2), respectively. 

Thābit ibn Qurra begins by establishing the homothetic ratio. He 

shows that 
OU

QV
=

AC

GI
=

DF

KM
, by considering the projection p of (Π) onto 

(Φ), parallel to the axis (NS), and by placing himself in the principal plane 
of the cylinder – the one containing the axis (NS) and the diameter (AC) of 
the circle (ABC) – which cuts plane (Φ) along the straight line (OU), the 
major axis of the ellipse (OPU), and (QV), the major axis of the ellipse 

(QRV). Thus 
OU

QV
=

2a1

2a2
=

d1

d2
. 

Next he shows that, for every diameter (PW) of the section (OPU), 
which is co-linear with diameter (RT) of section (QRV), one finds the same 

equality of ratios, namely 
PW

RT
=

d1

d2
. Indeed, by means of projection p, 

applied this time in the plane containing the axis of the cylinder and the 
diameter (BJ) of circle (ABC) such that p(BJ) = (PW), he obtains 
PW

RT
=

BJ

HZ
. But since the two base circles in plane (Π) are concentric, 

(ABC) is the image of (GHI) by means of the homothetic transformation 

h N ,
d1

d2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ , which he expresses with the equality 

BJ

HZ
=

AC

GI
=

d1

d2
. In other 

words, at this point in his reasoning, the author has demonstrated that if δ1 

and δ2 are two co-linear diameters of the sections (OPU) and (QRV) 

respectively, then 
δ1

δ2
=

2a1

2a2
=

2b1

2b2
=

d1

d2
. He concludes with a permutation of 

the ratios in the central equation: 
2a1

2b1
=

2a2

2b2
 (equation 1), and by referring 

to Proposition VI.12 of the Conics. In this proposition, Apollonius shows 
that, if two ellipses have as axis 2a1 and 2a2 respectively, and as associated 

latera recta c1 and c2 such that 
2a1

c1
=

2a2

c2
 (equation 2), then they are simi-

lar, and reciprocally. In fact, equation (1), which Thābit ibn Qurra uses to 
characterize the two similar ellipses, was not established by Apollonius, 
but one can easily show that it is equivalent to equation (2). 
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If 2b1 and 2b2 are the minor axes of the ellipses, one has 4b1
2 = 2a1·c1  

(according to Conics, I, Second Definitions III), whence a1
2

b1
2

=
2a1

c1

 and like-

wise a2
2

b2
2

=
2a2

c2

. 

Thus: 
2a1

c1
=

2a2

c2
⇔

2a1

2b1
=

2a2

2b2
. 

In this Proposition 12, everything takes place as if Thābit were char-
acterizing the similarity of the two ellipses by their correspondence in the 

homothetic transformation h Ω,
2a1

2a2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ , by decomposing the latter into three 

transformations: the two projections p and p′ and the homothetic transfor-

mation h N ,
d1

d2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  between the base circles. 

Together, the propositions contained in Thābit ibn Qurra’s treatise on 
The Sections of the Cylinder and on its Lateral Surface (Kitāb fī quṭūʿ al-
usṭūwāna wa-basīṭihā) that we have just presented, constitute a very 
important contribution to the history of projections. Excepting the lost 
treatise of al-Ḥasan ibn Mūsā, known only from Ibn al-Samḥ’s summary,11 
this is the first time that the concept of cylindrical projection appears and 
that a theoretical study is devoted to it, applied here to the case of a circle. 
Thābit studied the cylindrical projection of a circle onto a parallel plane 
and onto a nonparallel plane, in order to use it as a geometrical transfor-
mation, just as one would a homothetic transformation or an affinity (dila-
tion or contraction), in order to solve the various problems that he encoun-
tered when studying the nature or the measurement of cylindrical sections.  

1.4. Ibn al-Samḥ’s study of plane sections of a cylinder and the determina-
tion of their areas  

At the turn of the 10th century, Ibn al-Samḥ (368 H./979; 426 H./1035), 
a disciple of the famous mathematician Maslama al-Majrīṭī (d. 398 
H./1007–1008), composed a ‘great book of geometry that treats exhaust-
ively all of its parts relevant to the straight, arched, or curved line’, if we 
can trust Ṣāʿid al-Andalūsī’s remarks in his Categories of Nations (Ṭabaqāt 
al-umam).12 Ibn al-Samḥ’s book is unfortunately lost, but the text that dis-
cusses the cylinder and its plane sections, and has come down to us in a 

 
11 See below. 
12 Ed. Būʿalwān, Beirut, 1985, p. 170. 
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Hebrew version, is very likely an excerpt from it.13 Since the attribution is 
not in doubt, this text proves Ibn al-Samḥ’s interest in a topic that we have 
already encountered among the preceding authors. In it, moreover, the 
Andalusian mathematician picks up on al-Ḥasan ibn Mūsā’s treatise of on 
the ellipse. We would like to situate both this text in the tradition of studies 
on the cylinder, and the cylindrical projection in Ibn al-Samḥ’s research. 

A comparative study of the texts of Thābit ibn Qurra, Serenus, and Ibn 
al-Samḥ and the evidence for the lost treatise of al-Ḥasan ibn Mūsā lead us 
to the following conclusions. Everything suggests that Ibn al-Samḥ did not 
know Thābit’s treatise, but that he started from the study of al-Ḥasan, to 
whom he remained closer than to Thābit himself. The direct comparison of 
the studies of Thābit and of Ibn al-Samḥ shows, on the one hand, that their 
projects, their methods, and even their lexica are different. Whereas Thābit 
elaborates a theory of the cylinder by adapting Apollonius’s model for the 
case of the cone, and therefore begins from the definition of the cylinder by 
means of its bases and generatrices, Ibn al-Samḥ starts from the bifocal 
definition of the ellipse in order to show that the figure obtained in this way 
has the same properties as the figure produced by the intersection of a cyl-
inder and a plane. To designate this figure defined by its foci, he uses the 
expression ‘elongated circular figure’, just as the youngest of the Banū 
Mūsā does, in contrast to Thābit. Conversely, the latter treats the case of 
the antiparallel section, which appears nowhere in Ibn al-Samḥ’s text. 
From the testimony of his brothers, we know that, in his treatise on the 
ellipse, al-Ḥasan ibn Mūsā was concerned with ellipses, diameters, chords, 
and sagittas which are precisely the topics of Ibn al-Samḥ’s last three prop-
ositions. Thus al-Ḥasan’s study became the starting point for the research 
of his two successors, but Thābit ibn Qurra diverged from this project by 
using some results from the Conics, whereas Ibn al-Samḥ, even though he 
worked a century and a half later, carried out his research in the same spirit 
as al-Ḥasan. 

On the other hand, a comparison of the two contributions also reveals 
commonalities: the concepts of projection, whether tied or not to two 
orthogonal affinities that transform each of the inscribed and circumscribed 
circles into the ellipse itself, and the calculation of the area of the ellipse 
from Proposition XII.2 of the Elements, and the apagogic method. These 
are borrowings from al-Ḥasan’s research. 

 

 
13 See R. Rashed, Founding Figures and Commentators in Arabic Mathematics, 

Chap. VI. 
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To conclude this comparison, note that there is no connection between 
the texts of Ibn al-Samḥ and Serenus. Thābit alone was interested in the 
latter, on account of his borrowing from Apollonius’s theory, as noted out 
earlier. 

In Ibn al-Samḥ, the idea of the cylindrical projection underlies the 
cylinder. To begin, let us go over the various definitions of the cylinder 
that one encounters at the beginning of his text. First of all, in the general 
introduction of the part that survives, the author gives the definitions of the 
main solids: the sphere, the cylinder, and the cone, repeating Euclid’s defi-
nitions in Book XI of his Elements. According to the definition he gives, 
the cylinder is ‘what one obtains by fixing the side of a rectangle, such that 
it does not move, and by making the rectangle as a whole pivot about that 
side until it returns to its initial position’.14 Ibn al-Samḥ considers here the 
right cylinder with a circular base. Then, in the next paragraph, he gives a 
more general definition:  

Given two round figures of any perimeter, located in two parallel planes; let 
their centers be determined and joined by a straight line. One makes a 
straight line revolve around the two figures parallel to the axis that joins 
their centers, until it returns to its initial position. What this straight line par-
allel to the axis describes is the cylinder.15  

The author has now defined the oblique as well as the right cylinder, 
on condition that the two curves are deducible the one from the other by 
translation. Ibn al-Samḥ returns to this condition a little later by defining 
‘figures of similar positions’. If the round figures under consideration are 
circles, one returns to the definitions of Thābit ibn Qurra and of Serenus. In 
fact, according to the translator of the text, these round figures designate 
circles or ellipses, and in the next paragraph, Ibn al-Samḥ distinguishes 
four types of cylinders, associated two by two. First, the right cylinder with 
a circular base is associated with the oblique cylinder with an elliptical 
base, that is, one can generate the second from the first; to do so, one need 
only cut the latter with two parallel planes that are parallel to each other but 
not parallel to the bases. Likewise, if one cuts an oblique cylinder having a 
circular base with two planes perpendicular to its axis, the two elliptical 
sections generate, together with the cylindrical surface which they circum-
scribe, a right cylinder with an elliptical base. 

 
14 R. Rashed, Founding Figures and Commentators in Arabic Mathematics, p. 668. 
15 Ibid. 
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 Fig. 68a Fig. 68b 
 
Ibn al-Samḥ notes next that, by proceeding inversely, one can also 

generate the two kinds with the circular base from the two kinds with an 
elliptical base. This property, which Ibn al-Samḥ highlights, reveals the 
underlying cylindrical projection that associates circles and ellipses, which 
are sections of the same cylindrical surface. This projection will appear in 
the course of Proposition 7 of his exposition, on which we will comment 
below.  

Following this introduction, he moves on to the chapter devoted to the 
cylinder itself, and further generalizes his definition to cylinders whose 
base are closed curves that have a center of symmetry. This time, however, 
he details the conditions that these two curves must verify to generate a 
cylinder: they must be equal, of the same shape, and of similar positions 
which in today’s terminology means that they are deducible from one 
another by translation. To do this, he begins by considering two closed 
curves that each have a center of symmetry C1 and C2, respectively, equal 
and of the same form, and two points M1 and M2, located respectively in 
the plane portion defined by each of these curves. The two points are said 
to be of similar position, when the straight lines drawn from M1 to the 
curve C1 are equal to their homologous counterparts drawn to C2 from M2. 
Nowadays one would say that, in relation to their respective polar coordi-
nates M1 and M2, C1 and C2 have the same equation. Here, Ibn al-Samḥ 
does not count the polar angle in relation to an initial axis, but he compares 
the angles that two radius vectors make. If the curves C1 and C2 are located 
in parallel planes, and if they are cut by a plane passing through points M1 
and M2 with similar positions along two equal straight lines, then the two 
curves are similar in position. Beginning from the two curves C1 and C2, of 
similar positions, he defines a cylinder generated by a straight line that 

circle 

ellipse 

circle 

ellipse 
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turns by leaning on C1 and C2 while staying parallel to M1M2. In Proposi-
tion 7 of Thābit’s treatise,16 he studies explicitly the image of a plane figure 
by translation, which turns out to be a projection of a plane on a parallel 
plane. This proposition constitutes a kind of reciprocal of the preceding 
definition. The methods that the two mathematicians use are different, but 
the proximity of their results and the generality of Ibn al-Samḥ’s definition, 
reinforce the underlying idea of projection in the latter’s work.  

Throughout the rest of his treatise, Ibn al-Samḥ returns to the special 
case of his first definition, and treats the case of the right cylinder with a 
circular base to study its plane sections – first the circle, then the ellipse, as 
a function of whether the cylinder is cut by a plane parallel, or not, to its 
bases. 

Upon considering the structure of his treatise on the cylinder, one can 
distinguish three levels. At the initial level, one finds three independent 
parts in which the author demonstrates the properties first of the circle, 
then of the ellipse as an ‘elongated circular figure’ obtained from the bifo-
cal definition, and finally of the ellipse as a plane section of the cylinder. 
At the second level, the author confronts the various properties to identify, 
among others, the ellipse-section with the elongated-bifocal circular figure. 
At the third level, he focuses, on the one hand, on the area of the ellipse, 
then on the other hand, on chords, sagittas, and finally diameters, which he 
calculates. Note in passing that Proposition 7, which concerns the proper-
ties of the ellipse defined as a plane section, plays a central role in this 
research, and is a prerequisite for seven propositions of the second level. It 
is precisely in this proposition that the use of the cylindrical projection 
appears clearly.  

Ibn al-Samḥ introduces the ellipse as the plane section of a cylinder by 
recalling certain definitions and by specifying a property that he considers 
to be known: the section of a right cylinder with a circular base by a plane 
(P) that is parallel to its bases and that passes through the center of the 
ellipse obtained as a section of the same cylinder by a plane (Q) not paral-
lel to (P), is a circle equal both to the base circle and to the circle inscribed 
in the ellipse, and having as a diameter the smallest diameter of the ellipse 
(that is, its minor axis GD). 

 

 
16 See above. 
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Fig. 69 

 
The author adds that, if one makes plane (Q) rotate around the diameter 

of GD to bring it to (P), then the circle inscribed in the ellipse is super-
posed on the circle that is the section of the cylinder by (P). Thus, Ibn al-
Samḥ justifies the fact that the circle of plane (P) is both the rabatment of 
the small circle of the ellipse and the orthogonal projection of the latter.  

In Proposition 7, which immediately follows this statement, Ibn al-
Samḥ posits the ellipse ABGD, with axes AB = 2a and GD = 2b, with 
AB > GD, and its inscribed circle DEG of diameter GD. He tries to demon-
strate that the ellipse is the image of the circle by orthogonal affinity of 

axis GD and of ratio 
a

b
, that is, he shows that 

HT

HK
=

AB

GD
=

a

b
. To do this, he 

will put in place the configuration of the preceding property by considering 
the right cylinder for which one of the bases is the circle DEG. Then, he 
can make the ellipse ABGD pivot around GD, until it arrives on the cylin-
drical surface, which one obtains by making point A describe a circular arc 
of center N located in a plane perpendicular to DG at N, until point L, 
which belongs to the perpendicular to the plane ABGD at E. 

 
Fig. 70 
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One then only needs to show that point T also describes a circular arc 
of center H until point M located on the ellipse, which is a section of the 
cylinder. The triangles LNE and MHK are right and similar, therefore 
LN

NE
=

MH

KH
. But LN = AN = a, NE = NG = b and MH = HT. The result 

follows. 
As with the preceding property, one shows that the ellipse ABGD is 

therefore the rabatment of ellipse DLG, and the circle DEG is the cylindri-
cal projection of the same ellipse in plane ABGD. We therefore find a 
rabatment and a projection underlying the orthogonal affinity. In this rea-
soning, the cylinder makes only a partial appearance, in a supporting role 
for the projection, leaving the main stage for geometrical transformations. 

Ibn al-Samḥ will use this result when he wants to construct an ellipse 
defined by its foci and equal to an oblique section of a right cylinder with a 
circular base, and inversely in order to demonstrate the equivalence of the 
two figures. He relies on the orthogonal affinity to calculate the area of the 
ellipse, as Thābit ibn Qurra had done (and undoubtedly al-Ḥasan ibn Mūsā 
as well); we will encounter this same configuration again in Propositions 
19 and 20, which pertain to the sagittas and the chords of the ellipse. 

 
 

1.5. The theory of projections: al-Qūhī and Ibn Sahl 

Some years before the study of Ibn al-Samḥ that we have just presented, 
al-Qūhī wrote a work that is apparently devoted to the astrolabe and offers 
a much more general exposition of projections. This is the first theory of 
the method of projections, or alternatively, of a local projective geometry 
of the sphere, amply completed by the commentary of his contemporary 
Ibn Sahl. As a matter of fact, in his Treatise on the Art of the Astrolabe by 
Demonstration (Kitāb ṣanʿat al-aṣṭurlāb bi-al-burhān), to be discussed in 
detail in the second part of this chapter, al-Qūhī is not interested in the 
practical problems that concerned the artisans who built astrolabes; he con-
siders only the underlying geometrical theory. In the first chapter of the 
first book, he presents the method of projections, on which more than half 
of Ibn Sahl’s commentary focuses. Since the astrolabe serves to study the 
rotation of the celestial sphere around one axis by projecting the latter on a 
movable surface superposed on a fixed surface, the two mathematicians 
were led to study generally the projection of a sphere of known axis BC 
onto a surface that may, or may not, be of revolution, and to distinguish, in 
their geometrical study, two cases for the surface of revolution, according 
to whether its axis is, or is not, parallel to the axis BC of the sphere. Al-
Qūhī and, following him, Ibn Sahl then define the cylindrical projections in 
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a direction parallel, or not, to the axis of the sphere, and the conical projec-
tions starting from a vertex belonging, or not, to this axis. To our 
knowledge this is the first occurrence of the expression ‘cylindrical projec-
tion’ – ‘orthogonal’ or ‘oblique’; recall, however, that the concept is 
already found in Thābit ibn Qurra.17 In al-Qūhī’s own words:  

[…] the projection of the sphere is divided into two: one cylindrical, the 
other conical. The cylindrical projection is that which, starting from circles 
of the sphere, yields the cylinders with parallel axes falling on the surface 
(onto which the sphere is projected) and, starting from lines and points that 
are on the sphere, yields surfaces and straight lines parallel to these axes.18 

Although rooted in problems associated with the construction of the 
astrolabe, the method that the two contemporary scientists present has 
freed itself from this context. Thus we find a classification of all the cylin-
drical and conic projections applied to the sphere, whereas only one of 
these – the stereographic – is necessary for the astrolabe. This classification 
draws on the nature of the support of the projection, on the one hand, and 
the nature of the projection lines, on the other. As we have said, the study 
of projections nevertheless remains linked to the context of the celestial 
sphere’s motion. This is why Ibn Sahl, in covering al-Qūhī’s discussions in 
greater detail and complementing them fulsomely, studies not only these 
projections but also the way in which the different cases allow the movable 
surface of the astrolabe to turn, even as it remains superposed on the fixed 
surface. From the point of view of their nature, this can happen only if 
these are surfaces of revolution. The author begins by considering the case 
in which the surface of the astrolabe is a plane, a case in which every per-
pendicular to this plane is then an axis for this plane. In this paragraph, we 
treat only the case of the cylindrical projections; but the two mathemati-
cians whose research we are discussing treated conic projections in paral-
lel. We will come back to these below.  

Two situations occur depending on whether the axis BC of the sphere 
is or is not superposed on an axis of the surface. Ibn Sahl shows that in the 
case in which the axis BC is superposed on no axis of the plane surface, 
that is, when BC is not perpendicular to the surface, then the mobile sur-
face does not remain superposed on the fixed surface during its motion. In 
the case in which the two axes are indistinguishable, he introduces the two 
conceptions of cylindrical projection:  

 
17 See above. 
18 R. Rashed, Géométrie et dioptrique au Xe siècle: Ibn Sahl – al-Qūhī et Ibn al-

Haytham, Paris, Les Belles Lettres, 1993, pp. 191–2 and Geometry and Dioptrics in 
Classical Islam, p. 880. 
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1. The cylindrical projection of direction D parallel to BC (Fig. 71a) 
If the axis BC of the sphere is also the axis of revolution of the mobile 

surface that it pierces at A, this point is the projection of points B and C. 
The rotation of any point M of the sphere around BC carries with it that of 
its projection M′ around A, therefore around the axis BC. The mobile sur-
face, which is the set of points M′, remains superposed on its initial posi-
tion, therefore superposed on the fixed surface. Note that, in the case in 
which the surface of the astrolabe is a plane, the projection thus defined is 
an orthogonal or an orthographic projection.  
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 Fig. 71a Fig. 71b 
 
2. The cylindrical projection of direction D not parallel to BC 

(Fig. 71b) 
Let A be the projection of pole B, and E be that of pole C on the 

sphere; B and C are fixed during the motion of the instrument, therefore A 
and E are as well. If M′ is the projection of a point M of the sphere, the 
rotation of M around BC causes for M′ an elliptical, therefore noncircular, 
trajectory. The surface on which the sphere is projected can therefore not 
turn around axis BC, because it has two fixed points, A and E. 

If the two surfaces of the astrolabe are surfaces of revolution about axis 
AΔ but are not planes, then the mobile surface can only remain superposed 
on the fixed surface in the case in which AΔ and BC are indistinguishable. 
The situation is therefore compatible with the cylindrical projection paral-
lel to BC. 

After this detailed study of the different classes of projections and of 
the various conditions that the surfaces must fulfill for the instrument to be 
conceived, Ibn Sahl goes on to detail several properties of projections. First 
of all, the projection onto the surface of the astrolabe is obtained by the 
intersection of two surfaces. In the present case, if D is the direction of the 
cylindrical projection, then the latter associates a cylindrical surface with 
every circle of the sphere, the plane of which does not contain D or is not 
parallel to it. The projection of such a circle will be obtained by the inter-
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section of this cylindrical surface with the surface of the astrolabe, whether 
cylindrical or conic. These intersections generally are not plane curves. For 
the case in which the plane of the circle contains the straight line D, or is 
parallel to it, the projection then associates with a circle a plane parallel to 
D, and the circle is projected according to the intersection of this plane 
with the surface of the astrolabe.  

In his commentary on al-Qūhī’s text, Ibn Sahl then returns to the con-
cept of projecting line. He explains that, for the projection with which we 
are now concerned, the projecting line of any point is a straight line parallel 
to D, and the surface that is projecting any line L is generated by parallels 
to D drawn through every point of L, except if this line is a straight line 
parallel to D, in which case it is its own projecting line. 

If the projection has as its direction the axis BC of the sphere, then the 
cylinder that projects a circle Γ of diameter DE cuts the sphere according 
to another circle Γ′ of diameter D′E′; the two circles therefore have the 
same projection (Fig. 72a). The projection of any point of the spherical cap 
Γ is superposed on that of a point of the cap of base Γ′. 
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                    Fig. 72a                 Fig. 72b 

 
To complete his commentary on the cylindrical projection, Ibn Sahl 

studies the projection of a circle onto the plane surface, and states that it is 
a conic section, on condition, of course, that the plane of the circle not 
contain the direction AB of the projection, or not be parallel to this direc-
tion. He then leans on Thābit ibn Qurra’s treatise, On the Section of Cylin-
ders, which we introduced above, and in particular on Proposition 10, to 
show that if one projects the circle of diameter CF, from the sphere, onto 
the plane of the astrolabe, then the image is a conic section, an ellipse with 
minor axis DE. For this he considers the cylinder CDEF (Fig. 72b). 

In the period that concerns us here, cylindrical projections were as 
important conceptually as conic projections, insofar as neither the one nor 
the other is tied directly to specific constructions, and this even though one 
conic projection, namely the stereographic, is more tightly linked than any 
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other with the construction of the astrolabe. We now turn to conic projec-
tions and their development between the 9th and the 11th centuries.  

 
 

2. CONIC PROJECTIONS 
 

One of the mathematical sciences necessary for constructing maps of 
the heavens, the Earth, and the seas is ‘the science of the projection of the 
sphere’ (ʿilm tasṭīḥ al-kura). This science is as indispensible to the con-
struction of astrolabes as it is to cartography. Although the need to con-
struct maps in fact goes back to antiquity, not until the formation of the 
Islamic world did a science of the subject appear. This is why the field of 
studies of the astrolabe became such a large domain of inquiry for research 
on projections. 

 
2.1. Ptolemy’s Planisphere 

The name of Hipparcus of Nicea, an astronomer of the 2nd century BC 
(c. –160 to –125), is associated with the oldest known study that explains 
the method of representing the celestial sphere on a plane, which would 
become the stereographic projection.19 Nevertheless, the most ancient sur-
viving text that treats this method is Ptolemy’s Planisphere. According to 
O. Neugebauer, the main goal of this work is to demonstrate how it is pos-
sible to solve problems of spherical trigonometry by means of plane trigo-
nometry alone. In his treatise, Ptolemy tries to ‘represent’ the elements of 
the sphere (the ecliptic, the circles parallel to the equator, the meridian cir-
cles) on a plane, in order to ‘obtain a configuration that conforms to what 
appears on the solid sphere’.20 As a matter of fact, he does not use the term 
projection, nor any other term that denotes a geometrical element linked to 
the transformation. To begin, he traces on the plane a circle that represents 
the equator and tries to place ‘the other circles of the sphere correctly’ in 
relation to it. He concedes that the diameters of this circle represent its 
meridians, and its center represents the north pole. From this he deduces 
that the parallel circles located to the north of the equator on the sphere 
must necessarily be represented inside the circle ABGD that is taken as the 
equator in the plane, and that the parallel circles located to the south must 
necessarily lie outside ABGD (Fig. 73). He then constructs two circles 

 
19 O. Neugebauer, ‘The Early History of the Astrolabe – Studies in Ancient 

Astronomy IX’, Isis, no. 40.3, 1949, pp. 240–56. 
20 C. Anagnostakis, The Arabic Version of Ptolemy’s Planisphaerium, Ph.D. thesis, 

Yale University, 1984. 
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concentric to the circle ABGD, starting from the equal arcs GZ and GH, 
located on one side and the other of point G, by drawing the straight lines 
DTZ and DHK and by taking ET and EK as the radii of these two circles. 
He states that these two circles ‘correspond’ to two circles of the sphere 
located on one side and the other of the equator and equidistant from it. He 
does not demonstrate this, however; rather, it is a part of what he ‘posits’ in 
his representation and which must correspond to what appears on the 
sphere.  
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Fig. 73 

 
Conversely, he demonstrates that the circle that is inclined (represented 

by the circle whose center is the middle of TM) and tangent to two circles 
at T and at M, cuts the equator ABGD in half at points B and D. To this 
effect, he constructs DM, which cuts ABGD at N. Then the arcs AN, GH, 
and GZ are equal, therefore N and Z are diametrically opposed on the 
equator; therefore the angle MDT is right, and the circle with diameter TM 
passes through D. 

Thereafter, positing that the center E of circle ABGD represents the 
pole of the sphere, he demonstrates that every straight line passing through 
E represents a meridian of the sphere and cuts the ecliptic at two points Z 
and H, to correspond to points diametrically opposed on the sphere.  
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His demonstration relies on Proposition III.35 of Euclid’s Elements, 
according to which ZE × EH = ED × EB = ET 2 , with ET perpendicular to 
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ZH. Therefore according to the reciprocal of Proposition VI.8 of the Ele-
ments, the angle ZTH is right, therefore equal to ATG. Thus the arcs AK 
and LG are equal, therefore the circles that are parallel to the equator and 
pass through the points represented by Z and H are symmetrically arranged 
in relation to the equator. These points are therefore diametrically opposed 
on the sphere.  

Next he demonstrates that a horizon GTAH cuts in two halves the 
equator ABGD as well as the ecliptic BTDH; in other words, the points T, 
E, and H are aligned. This demonstration also relies on Proposition III.35 
of Euclid’s Elements. 

 

Fig. 75 
 
These are the foundations of the method presented in the Planisphere. 

To name the operation that he uses to flatten the sphere, Ptolemy uses the 
words ‘to trace’, ‘to represent’, ‘to correspond’. He tries to show that the 
principles of his representation are compatible with what happens on the 
sphere. This is the representation one obtains if one applies a stereographic 
projection to the sphere, but the Planisphere contains no mathematical 
treatment of this projection. 

A reading of Federico Commandino’s 16th-century commentary on the 
Planisphere21 fuels this interpretation. Ptolemy does not explicitly define 
the plane of the equator as the plane of projection, since he does not define 
the projection. Commandino emphasizes this fact by saying that ‘he sup-
poses that Ptolemy represents the circles in the plane of the equator’. In 
fact, in his commentary, Commandino verifies mathematically – at least for 
the first few propositions – that the representation Ptolemy proposed is 
consistent with the stereographic projection. It is he who introduces the 
cross-section of the sphere, and he verifies that the elements traced by 
Ptolemy in the plane are indeed the images that one obtains in the plane of 
the equator after a conic projection of the elements of the sphere from the 
south pole. 

 
21 Ibid., pp. 145–70. 
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In the version of the Planisphere’s text that has come down us, the 

style changes slightly in the third part. At paragraph 16, one finds an ele-
ment that pertains to the projection, when Ptolemy takes a point as the hid-
den pole, that is, the pole of projection. At paragraph 18, when the author 
considers the intersections of the planes of two circles of the sphere, he 
implicitly uses a rabatment. Finally, in paragraph 19, he determines the 
image of a circle, parallel to the ecliptic, and passing through the pole, by 
considering the intersection of the plane of the circle and the equatorial 
plane. As one can see in this section, both the language and the geometrical 
operation change: we are dealing with projections. This fact leads us to 
suppose that the version we have today, via its Arabic translation, is not 
authentic.  

 
 

2.2. Al-Farghānī’s treatise, al-Kāmil fī ṣanʿat al-asṭurlāb  

In the middle of the 9th century, one finds a conjunction of conditions 
necessary for the science of projections to separate from astronomy: a 
multiplication of studies on different kinds of projections, as well as the 
use of Apollonius’s Conics. The main problem that astronomers as well as 
geographers encountered was to be able to conceive a projection to repre-
sent precisely the sphere, and the lines and circles traced on it; for the 
mathematicians, however, it was necessary to establish this conception on 
solid geometrical foundations. The encounter between the geometry of 
conics and the problem of the projections necessary to elaborate a theory of 
the astrolabe among others will occur in al-Farghānī’s al-Kāmil, which 
marks the founding act of the new geometrical discipline of projections.22 

In his treatise on the theory of the astrolabe, al-Farghānī devotes an 
entire chapter to its geometrical foundations: ‘Introduction to the geomet-
rical propositions by which one demonstrates the figure of the astrolabe’.23 
His use of the qualifier ‘geometrical’ is fundamental. As was usual at the 
time for treatises on the astrolabe, al-Farghānī begins by treating the prob-
lem of a conic projection of a sphere, or its exact representation, before 
turning to a study of the astrolabe proper as an astronomical instrument. 
But he crosses an essential threshold by carrying out a purely geometrical 
study of conic projections. The problem can be translated into the follow-
ing terms:  

 
22 See R. Rashed, ‘Les mathématiques de la terre’, in G. Marchetti, O. Rignani and 

V. Sorge (eds), Ratio et superstitio, Essays in Honor of Graziella Federici Vescovini, 
Textes et études du Moyen Âge, 24, Louvain-la-Neuve, FIDEM, 2003, pp. 285–318. 

23 Mss London, British Library, or. 5479, 5593; Kastamonu, 794. 
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Let A be the pole of the conic projection, and (Γ ) be a circle of center 
ω in plane (P); the conic projection of circle (Γ ) onto plane (Q) is the 
intersection of the plane and the conic surface defined by the vertex of 
A and the circle (Γ ). 

The nature of the conic section obtained – circle, ellipse, parabola or 
hyperbola – depends on the choice of plane (Q). For the construction of the 
astrolabe, the question is: how to choose (Q) so that the projection of a 
circle (Γ ) is a circle (Γ′)? The first book of Apollonius’s Conics gives an 
indirect answer to this question, in that he never treats the issue of 
projection in his fundamental work. The problem is formulated in other 
terms that pertain to the nature of the intersection of the conic surface and a 
plane. In Proposition 4, where (Q) || (P), he shows that the intersection is a 
circle whose center is aligned with the center of the first circle and the 
vertex of the cone (Fig. 76a). If one translates this proposition into the later 
language of projection, the intersection (Γ′), and therefore the image of (Γ) 
by the conic projection from pole A, is the transformation of (Γ) through 
the homothetic transformation h of center A, such that (Q) = h(P). Thus ω′ 
= h(ω) and A, ω, and ω′ are aligned. But such was neither Apollonius’s 
intention, nor his manner of proceeding. 
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In Proposition 5, Apollonius considers the principal plane of the cone, 

that is plane (Π), which contains axis Aω of the cone and the perpendicular 
dropped from A onto the plane of the circle. This plane is a plane of sym-
metry for the conic surface. Let BC be the diameter of (Γ ) in plane (Π). 
Then Apollonius considers a plane (Q) perpendicular to (Π) and that cuts it 
along B′C′ such that the angle AC′B′ is equal to the angle ABC (Fig. 76b). 
He shows that the intersection of the cone by plane (Q) is a circle of 
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diameter B′C′. This proposition is known by the name ‘subcontrary’ or 
‘antiparallel sections’.  

 
Al-Farghānī knew Apollonius’s work. He drew broad inspiration from 

it, but by taking the new point of view of projections on account of the 
context of his study, which concerns the construction of the astrolabe. He 
begins his geometrical study by demonstrating the following lemma:  

Given a circle of diameter AG, the tangent at G to this circle and any 
chord BC. The projections from pole A of points B and C onto the tangent 
are respectively I and K. Then the triangles ABC and AIK are similar. 

Indeed, the angles AGB and ACB are equal, because they are inscribed 
and intercept the same arc AB, and the angles AGB and AKG are also equal, 
because they have the same complement, angle BAG. Thus angles ACB and 
AKG are equal (Fig. 77). Likewise, one can show that angles CBA and KIA 
are equal. 
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Fig. 77 
 
In another language, one can interpret the result as follows:  
Note that in the triangles GAK and GAI, respectively of height GB and 

GC, one has AG2 = AB × AK = AC × AI; thus, through the inversion T of 
pole A and of the power AG2 , one has 

 
I = T(C)  and  K = T(B). 

 
By the equalities of the angles of the two triangles, the points B, C, I, K 

belong to a circle invariant through the inversion T. 
This lemma amounts to stating that: the conic projection of a chord, 

from pole A, onto the tangent at the point diametrically opposed to the 
pole, is a segment of the tangent such that the endpoints of the chord and of 
the segment are on a circle invariant through the inversion T with the same 
pole A, which transforms the given circle into a tangent straight line.  

In the second proposition, al-Farghānī treats the problem of the projec-
tion of a circle on a sphere onto a plane tangent to that sphere.  
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Let AG be the diameter of a sphere, and let (Q) be the plane tangent to 
it at G. One considers the cone of the vertex A which has as its base circle 
(Γ) with center ω. Let BC be its diameter in the plane (Π) defined by A, G, 
and ω, a plane of symmetry for the sphere, the cone, and plane (Q). The 
intersection (Γ′) of the conic surface (A, Γ) with plane (Q) also admits 
plane (Π) as plane of symmetry. The figure in plane (Π) is that of the 
lemma and GIK is the tangent at G.  

 
Fig. 78 

 
Al-Farghānī begins by studying (Γ′), the projection of (Γ ). Given that 

L is a point of (Γ′), the plane passing through L and parallel to the plane 
(Γ ) cuts the conic surface along a circle SLO, of diameter OS, a circle that 
is the homothesis of circle (Γ). The planes IKL and SLO are both perpen-
dicular to plane (Π), therefore their intersection is as well. Also, the diam-
eter OS cuts IK at P, and one therefore has PL ⊥  IK and PL ⊥  OS. 

Now, according to this lemma, the angles ACB and IKO are equal; but 
SO || BC, whence the angles ACB and ISO are equal, therefore the angles 
IKO and ISO are also equal, and the two triangles KPO and SPI are similar. 

From this one therefore deduces 
KP

PS
=

PO

PI
, which also has as a conse-

quence PI × PK = PS × PO. 
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But OLS is a circle of diameter OS and PL ⊥  OS, therefore PL2 = PS × 

PO. Therefore, for every point L of the curve (Γ′), with PL ⊥  IK, one has 
PL2 = PI × PK, and the curve (Γ′) is a circle of diameter KI. 

In a third proposition, al-Farghānī shows that the straight line Aω that 
passes through the center of (Γ ) cuts IK at a point E that is not the center 
of (Γ′). Indeed, the straight line Aω cuts the great circle ABCG at M and 
one has: arc CM < arc MB, because AB < AC and ω is the middle of BC, 
therefore angle CAM < angle MAB. Through A, one draws the half-line Aω′ 
such that the angle BAω′ is equal to angle CAω. According to the lemma, 
the angles AKω′ and ACω, are equal, therefore the triangles ACω and ABC 
are similar to triangles AKω′ and AIK respectively; one therefore has  

 
AC

AK
=

Cω
K ′ ω 

=
BC

IK
. 

 

Now Cω =
1

2
BC , therefore K ′ ω =

1

2
IK , the point ω′ is the center of (Γ′), 

and one has ′ ω ≠ Ε . 
Al-Farghānī has thus demonstrated that, if one considers a sphere of 

diameter AG, and the plane (Q) tangent at G, the conic projection from 
pole A onto the plane (Q) of every circle (G) traced on the sphere is a circle 
(Γ′). 

It is clear that every plane parallel to the plane tangent at G will cut the 
conic surface along a circle. One thus obtains the section that Apollonius 
had studied in Proposition I.5 of the Conics and that he calls ‘the subcon-
trary section’.24 The method of demonstration is the same: he uses the 
property of the height of a right triangle that leads to the equation of a 
circle (the power of a point): 

 
PL2 = PI × PK[ ] ⇒ y2 = x(d − x)[ ], if one posits IK = d, IP = x, PL = y . 

 
Despite this similarity, there are also differences that are equally 

important. On the one hand, Apollonius’s proposition does not pertain to 
the sphere; and, on the other, al-Farghānī is not concerned with the 
‘subcontrary section’. In other words, the object and the goal of the 
research are different in each case, even if the procedures of demonstration 
are borrowed.  

 
24 R. Rashed, Apollonius: Les Coniques, Tome 1.1: Livre I, p. 272. Apollonius of 

Perga, Conics, Books I–III, transl. by R. Catesby Taliaferro, Santa Fe, Green Lion 
Press, 2000, p. 9. 
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Indeed, consider the evolution of al-Farghānī’s research beginning with 
the lemma, and note that the mathematicians as well as the later bibliog-
raphers will integrate it into ‘the science of projections’, despite the 
absence of a terminology of projections, which will soon appear later. If 
one keeps in mind the foregoing along with the author’s goal, one can eas-
ily see that we are no longer on the terrain of Apollonius, even though the 
Conics furnished the means to begin this research on conic projections. 
Conversely, if the idea of inversion seems latent in the lemma, it is such in 
the proposition as well. Indeed, the plane tangent at G is the image of the 
sphere under the inversion T of pole A and of power AG2 = p , and every 
point D of circle (Γ ) has as its image a point D1 on circle (Γ′), such that 
AD × AD1 = AG2. 

The two circles (Γ ) and (Γ′) belong to the same sphere that admits as a 
great circle in plane (Π), the circle that circumscribes a quadrilateral BCIK. 
This sphere is invariant under the inversion T. In a word, al-Farghānī suc-
ceeds in showing that the projection of a sphere that has point A as pole 
onto the plane tangent to the diametrically opposite point, or onto a plane 
parallel to this plane, is the stereographic projection. 

After al-Farghānī’s work in the 9th century, this research was carried 
out by many other prestigious mathematicians, including Abū al-ʿAlāʾ ibn 
Karnīb, Abū Yaḥyā al-Māwardī, Ibn Maʿdān, Ibn Sinān. To appreciate all 
the development of this new discipline during approximately one century, 
one need only examine the writings of al-Qūhī, Ibn Sahl, and al-Sijzī. The 
first two were closely linked in their researches insofar as Ibn Sahl wrote a 
commentary on al-Qūhī’s treatise. We now turn to their texts. 

2.3. Al-Qūhī’s treatise and Ibn Sahl’s commentary on it 

Al-Qūhī’s Treatise on the Art of the Astrolabe by Demonstration, 
mentioned above about the cylindrical projection, has not reached us entire. 
It appears in two books, the second of which is stripped of three of the 
seven original chapters, namely Chapters 3–5. Also missing from Book 2 is 
a large part of the demonstration of the sixth and last proposition of 
Chapter 2, which had to be reconstituted for the edition.25 

The first book, composed of four chapters, is complete. All the prob-
lems presented in it are solved by synthesis. In Chapter 1, after a global 
presentation of the instrument in an intentionally rigorous style, the author 
presents, in the most general form available at the time, the first elements 
of a theoretical study of the projection of the sphere which, although it 

 
25 R. Rashed, Geometry and Dioptrics in Classical Islam. 
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originates in a context linked to the construction and use of the astrolabe, 
tries to free itself completely from the latter and to become purely geomet-
rical. The exposition is nevertheless so short and condensed that the devel-
opment of its content will be the focus of most of Ibn Sahl’s commentary. 
It is from this exposition and the commentary on it that we elicited the 
remarks on cylindrical projections reconstituted above. The two mathema-
ticians jointly treat conic projections. Recall that, at first, Ibn Sahl takes up 
the case in which the surface of the astrolabe is a plane. From the two situ-
ations that then emerge, according to whether the axis BC of the sphere is 
superposed or not on an axis of the surface, only the case in which the two 
axes are superposed is compatible with the motion of the instrument. In 
this case, the author goes into detail on two conceptions of conic projec-
tion: 

1. The conic projection originates from a point D on the axis BC 
(Fig. 79a) 
If D ≠ B and if D ≠ C, then A is the projection of the two points B and 

C. If D = B, A is the projection of C, and if D = C, A is the projection of B. 
Since B and C are fixed, A is as well, and it is the only fixed point of sur-
face A. The latter can therefore spin on the other surface. 
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        Fig. 79a          Fig 79b 
 
2. The conic projection originates from a point D which is not on the 
axis BC (Fig. 79b)  
In this case, the poles B and C have different projections, given A and 

E not on BC. The surface therefore has two fixed points A and E, and con-
sequently cannot turn by remaining superposed on the other surface. 

When the two surfaces of the astrolabe are of revolution around axis 
AΔ, but are not planes, one returns to the case of the conic projection in 
which the pole is on BC. 

Ibn Sahl studies the concept of projecting surface in the case of the 
conic projection, in parallel with the case of the cylindrical projection that 
we have already presented. In a conic projection originating from a point B, 
the projecting surface of a circle is generally a conic surface with a vertex 
B, except if B is in the plane of the circle; in this case the projecting surface 
is on the plane itself.  
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In a conic projection, if the vertex S of the cone is on the axis BC, then 
the cone projecting a circle Γ of diameter DE cuts the sphere along another 
circle Γ′ of diameter D′E′; the two circles therefore have the same 
projection (Fig. 80). The projection of any point of the spherical cap with 
base Γ is superposed on that of the point of the cap with base Γ′. 
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Fig. 80 
 
Taking the same route he had adopted for the cylindrical projections, 

and after considering – in order to set them aside – the exceptions involv-
ing the circles the plane of which contains the vertex of the cone, Ibn Sahl 
examines the projection of a circle of diameter CF onto a plane surface and 
perpendicular to the axis AB of this sphere, where the vertex of the cone is 
point G of axis AB. Two cases come up: either G ∈ [AB], or G ∈ [AX). 
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In the first case (Fig. 81a), angle GFC is greater than angle AFC, and 

angle AIE is greater than angle GDE; and in the second case (Fig. 81b), it 
is the contrary, namely, angle GFC is smaller than angle AFC, and angle 
AIE is smaller than angle GDE. In both cases, if AJ is the tangent at A to 
the circle of diameter AB, AJ || DE; therefore angles AFC, IAJ, and AIE are 
equal. In the first case, therefore, angle GFC is greater than angle GDE, 
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and in the second, it is smaller. Therefore, according to Apollonius, since 
CF is a circle, its conic projection DE is a noncircular conic section. 

Ibn Sahl deliberately avoids treating the cases in which G is found at A 
or at B, which correspond to the stereographic projection. Indeed, by con-
trast, this projection is the focus of the entire remainder of al-Qūhī’s trea-
tise, which studies it with great care.  

Thus, still in Chapter 1, al-Qūhī continues his exposition by demon-
strating the fundamental property of the stereographic projection, namely 
that the image of every circle of the sphere is either a circle or a straight 
line, the latter case occurring when the circle to be projected passes 
through the pole of projection.  

One wishes to project onto plane (P), which is perpendicular to axis 
AD of the sphere, a circle of diameter BC that does not pass through pole A 
of the projection. If points B and C are projected onto (P) at E and G, then 
the projection that was sought is the circle of plane (P), with diameter EG. 
Note that the author always seeks the greatest possible generality, taking 
plane (P) at random: it is neither the plane of the equator, nor the plane 
tangent to the sphere at D. 
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To prove this property, which al-Farghānī had already demonstrated,26 

al-Qūhī will very explicitly use Proposition I.5 of the Conics, to which we 
alluded above. The fundamental property of the stereographic projection is 
indeed a direct application of the property of subcontrary or antiparallel 
sections. The plane (ABCD) of the meridian of the circle to be projected 
contains the triangle ABC and is perpendicular both to plane (P) and to the 
plane of the circle. It is these hypotheses that make it possible to find the 
fundamental configuration of Apollonius, based on the main plane of the 
cone. Here, it is the plane of the meridian of the circle to be projected that 

 
26 See above. 
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plays this role. One can therefore apply Proposition I.5 of Apollonius’s 
Conics, once triangles AGE and ABC have been shown to be similar. This 
last point is a consequence, on the one hand, of the similarity of the right 
triangles ABD and AHE and, on the other hand, of the equality of the 
angles ACB and ADB. One can therefore conclude that the intersection of 
the cone with plane (P), which is perpendicular to the axis of the sphere, is 
a circle. 

If the circle of diameter BC passes through pole A, then the circle is 
projected according to the intersection of its plane and of plane (P), there-
fore along a straight line.  

From here to the end of the treatise, al-Qūhī does not leave the frame-
work circumscribed by this projection, which he voluntarily introduced as 
a particular case of conic projections of the sphere; that is, the case in 
which the pole of the projection is identical to one of the poles of the 
sphere. The author nevertheless insists on the general character of this first 
chapter and on a certain independence of the projection with respect to the 
astrolabe. Indeed, beyond his treatment of the projections we have just dis-
cussed, he considers the projection of the sphere ‘onto a plane to which the 
axis of the sphere is perpendicular’. Only in the next chapter will he project 
the sphere ‘onto the plane of the astrolabe’. This expression appears for the 
first time at the beginning of Chapter 2 of Book 1. It nicely reveals the 
difficulty that al-Qūhī faces, for he cannot separate this line of research 
from the context of problems raised by the construction of the astrolabe, 
that is, the ‘land of its birth’. He then presents the astronomical terminol-
ogy specific to the astrolabe (Chapter 2), and reminds the reader of the two 
procedures for constructing the astrolabe, from the north pole and from the 
south.  

In Chapter 3, he gives an exposition of and demonstrates the construc-
tions of the muqanṭarāt, the projections of the circles of equal height for a 
given horizon. The problem consists in finding, on the plane of the astro-
labe, the projection of a circle parallel to the horizon, known from its 
angular distance α between its pole and the pole of the sphere, that is, α is 
the complement of the latitude of the place for which the horizon is 
defined. This circle labeled Γ has as a diameter IK on the sphere and is 
itself defined by the angular distance to its pole, labeled β, which therefore 
represents the complement of the height of this circle on the horizon. 
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On the circumference (BCDE), the meridian of circle Γ, one places 

point G, the pole of the known horizon and therefore also of the circle. 
Then one places point I, such that arc GI is equal to b, and point K is sym-
metrical to I in relation to AG. Circle Γ therefore has IK as its diameter. If 
the points L and M are the projections of I and K respectively, then the cir-
cle Γ′ of diameter LM and passing through N is the projection of Γ onto the 
plane of the astrolabe. 

The operation of projection that the author carries out consists of two 
stages: 1) the projection onto the equatorial plane; 2) the rabatment onto 
the plane of the figure as plane of the astrolabe. As is the case for all the 
problems in Book 1, al-Qūhī presents the construction on the plane of the 
astrolabe, then demonstrates that the elements projected onto the equatorial 
plane correspond by rabatment to those constructed on the plane of the 
astrolabe. This concept of rabatment, which he uses throughout his work, 
appears here for the first time. The author’s systematic usage of this con-
cept in Book 1 of his work marks a change in both the lexicon he uses and 
the style of his demonstrations.  

 
In the following chapter, the fourth and last of Book 1 of his treatise, 

al-Qūhī turns to the construction of azimuthal circles (sumūt), projections 
of circles of height for the given horizon. 

Assuming the meridian (BCDE) in the plane of the astrolabe, and a 
horizon through its poles G and I, that is, angle α, he proposes to construct 
the image of a circle of height, labeled Λ. This great circle of the sphere, 
which passes through poles G and I of the known horizon, is defined by the 
angle γ that it forms with the meridian of the horizon, that is, the comple-
ment of the azimuthal arc. To do so, he considers an auxiliary circle of the 
sphere, parallel to the horizon, therefore with poles G and I, and of diame-
ter KL in the plane of the meridian. In effect, he considers the rabatment of 
this circle onto the plane of the astrolabe, about KL. Let us call it Γ. 

Thanks to this rabatment, al-Qūhī can represent the angular distance γ 
by means of a point S of this circle, such that arc LS is equal to γ. He takes 
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pains to consider all the cases pertaining to this auxiliary circle Γ, begin-
ning with the general case of a circle that does not pass through the pole of 
projection and that is not the horizon. Then, after noting the simplification 
of the construction when one chooses the horizon, he treats the case in 
which this parallel circle is the one which passes through pole B of the 
projection. This discussion emphasizes the author’s desire to carry out an 
exhaustive study and, let us note once again, within a completely geomet-
rical and theoretical framework. 

 
Fig. 84 

 
Al-Qūhī shows that the projection of the circle of height considered is 

the circle Λ′, which passes through points P and Q (projected from the 
poles of the horizon, G and I), and through point N, which is the intersec-
tion of the circle Γ′ (the projection resulting from the rabatment of Γ onto 
the plane of the astrolabe) with the straight line Δ′, which is perpendicular 
to CE at U (the projection of point O itself obtained by the orthogonal pro-
jection of S onto the diameter LK of circle Γ). 

Note that the way in which al-Qūhī distinguishes the projection on the 
plane of the astrolabe and the projection on the equatorial plane of the 
sphere plays an essential role in the elaboration of the geometrical theory 
of projections. Indeed, the relation between these two consists of a 
rabatment. He carries out the constructions on the plane on the astrolabe, 
which he considers to be superposed on the plane of the figure, and his 
demonstrations throughout the last two chapters of the first book consist in 
establishing that these constructions conform to the theory of stereographic 
projection.  

With the exception of Chapter 7, which is a sort of appendix in which 
al-Qūhī demonstrates several lemmas that he has used in the preceding 
chapters, the problems of the second book are all aimed at constructing the 
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astrolabe and therefore the projected sphere, starting from the data of its 
plane and of three specific elements that he will consider systematically 
among the possible data of the representation on the plane of the astrolabe. 
This is what appears in the three surviving Chapters (1, 2, and 6) and one 
can suppose that the lost chapters were similar. The structure of Chapters 1 
and 2 is completely similar. Both consist of six problems for which al-Qūhī 
solves by synthesis. As we shall see, thanks to the results of Book 1, he 
reduces the construction of the astrolabe to the determination of the center 
and radius of the sphere.  

In Chapter 1 of the second book are grouped together problems for 
which the author grants himself an image point in the plane of the astro-
labe, that is in the plane of the equator, that is the rabatment of the equato-
rial plane on the meridian plane, and the angular distance between its hom-
ologue to the pole of the sphere. By the homologue of an element (point, 
circle or straight line) from the plane of the astrolabe, al-Qūhī means what 
we call in modern language its antecedent by projection (point or circle), 
situated on the sphere. The datum of the angular distance of this homo-
logue to the pole of the sphere amounts to giving its latitude, therefore to 
situating it on a circle parallel to the equator of the sphere. (Book 1, 
Chapter 2). The third given element is then taken from among the follow-
ing: 1) the pole of the sphere, 2) the center of the sphere, which is also that 
of the astrolabe, 3) the radius of the sphere, 4) the distance, on the plane of 
the astrolabe, from the pole to the point the homologue of which is at a 
known angular distance from this pole, 5) the distance, on the plane of the 
astrolabe, from the center of the sphere to a point the homologue of which 
is a known angular distance from the pole of the sphere, 6) another point 
image and the angular distance from its homologue to the pole of the 
sphere.  

Chapter 2 of the second book, for its part, regroups the problems for 
which are given a muqanṭara on the plane of the astrolabe and the angular 
distance from the pole of its homologue to the pole of the sphere. The 
datum of this angular distance goes back to the datum of the horizon with 
which this parallel circle is associated, and therefore of the latitude of the 
place for which the astrolabe is designed, since a horizon has the same 
poles as the circles that are parallel to it. Thus, for the six problems, one 
finds exactly the same third elements given in the same order as occurred 
in the first chapter.  

In Chapter 6, we find once again the same variation of the third datum, 
which is added to the datum of a point in the plane of the astrolabe and of 
its homologue with respect to a known horizon. This time, the author is 
content to list the cases, and to develop only the solution to the first prob-
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lem, to which he proceeds by analysis, and for which Ibn Sahl will give the 
synthesis in his commentary. One is therefore entitled to think that the 
problems of the three lost chapters of his book displayed the same style as 
the first two because Ibn Sahl, who surely had his contemporary’s com-
plete treatise, does not bother to comment on them.  

Although al-Qūhī treats the astrolabe in this work, in fact throughout 
the entire treatise he is studying the mathematical structure that underlies 
the astronomical instrument, that is, the stereographic projection of a 
sphere, defined by its center and its radius, on the equatorial plane. The 
characteristic elements of this object (its pole and its support) are given by 
the center, the radius of the sphere, and the plane of projection. His treatise 
is thus divided between the direct study of the projection (Book I), and its 
reciprocal study (Book II). In other words, in Book I, knowing the charac-
teristic elements, how does one construct the image of a point or of a cir-
cle? In Book II, knowing certain images, how does one recover the ele-
ments that are characteristic of the projection? Even if a reading of certain 
passages from Book I may induce us to think of one of the many studies 
carried out during the 10th century and aimed at explaining the functioning 
of the instrument, and its design, the work is in no sense addressed to arti-
sans. The style is that of a mathematical treatise. The title already makes its 
intention clear: the author plans to demonstrate all the constructions that he 
will carry out. And, indeed, he gives statements of these constructions in 
the form of problems, offers solutions by either analysis or synthesis, and 
then demonstrates them. In addition, this treatise is perfectly organized, 
and its methodical character leaves no doubt. In it, al-Qūhī systematically 
solves geometrical problems raised by the instrument he is studying. He 
gathers together the propositions that rely on the same basic configuration 
and, whenever possible, reduces some problems to those he has already 
solved. In effect, his treatise is one of pure geometry, on a completely 
original subject. This is why this text, accompanied by Ibn Sahl’s com-
mentary, constitutes a significant testimony to the geometrical activity of 
the 10th century. 

 
 

2.4. Al-Ṣāghānī’s study of the projection of the sphere  

At about the same time, al-Ṣāghānī was composing a treatise that he 
called On the Manner of Projecting the Sphere on the Plane of the Astro-
labe (Kitāb kayfiyyat tasṭīḥ al-kura), in which he generalized the conic 
projection of the sphere, by displacing the pole of projection along the axis 
of the sphere, developing in 12 chapters his new theory as well as its appli-



592 PART II: GEOMETRY 

  
cations to practical construction by craftsmen. He studies the construction, 
on the plane of the instrument, of the projections of the parallels at the 
equator (madārāt) and of the meridians, of the projections of a horizon, of 
its parallels, located in the hemisphere, bounded by that horizon and con-
taining the north pole, since this hemisphere represents the visible part of 
the celestial vault, and of circles of height on this horizon, as well as the 
construction of projections of the zodiac and of the fixed stars – the rete – 
by means of the modes of projection derived from the stereographic pro-
jection. Indeed, all throughout his treatise, he considers conic projections, 
but instead of projecting the sphere on the equatorial plane from one of its 
poles, he displaces the pole of projection along the axis and discusses all 
the cases that emerge. In his introduction, al-Ṣāghānī claims priority for 
these projections. In his treatise on The Plane Projection of the Figures 
(Tasṭīḥ al-ṣuwar), al-Bīrūnī mentions conic projections for which the pole 
is on the axis of the sphere, whether at the poles themselves or outside 
them, but he does not mention al-Ṣāghānī’s name. The latter notes specifi-
cally that no one had yet studied the drawing of the conic sections on the 
plane of the astrolabe; perhaps at the time he was writing, he did not know 
about al-Qūhī’s work or about Ibn Sahl’s commentary on it, which we have 
just discussed. 

In the first six chapters, al-Ṣāghānī develops the theoretical side of the 
methods of projection of circles that constitute the network of horizontal 
coordinates: the circles parallel to the horizon and the circles of height, the 
projections of which yield the muqanṭārāt and the azimuths (sumūt), on the 
tympanum of the astrolabe. In the last three chapters, by contrast, after 
having presented three ways of tracing the rete, he gives three practical 
methods, that he calls ‘of the artisan’, that make it possible to trace this 
network. We will deal here with the purely geometrical part of this treatise. 
What constitutes the innovation of this work, of which its author is keenly 
aware as we emphasized, is the study of conic projections that do not 
transform the circles of the sphere into other circles on the plane of the 
astrolabe. Although he does not say so explicitly, there can be no doubt 
that al-Ṣāghānī knew the main property of the stereographic projection 
(namely, that the circles of the sphere are projected as circles or straight 
lines onto the plane of projection) and that he deliberately stays away from 
the framework of this projection, since, whenever it occurs, he voluntarily 
omits the case in which the pole of projection is one of the two poles of the 
sphere. He is interested only in the conics as projections of the circles of 
the sphere, and we believe that this follows from a thorough knowledge of 
Apollonius’s book, and from an example of the application of the theory of 
conics, which are both so characteristic of the 10th-century geometers’ 
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activity.27 During the theoretical development, the author carries out 
reasonings in space, returning as much as possible to planes, by means of 
rabatment procedures that al-Qūhī had systematized in his treatise. The 
most frequent rabatment occurs about the meridian and consists in 
superposing the equatorial plane, the support of the astrolabe, onto the 
plane of the horizon’s meridian.  

 
The construction of muqanṭārāt: After having presented the four lem-

mas, studied the projection of the tropics, and discussed the different cases 
that presented themselves as a function of the position of the pole of pro-
jection, al-Ṣāghānī turns to the exposition of the projection of circles par-
allel to the horizon. He confronts several situations that he will treat 
successively in the different chapters.  

First situation: Let A be the south pole and C the north pole of the 
sphere with center E, [GH] is the diameter of the horizon, F the orthogonal 
projection, onto the axis of the sphere, of the southern endpoint G of this 
diameter and O the pole of projection. Then all of the muqanṭārāt are rep-
resented as ellipses when the astrolabe is northern and O is on the open 
interval of [FA) not including point A or when the astrolabe is southern and 
when O is external to the sphere. 
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He gives three cases of figure; but the theorem, which constitutes 

Chapter 3 of his work, has a single statement, namely, that the image of the 
circle of diameter GH by means of the conical projection from pole O is 
the ellipse of axis IK and of parameter p, where I and K are the projections 
of G and H, respectively, and where p is defined by the relation: 

 
27 See above ‘The Archimedeans and problems with infinitesimals’ and Ibn al-

Haytham’s Theory of Conics, Geometrical Constructions and Practical Geometry. A 
History of Arabic Sciences and Mathematics, vol. 3, Culture and Civilization in the 
Middle East, London, Centre for Arab Unity Studies, Routledge, 2013. 
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MO2

MH × MG
=

IK

p
, when M is the point of intersection of GH with the parallel 

to BD passing through O. He refers to the constructions that Apollonius 
solved at the end of Book I of the Conics, to ascertain that the ellipse is 
well defined, and he emphasizes that, in the first case, p < IK, which makes 
IK the major axis of the ellipse; the two other cases yield the inverse: 
p > IK, therefore IK is the minor axis. These follow from Lemmas 3 and 4 
of Chapter 1. 
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To demonstrate this theorem, he considers a cone of vertex O and hav-

ing as base the circle of diameter GH, and shows that the first two lemmas 
create the conditions for applying Proposition I.13 of Apollonius’s Conics, 
which defines the ellipse.  

 
Second situation: If, given the same 

data, and if the pole of projection is now at 
F, then the horizon is projected as a parab-
ola of vertex S, of axis DS, and of parame-
ter p, where S is the projection of the 
northern endpoint H of the diameter of the 
horizon, and where p is defined by the 
relation:  

GH2

GF × FH
=

p

SF
. 
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All the other muqanṭārāt are ellipses in the plane of the astrolabe. Once 
again, the author refers to Apollonius to construct the parabola and to 
demonstrate the result.  
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Third situation: If one uses the same 
data, if the pole of projection O is found 
between F and E, then the horizon projects 
as a hyperbola of axis SQ, with vertex Q, 
diameter SQ, and parameter p, where S and 
Q are the projections of G and H, 
respectively, and where p is defined by the 

relation: 
UO2

GU ×UH
=

QS

p
, when U is the 

point of intersection of GH with the par-
allel to BD passing through O. 
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As to the other muqanṭārāt, let IK be the diameter of circle Γ parallel 
to the horizon and such that OI is parallel to BD. Then, according to the 
second situation, its image by projection on pole O is a parabola in the 
plane of the astrolabe, the image of every circle parallel to the horizon 
located between this horizon and Γ will be a hyperbola, and the image of 
every parallel circle located beyond Γ will be an ellipse with respect to the 
horizon.  

 
Fourth situation: now the pole of projection is at F′ and all the other 

data stay the same. The astrolabe then is of a southern type, because the 
pole of projection is found, like the north pole, on the same half-line that 
issues from the center of the sphere. Let M be the point where the straight 
line HF′ pierces the sphere. Thus there exists a circle Γ, parallel to the 
horizon, one diameter of which will have one of its endpoints at M. More-
over, let us call Λ the circle parallel to the horizon, of which the diameter 
IK passes through F′. Then the images of the horizon and of Γ are parabo-
las in the plane of the astrolabe; the images of the parallel circles included 
between these two are hyperbolas, with the exception of Λ, the image of 
which is a straight line; and the images of the circles parallel to the horizon 
and located above Γ, that is, between it and the pole of the horizon, are 
ellipses (Fig. 89a). 
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In this situation, al-Ṣāghānī explains only the case of the hyperbola and 

the straight line. For the projection of a circle located between the horizon 
and Γ and distinct from Λ, he goes back to the definition of the character-
istics of the conic section: axis, vertex, latus rectum, and diameter, just as 
he had done in the preceding proposition. He then demonstrates that the 
image of Λ is the segment JL, since the cone of vertex F′ and of base Λ is 
then reduced to the disk of circumference Λ, for which the intersection 
with the plane of projection has a rabatment along JL in the plane of the 
astrolabe (Fig. 89b). 

 
Fifth situation: to conclude this study of muqanṭārāt, al-Ṣāghānī con-

siders the case in which the pole of projection is at the center E of the 
sphere. He therefore considers the cone of center E and with the circular 
base Γ of diameter IK, parallel to the horizon of diameter GH. 

Then the image of Γ is the intersection of the cone and of the plane of 
projection, whose rabatment in the plane of the astrolabe is formed by two 
segments ES and ES′, where S and S′ are the points of intersection of the 
circle of the meridian (ABCD) with the perpendicular to BD passing 
through L, when the diameter IK cuts BD at L. 
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Al-Ṣāghānī adds that, if the segment IK does not meet the segment BD, 

then the circle of diameter IK is not projected. By contrast, he says nothing 
about the case of the horizon itself, nor about the case in which the end-
point I of the diameter of the parallel circle is superposed on point D. This 
study of the projection, the pole of which is the center of the sphere, sheds 
light on his intention, if there were any doubt about it. By treating a case 
with no application to the astrolabe because of its trivial character, he 
shows clearly that his research is theoretical and that specific cases have 
significance as ‘limiting cases’, to establish the generality of a theory of 
conic projections of the sphere. 
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2.5. The construction of the sumūt 

As he had done for the study of the muqanṭārāt, al-Ṣāghānī begins his 
study of the construction of the azimuths (sumūt) with the demonstration of 
four lemmas that yield results in spherical trigonometry. He carries out his 
reasoning in space, and although he discusses the nature of the projection 
of a circle of height Γ, he has determined the characteristics of the conic 
only with respect to the planes of the sphere given in space. In the next 
chapter, the sixth, which is specifically devoted to the construction of the 
sumūt in the plane of the astrolabe, he will define the conic of this plane, 
notably by using two rabatments, the same two on which he relied in the 
first lemma. Now he no longer has the parameter of the conic, as he did for 
the muqanṭarāt; this is why he no longer refers to Book I of Apollonius’s 
Conics, but relies on an ordinate drawn from the section onto the axis.28 

In the first three propositions of chapter six, he projects the first circle 
of height Γ0, of diameter FH, which is orthogonal to meridian (ABCD) of 
the horizon, by considering the different positions of the pole of projection, 
but limiting himself to northern projections. 
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Since Γ0 has (ABCD) as its meridian, it can be treated as a horizon. 

Therefore the axis of the conic obtained by the projection of Γ0 has BD as 
its support. Al-Ṣāghānī nevertheless does not apply the results of his study 
of the muqanṭarāt, since he does not determine the parameter of the conic. 
In every case, however, AL is an ordinate. If U is the projection of H, and V 
is that of F, when it exists, then in the first case, the pole of projection M is 
external to the sphere, therefore the image of Γ0 is the ellipse of axis UV. In 
the second case, the pole of projection is at J and the image is the parabola 
of vertex U and of axis UV. In the third case, the pole of projection M is 
between J and L and the image is the hyperbola of vertex U and of diame-
ter UV. 

 
28 P. Abgrall, ‘La géométrie de l’astrolabe au Xe siècle’, Arabic Sciences and 

Philosophy, vol. 10.1, 2000, pp. 7–77, at pp. 24–7. 
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In the fourth proposition, al-Ṣāghānī considers a circle of any given 

height Γ, and assumes that the pole of projection M is external to the 
sphere. First of all, he constructs the straight line LG that forms the angle ε 
with BD, and the points R and E of the circle (ABCD), such that the arcs 
DR and BE are both equal to δ, by referring what was posited and demon-
strated in the first lemma about the construction of azimuths. Then the 
points I and S are taken at the intersections of ME and MR with BD. One 
thus obtains the points U and V on LZ, which is perpendicular to LG, such 
that LU = LS and LV = LI. 
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According to Lemma 3, al-Ṣāghānī knows that the image of Γ is an 

ellipse. In fact the construction that precedes includes the two rabatments 
of Lemma 1. On the one hand, the meridian of Γ undergoes a rabatment, 
about AC, onto the meridian (ABCD). Then the straight line PT, the inter-
section of the meridian of Γ and of the equator, undergoes a rabatment 
along BD, and by projecting E and R, one obtains the length IS of the axis 
of the ellipse being sought. One obtains the position of this axis with the 
second rabatment, that of the plane of the equator about BD, by which PT 
undergoes a rabatment onto LZ. This is why, by rotating IS about L, one 
obtains the axis of ellipse UV. In the same rabatment about BD, the point S 
becomes superposed onto G, since the two arcs BG and BS are equal to ε. 
Therefore the ellipse has UV as its axis and one of the ordinates is GL. In 
this text, al-Ṣāghānī does not flesh out these rabatments; he defines the 
stages of the construction and refers to Lemma 3 for the demonstration.  

In the fifth proposition, he treats the case in which the projection is a 
parabola by following the same method of rabatments, and one encounters 
this case when the pole of projection is the orthogonal projection, J′ of E 
on the axis. He discusses briefly the other types of conics one obtains, as a 
function of the pole of projection with respect to J′, for a circle of fixed 
height. He adds that, for a given pole of projection, all the azimuths 
(sumūt) – pass through two fixed points, that is, the projections of poles on 
the horizon. We encounter the fact that the sumūt form a bundle of circles 
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with points of base. Al-Qūhī demonstrates this result indirectly by 
determining the locus of the centers of the sumūt, in Chapter 4 of Book 1 of 
his treatise.29 Al-Ṣāghānī concludes his study with two propositions in 
which he treats the case in which the pole of projection is the center of a 
sphere. 

 
The studies devoted to the astrolabe originating in the stereographic 

projection were very numerous from the 9th century on, and the works by 
al-Bīrūnī that we have already cited offer much evidence for them. We find 
more evidence in a work by Ibn al-Sarī, known under the name of Ibn al-
Ṣalāḥ (d. 548 H./1154), called The Projection of a Surface of the Sphere 
(Tasṭīḥ basīṭ al-kura). His work is divided into two parts, theoretical and 
‘practical’, which treat the way of constructing the astrolabe and the way of 
dividing the circles and the lines on the tympanums of the instrument. The 
author cites a good number of his predecessors in order to criticize their 
approaches to the construction of the astrolabe. In a series of unfair criti-
cisms, Ibn al-Sarī denounces the absence of explanations aimed at the 
practical construction of the astrolabe in Ptolemy’s book on the projection 
of the surface of a sphere (probably the Planisphere) and Pappus’s com-
mentary on it. He blames al-Farghānī, in the book to he calls ‘theoretical 
principles and construction of the astrolabe’ (known under the title al-
Kāmil), not only for devoting too little space to theory and too much to 
practical construction, but also for inadequacies. According to Ibn al-Sarī, 
al-Farghānī gives useless lemmas, leaves out others that are indispensable, 
but above all berates him for not having read Apollonius, which seems 
very prejudicial to this type of research. Finally, Ibn al-Sarī criticizes four 
works – one by Ḥabash al-Ḥāsib on the northern astrolabe, a treatise by al-
Bīrūnī (probably al-Istīʿāb, or Tasṭīḥ al-ṣuwar), one chapter from a book 
by Kūshyār on the use of astrolabe, and a treatise on the astrolabe by Ibn 
al-Samḥ. He blames them all for giving no space to theory, and for treating 
only the construction of the instrument.  

As we can see, in this era and into the 12th century, this area of research 
stimulated debates, and even quarrels. So it happened that, from the 9th 
century, other projections considered in the domains of cartography and of 
the representation of the heavens also became the focus of controversies 
and criticisms. In his The Plane Projection of Figures (Tasṭīḥ al-ṣuwar), 
al-Bīrūnī recalls certain debates and quarrels about the advantages of the 
different projections. In particular, about a projection al-mubaṭṭakh (in the 

 
29 R. Rashed, Géométrie et dioptrique, pp. 202–4; Geometry and Dioptrics, 

pp. 896–8. 
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form of a melon), which is a zenith-equidistant projection referred to one 
of the poles of the ecliptic, he writes: 

It is possible to transfer what belongs to the sphere onto a plane by another 
method, which, in several copies of his al-Kāmil, Abū al-ʿAbbās al-Farghānī 
attributes to Yaʿqūb ibn Isḥāq al-Kindī, and in several other copies to Khālid 
ibn ʿAbd al-Malik al-Marwarūdhī, which is called the melon-shaped astro-
labe. A book by Ḥabash about its construction has been found […].30 

This projection, one of the main contributions to which came down to 
us from Ḥabash ibn Ḥāsib,31 was criticized by the Banū Mūsā, and espe-
cially by the eldest, Muḥammad, as a way of constructing the astrolabe. Al-
Farghānī, the very author of one of al-Bīrūnī’s sources, also objected to this 
projection.32 For the construction of the astrolabe, several other projections 
were elaborated by such first-rank mathematicians as al-Sijzī, al-Bīrūnī 
himself, Kūshyār, and many others. Given the great extent of these studies, 
we have paid attention mainly to those that, in our opinion, influenced the 
history of projective geometry. 

 
30 Al-Bīrūnī, Tasṭīḥ al-ṣuwar wa-tabṭīḥ al-kuwar, ed. A. Saidan, pp. 13–14. 
31 E. S. Kennedy, P. Kunitzsch and R. P. Lorch, The Melon-Shaped Astrolabe in 

Arabic Astronomy, Stuttgart, 1999. 
32 Ibid., pp. 178–81. 
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THE CONTINUOUS DRAWING OF CONIC CURVES 
AND THE CLASSIFICATION OF CURVES 

 
 

 
1. INTRODUCTION 

 
The continuous drawing of conic curves requires not only the invention 

of an instrument, or of a mechanical system capable of drawing these 
curves, but also the elaboration of concepts in the theory of conics capable 
of explaining and controlling the use of this instrument. It is therefore a 
type of research in which techne and theoria are tightly intertwined. In this 
respect, it has nothing to do with another kind of research, the goal of 
which is completely practical: to discover only the instrument. An example 
of the latter is the ‘ruler that curves inward’ used by Diocles to join the 
points in the arc of a cissoid.1 By contrast, the issue that concerns us now 
involves delving into the conceptual work necessary to explain the struc-
ture and operation of the instrument. Not until the second half, if not the 
last third, of the 10th century does one encounter this mathematical research 
on instruments designed to draw curves. Not until then does one therefore 
witness the emergence of a new chapter in geometry, the importance and 
even the existence of which have eluded historians. This fact is all the more 
remarkable because prior to this period, the history of mathematics reveals 
nothing comparable to this research. To be sure some engineers had already 
broached more or less directly the question of the continuous drawing of 
conics without, as far as we know, ever elaborating the relevant mathe-
matical theory. Indeed they merely invoked a procedure without undertak-
ing the geometrical research capable of explaining its construction and 
usage. However that may be, our knowledge of the history of continuous 
drawing before the advent of Arabic mathematics is reduced to one unique 
fact and one remnant, both of which go back to the engineers of the 6th 
century. We know that Anthemius of Tralles traced the ellipse using the so-
called ‘gardener’s method’. This procedure obtains a continuous movement 

 
1 R. Rashed, Les Catoptriciens grecs. I: Les miroirs ardents, edition, translation, 

and commentary, Collection des Universités de France, Paris, Les Belles Lettres, 2000, 
p. 84 and p. 133. 
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by using a string, the extremities of which are fixed at the foci, and that one 
tightens with a stylus that traces a curve. The procedure relies on the 
following property: the sum of the distances of the foci to every point of 
the ellipse is constant and equal to the length of the major axis.2 As to the 
remnant, it comes from a phrase of dubious authenticity, which is attributed 
to Eutocius and implies that Isidore of Miletus3 had invented an instrument 
to trace the parabola. This phrase famously states: ‘The parabola is traced 
by means of the instrument invented by our teacher, Isidore of Miletus, the 
engineer, and described by him in his commentary on Hero’s treatise enti-
tled On Vaulting (�ῶ� Ἥρωνος Kαμαρικῶν)’.4 Αs its name �������� sug-
gests, this instrument seems to be a compass, although this is not certain. 
Now this very same phrase appears also in the Arabic translation of 
Eutocius’s Commentary on Archimedes’ On the Sphere and Cylinder, 
which the mathematician al-Qūhī knew. Although he is the first to write on 
this type of compass, al-Qūhī does not mention this statement; on the con-
trary, he claims that nothing of the sort came down from the ancients on 
this subject. His young contemporary al-Sijzī, who was inclined to erudi-
tion, reconstructs a rather legendary history of the ‘perfect compass’ that 
evidently starts from the phrase attributed to Eutocius. Without any addi-
tional historical or linguistic information, he interprets διαβήτης as this 
‘perfect compass.’ The most we can say is that if the Byzantine engineers 
Anthemius and Isidore encountered the problem of continuous drawing in 
their work, they never raised it for all three curves at the same time; nor did 
they provide a geometrical theory of the instrument.  

All the clues thus suggest that, if the Greek mathematicians came 
across the problem of continuous drawing, they never settled on it as a 
topic nor gave it a place at the heart of their research. Until the middle of 
the 10th century, this same situation still obtains among the Arabic mathe-
maticians. To be sure, scientists like Ibn Sinān (296/901–335/946) imple-
mented research on pointwise construction,5 but not yet on continuous 
drawing. Several decades later, this very topic of research moves into the 

 
2 R. Rashed, Œuvres philosophiques et scientifiques d’al-Kindī. Vol. I: L’optique 

et la catoptrique d’al-Kindī, Leiden, E. J. Brill, 1997, pp. 678–79; and Les Catoptri-
ciens grecs, pp. 250 and 292. 

3 P. Tannery, ‘Eutocius et ses contemporains’, Bulletin des Sciences Mathéma-
tiques, 2e série, vol. VIII, 1884, pp. 315–29; repr. in Mémoires Scientifiques, vol. II, pp. 
118–36. 

4 Eutocius, Commentaire de La Sphère et le Cylindre d’Archimède, in Archimède, 
Commentaires d’Eutocius et fragments, Text, French translation and commentary by 
C. Mugler, Collection des Universités de France, Paris, 1972, IV, p. 62, lines 3–4. 

5 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe siècle, 
Leiden, E. J. Brill, 2000, pp. 245 ff. 
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foreground. In fact, three of Ibn Sinān’s most prestigious successors invent 
new instruments for continuous drawing, and elaborate the theoretical 
means necessary to underpin it. They are: al-Qūhī in his Kitāb fī al-birkār 
al-tāmm (The Book on the Perfect Compass);6 Ibn Sahl in his Kitāb al-
Ḥarrāqāt (The Book on Burning Instruments)7 and al-Sijzī in a short trea-
tise that was discovered only recently, the Risāla fī ʿamal al-birkār al-
tāmm (Treatise on the Construction of the Perfect Compass).8 

The fact that three contemporary mathematicians of the first rank are 
interested in the same problem is an event that deserves to be described and 
analyzed. Whereas Ibn Sahl conceives of a mechanical system founded on 
the properties of the foci and the directrix to trace only the three conic sec-
tions, al-Qūhī invents the perfect compass to trace all the lines that he calls 
‘measurable, qiyāsiyya’,9 that is, the three conics, but also the circle and the 
straight line; al-Sijzī, for his part, seeks to perfect this instrument in order 
to trace similar sections as well.  

These three mathematicians thus managed to form, together if not 
equally, the nucleus of a new research tradition that will thrive for two 
more centuries. Neither the importance of this event nor al-Qūhī’s founda-
tional role escaped the notice of his immediate successors. This is what al-
Bīrūnī (973–after 1050) writes in his Fī Istīʿāb al-wujūh al-mumkina fī 
ṣanʿat al-aṣṭurlābī (On All the Possible Methods for Constructing the 
Astrolabe):  

A group of eminent moderns took pains to trace conic sections according to 
Apollonius’s exposition in the book of Conics, such as Ibrāhīm ibn Sinān, 
Abū Jaʿfar al-Khāzin and many others. Each of them tried to find the succes-
sive points of their perimeters. But Abū Sahl Bijan ibn Rustum al-Qūhī 
wrote a book to trace them by means of the perfect compass. Indeed, he 
called it perfect because of the possibility of constructing the straight line 
and the circular line that he assumed and each of the three conic sections, an 
effective construction that dispenses with connecting and adapting numerous 
points on their perimeters.10 

 
6 F. Woepcke, ‘Trois traités arabes sur le compas parfait’, Notices et extraits des 

manuscrits de la Bibliothèque Impériale et autres bibliothèques, vol. 22, 1874, pp. 1–
175; R. Rashed, Geometry and Dioptrics in Classical Islam, London, al-Furqān, 2005. 

7 R. Rashed, ‘A Pioneer in Anaclastics. Ibn Sahl on Burning Mirrors and Lenses’, 
Isis, 81, 1990, pp. 464–91 and Geometry and Dioptrics in Classical Islam. 

8 R. Rashed, ‘Al-Qūhī et al-Sijzī: sur le compas parfait et le tracé continu des 
sections coniques’, Arabic Sciences and Philosophy, 3.2, 2003, pp. 9–44. 

9 Cf. below. 
10 Ms. Leiden 1066, fol. 49r–v. 



604 PART II: GEOMETRY 

These three mathematicians thus truly inaugurate a research tradition 
that others will in turn join, such as Ibn al-Haytham, al-Bīrūnī, Hibat Allāh 
al-Baghdādī, Muḥammad ibn al-Ḥusayn, among others.11 

The key question is thus to know why this problem of the continuous 
drawing of conic curves surfaced during the second half of the 10th century 
and not before, and with such vigor that several very prominent mathemati-
cians devoted their efforts to solve it. In fact, the genuine reasons for this 
development lie in the new directions that Arabic mathematical research 
took during the 9th–10th centuries. Let us quickly review some of these, as 
well as some of the mathematical chapters that drove the topic of continu-
ous drawing.  

The first chapter concerns geometrical construction by the intersection 
of conics.12 The issue is no longer what it was in ancient geometry, e.g., in 
that of Eutocius, where isolated problems arose sporadically and were 
solved by the intersection of curves, conic or otherwise. One now has a 
method to explore the domain of geometrical problems: these are mostly 
solid, but eventually also (and, in a sense, uselessly) plane and are con-
structed by means of conic curves alone, to the exclusion of all others. In 
the context of this new chapter, some mathematicians study the existence 
of solutions and their number, generally with great care. Carried out by 
analysis and synthesis, this research rests on the asymptotic and local prop-
erties of conics, and in particular their contact. Cultivated by mathemati-
cians from the middle of the 9th century on, this new chapter became a 
domain of active research with the mathematicians of the second half of the 
10th century – specifically al-Qūhī, Ibn Sahl, al-Sijzī, Abū al-Jūd etc. With 
these mathematicians is born a new criterion of admissibility: henceforth, 
the construction by means of conic sections is a construction admissible in 
geometry, on a footing equal to that of construction by straight edge and 
compass. Moreover, these same geometers, who during their constructions 
proceeded by means of geometrical transformations – similarity, transla-
tion, homothetic transformation, affinity – took steps to introduce motion 
into geometrical statements and demonstrations.13 This continuous motion 

 
11 R. Rashed, Geometry and Dioptrics in Classical Islam. 
12 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn 

al-Haytham. Théorie des coniques, constructions géométriques et géométrie pratique, 
London, al-Furqān, 2000; English translation: Ibn al-Haytham’s Theory of Conics, 
Geometrical Constructions and Practical Geometry. A History of Arabic Sciences and 
Mathematics, vol. 3, Culture and Civilization in the Middle East, London, Centre for 
Arab Unity Studies, Routledge, 2013. 

13 R. Rashed, Les Mathématiques infinitésimales, vol. III and vol. IV: Méthodes 
géométriques, transformations ponctuelles et philosophie des mathématiques, London, 
al-Furqān, 2002. 
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– translation, rotation… – is brought about by one instrument or the other, 
and is always reproducible with precision. It was evidently necessary to 
broach the theoretical and practical study of procedures for reproducing the 
motion and thus for drawing conic curves. No sooner said than done. 

But this chapter on constructions is not the only one to require such a 
study. It is indeed in this period that one began to solve certain cubic equa-
tions by the intersection of conic curves. Here too it was necessary to gen-
erate the curve by motion in order to ensure its continuity, which was a 
fundamental concept when discussing the problem of the existence of 
points of intersection of curves.14 

Beyond these orientations internal to geometric research and the elab-
oration of these new chapters, however, the additional requirement of new 
results in applied mathematics enters the stage: Ibn Sahl’s systematic study 
of burning mirrors (parabolic, ellipsoidal) and of plano-convex and bicon-
vex lenses, and also of the anaclastic properties of the three conics,15 
theoretical and practical research on astrolabes,16 and sundials.17 In short, it 
is not a coincidence that Ibn Sahl and al-Qūhī were the first to conceive this 
new chapter on continuous drawing. Indeed, was it not Ibn Sahl who elab-
orated the first geometrical theory of burning instruments, that is, mirrors 
and lenses? Was it not al-Qūhī who wrote the first book devoted to the 
geometry of the astrolabe? Were not both of them in the avant-garde of 
their era’s research on the theory of conics and its applications? We must 
therefore pause to examine their respective writings.  

 
 

2. IBN SAHL: A MECHANICAL DEVICE TO TRACE CONIC SECTIONS 
 

In his Kitāb al-Ḥarrāqāt,18 Ibn Sahl starts from the property of the 
focus and the directrix to invent a device devoted to continuous drawing. 
This device is composed of two parts, one of which is not deformable 
whereas the other is, without, however, varying in length. The first part is 
constituted of rigid rulers and pulleys, whereas the second is made of a 
flexible belt, that is, one that can take on one shape or the other while pre-

 
14 See above, First part: Algebra. 
15 See R. Rashed, Geometry and Dioptrics in Classical Islam. 
16 See above, ‘The Traditions of the Conics and the Beginning of Research on 

Projections’. 
17 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe 

siècle. 
18 R. Rashed, ‘A Pioneer in Anaclastics. Ibn Sahl on Burning Mirrors and Lenses’, 

and Geometry and Dioptrics in Classical Islam. 
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serving a constant length. This belt circumscribes the pulleys, the function 
of which is to avoid rupturing the belt. To this, one adds a stylus that is 
placed at the center of the movable pulley and that will trace the studied 
curve.  

Thus, to trace the arc of parabola AB, of focus F, and of directrix D, 
Ibn Sahl invents a device composed of a ruler that takes the place of the 
directrix, a T-square of constant length HH′ = l, where H is the apex of the 
T-square’s right angle, and H′ is placed on the ruler. Thus, when the T-
square slides on the ruler, H describes a straight line Δ, which will be per-
pendicular to the axis of the section. At point H, one fixes the end of a belt 
that can be flexed with no change of length. At a point M of HH′, one 
places a movable pulley and at point F an immobile pulley on which one 
fixes the other end of the belt. The latter must be kept taut by means of a 
stylus placed at point M. Ibn Sahl then demonstrates that, if M is such that 
MF = MH′, then M is the current point of the parabola. Indeed, he verifies 
that 

MF + MH = l.  

 
Fig. 9319 

 
In the case of the ellipse, the fixed length l is that of the major axis; F 

and F′ are the two foci. This time, the device that Ibn Sahl proposes differs 
from the famous ‘gardener’s method’ only by the use of three pulleys, two 
of which are fixed at the two foci respectively, whereas the third, placed at 
M, is movable. The belt of length l surrounds the pulley M and its 
extremities are fixed at pulleys F and F′. The point M is the current point of 
the ellipse; indeed he proves that 

 
MF + MF′ = l.  

 
19 R. Rashed, Géométrie et dioptrique, pp. LXXIX–LXXX and pp. 10–15. 
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Fig. 94a 

 
Finally, to trace the hyperbola with foci F and F′ with a transverse axis 

of length 2a, Ibn Sahl conceives a devise composed of two rulers and two 
pulleys. The first ruler FF′ is fixed, the second FS is movable: it pivots 
around focus F. He then considers a belt. one extremity of which is fixed 
on an immovable pulley placed at F′, and the other is at point S of the mov-
able ruler. Around this last pulley passes the belt, which must be kept taut 
by means of a stylus that leans at M on the ruler.  

If now FS = l, a constant length, the length of the belt will be 
l′ = l + 2a. In this case the point of the stylus traces hyperbola MB when 
the ruler pivots around F. Indeed, point M will verify that MF′ – MF = 2a, 
whence (SM + MF′) – SF = 2a. 
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Fig. 94b20  
 
 

3. Al-QŪHĪ: THE PERFECT COMPASS 
 

Ibn Sahl’s contemporary, al-Qūhī, invents another instrument that 
makes possible the continuous drawing of conic curves, as well as the cir-
cle and the straight line. Thanks to this instrument, he writes, it is easy ‘to 
construct astrolabes on plane surfaces or surfaces of revolution, as well as 

 
20 R. Rashed, Géométrie et dioptrique, pp. LXXX–LXXXI and pp. 31–9. 
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to construct sundials on any surface, and likewise to construct all the 
instruments on which the lines that are the intersections of a conic surface 
and of any surface are situated’.21 To this compass, al-Qūhī devotes an 
entire geometrical treatise in two books. In the first, he elaborates a theory 
of the instrument, before moving on to its applications in the second. Note 
that despite his preliminary statements on the utility of the instrument for 
astrolabes, sundials, etc., all the applications contained in the second book 
are purely geometrical.  

The first book of the treatise begins with a description of a perfect 
compass and continues with the explanation of its use to trace on a given 
plane the various following curves: straight line, circle, parabola, ellipse, 
hyperbola (one- and two-branched). 

 

Fig. 95 
 
The perfect compass has four articulated parts:  
• A plane part, that is the base and contains ‘the straight line of center’ 

AD.  
• ‘The axis of the compass’, AB, which can turn about a point A called 

the ‘center’ while remaining in plane Q, a plane perpendicular to plane P 
along the straight line AD; its position is determined by the angle at the 
center of the compass α = DÂB . 

• ‘The straight line of the apex’, BC, which can turn about point B, 
called the ‘apex’. First one considers its initial position in plane Q at the 

time one chooses the apex angle β = AB̂C  ≤ π
2

. Then one makes it rotate 

about the axis to generate a plane surface, if the angle at the apex is right, 
and a conic surface of revolution, if it is not.  

 
21 R. Rashed, Geometry and Dioptrics in Classical Islam, pp. 796–7. 
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• The straight line BC is itself the support of a drawing pen that can 
slide on this straight line so that one of its extremities – for example, M – 
comes into the plane to trace the sought figure.  

The figure DABC is that of the compass; Q  is the plane of the 
compass. 

Everything therefore depends on the angle β formed by the axis of the 
compass with the branch BC of the latter and on the angle α that the axis 
makes with the base of the compass. The drawing pen has a variable 
length, which allows its point to stay in contact with the plane on which 
one intends to trace the conic sections. The axis itself remains fixed. 

 
Consider the case in which α is obtuse. Let BK be the perpendicular 

dropped from B onto the secant plane; BK is thus perpendicular to the base 
of the compass. The nature of the traced curve depends upon angle CBK; 
one has 

AB̂K = α − π
2

,   CB̂K = β +α − π
2

.  

 
Fig. 96 

If therefore 

CB̂K < π
2

⇔ β +α < π , the section is an ellipse; 

CB̂K = π
2

⇔ β +α = π , the section is a parabola; 

CB̂K > π
2

⇔ β +α > π ; the section is a hyperbola. 

Al-Qūhī’s idea is that the nature of the curve that one wishes to trace 
on the plane depends on the initial position of the compass with respect to 
this plane. This position is characterized by the length l of the axis of the 
compass, by the angle β  that the axis makes with the movable branch, and 
by the angle α that the axis makes with the base of the compass. The issue, 
therefore, is to study the correspondence between the elements (l, β, α) on 
the one hand, and the elements that characterize the conic section on the 
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other: diameter and latus rectum for the ellipse and the hyperbola, and latus 
rectum for the parabola.  

Al-Qūhī goes on to establish the following propositions: 

• If α = π
2

 and β = π
2

, then the drawing pen does not meet plane P 

and it traces nothing.  

• If α ≠ π
2

 and β = π
2

, the straight line BC generates a plane that cuts 

plane P   along a straight line that will be traced by the drawing pen. 

• If α = π
2

 and β < π
2

, the traced curve is a circle with r = AB tan β. 

• If α = β < π
2

, the traced curve is then a parabola with axis AD and 

apex D. 

• If α < β < π
2

, the first end of the drawing pen describes a branch of 

the hyperbola of apex D and the other end describes the other branch of the 
hyperbola of apex E. 

• If β < α < π
2

, the drawing pen will trace an ellipse. 

 
Fig. 97 

 
To illustrate al-Qūhī’s procedure, take the last case as an example: 

consider the nappe of the conic surface with axis BA and apex angle β, 
generated by the half-line BC. Plane P  cuts all the generatrices of this 
nappe; the intersection is an ellipse with axis DE. The point D is the end of 
the drawing pen when it is in plane Q, with α and β on the same side of AB. 
Point E is the end of the drawing pen, also in plane Q, when α and β are on 
one side and the other of AB. During the rotation of BC about AB, the 
drawing pen will trace the entire ellipse. 

Thus the perfect compass makes possible the continuous drawing on a 
given plane of a straight line, a circle, or any conic section, whether in 
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relation to an axis or to a diameter. The reasonings and the constructions 
that al-Qūhī indicates in no case bring in the foci; they rely instead on the 
properties Apollonius established in the first book of the Conics for the 
plane sections of a cone with a circular base; these are properties that con-
cern a diameter, the latus rectum associated with it, and the angle formed 
by this diameter with the direction of the ordinate lines.  

The second book of the treatise is entirely devoted to the solution of 
problems concerning the continuous drawing of curves. 

For each problem, al-Qūhī provides the preceding elements for the 
curve that he wants to trace, and then wonders how to determine the figure 
of the perfect compass by specifying the size of the elements. Let us briefly 
take the example of the parabola: to trace a parabola with a given apex B, 
the diameter BC, latus rectum D, and angle E of the ordinate lines that 
correspond to the diameter BC.  

Two cases present themselves, according to whether angle E is right or 
not.  

First, E is right; the straight line BC is then the axis of the parabola. But 
al-Qūhī had demonstrated in the first book of his treatise that one must 
have α = β. If A  is the length of the axis of the compass, it is necessary 
that  

cosα = cosβ = D2

16A 2
+1 − D

4A
. 

 
There is no point in reproducing here the calculation that led al-Qūhī to 

this condition.22 One need only remember the beginning of this calculation. 
Al-Qūhī begins by drawing a semicircle with any diameter GH and by 
placing on it the point K defined by  

 
GK 2

GH ·HK
= D2

4A 2
. 

 
One has KI � GH. Angle KHI will be the angle sought for the compass. 

One makes the drawing pen slide until its end meets the straight line of 
center. The compass is then represented by triangle BLM such that LM of 
length A  is the axis; point M is the center, the straight line of the apex is 
LB if the angle of the apex and the angle of the center are on the same side 
of axis BM; it is LN, parallel to BM if these angles alternate. One places the 
straight line of center MB on the given straight line BC. If one now makes 

 
22 R. Rashed, Œuvre mathématique d’al-Sijzī. 
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LB rotate about LM, the drawing pen carried by LB traces out the sought 
parabola.  

 
Fig. 98 

 
Now if the angle E is not right, the straight line BC is in this instance 

any diameter of the sought parabola. The method al-Qūhī applies in this 
case consists in defining the axis of this parabola, its apex, the latus rectum 
corresponding to it, to reduce it to the preceding case.  

Let us go over al-Qūhī’s procedure. Through a point G taken on one of 
the sides of a given angle E, one draws GH perpendicular to the other side 
at H; and let I be the middle of EH. One sets 

 

D
N

= EG2

GH ·HI
; 

 
which defines the length N. 

Now take a point K on the extension CB, such that KB̂L = GÊH , 
KL ⊥ BC and KL = N. The triangles LKB and GHE are similar, and LK = N; 
the triangle LKB is therefore known, the length KB is known, and 

KB = N
tan Ê

. 

Let O be such that LO || BC and BO || KL, and M is the middle of LO. 

One defines a length S by OB
S

= OM
OB

. With the compass whose axis has 

length A, one can then trace the parabola of diameter MO, of apex M and 
of latus rectum S, such that the angle that the diameter LO makes with the 
ordinate line is right, that is, MO is its axis, as al-Qūhī had established in 
the first case. This parabola passes through B, because OB2 = S · OM 
(abscissa OM, ordinate OB). It is obvious that BC parallel to the axis MO is 
a diameter. 



 3. THE CONTINUOUS DRAWING OF CONIC CURVES 613 

It remains to be demonstrated that the latus rectum associated with BC 
is D and that the angle that the ordinate makes with the axis is angle E, that 
is, that BL is tangent to the parabola at B. 

Take (Mx, My) as reference, the parabola of axis Mx and of latus 
rectum S has as an equation y2 = Sx.  

K

L M O

B C x

x

y

y1

1

 
Fig. 99.1 
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Fig. 99.2 

 
The apex M of the parabola is the middle of OL, therefore the straight 

line BL is tangent to the parabola at B (Conics, I.33). 
For the oblique axes reference (Bx1, By1), one has the equation y1

2 = Tx1 , 
if T is its latus rectum. The coordinates of M are x1 = LM, y1 = LB, whence 
LB2 = T · LM. Let us show that T = D.  One has KL = N, whence  

 

LB = N
sin E

  and  LM = 1
2

LO = 1
2

N
tan E

; 

 
so 

T = 2N tan E
sin2 E

= N GE 2

GH ·HI
= D . 

 
Al-Qūhī then treats the following problem in an analogous manner: to 

trace a hyperbola, knowing its transverse diameter, the associated latus 
rectum, the angle formed by the transverse diameter and the ordinate line 
when the length of the axis is given.  
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He then moves on to the problem of drawing, in a given plane, an 
ellipse for which one knows the diameter, the associated latus rectum and 
the angle formed by this diameter with its ordinate line.  

In all of these problems, he shows that the angles α and β are known, 
and thus determine the perfect compass. 

Note that the three problems al-Qūhī treats correspond to Propositions 
I.52–56 of Apollonius’s Conics.23 Indeed, everything suggests that al-Qūhī 
took, by way of exercise as it were, the problems from the end of Book I of 
the Conics, in which Apollonius was examining the construction of conic 
sections, in order to show how one can undertake their continuous drawing 
by means of a perfect compass. In this way, he perhaps wanted to show that 
the new instrument and the new methods are both necessary and effective 
to solve Apollonius’s own problems.  

 
 

4. Al-SIJZĪ: THE IMPROVED PERFECT COMPASS  
 

One young contemporary of al-Qūhī’s was al-Sijzī who, as noted ear-
lier, was very familiar with his elder’s writings. There can be no doubt that 
he knew thoroughly the latter’s treatise on the perfect compass. To be per-
suaded of this fact, one need only read carefully his Risāla fī waṣf al-quṭūʿ 
al-makhrūṭiyya (Short Treatise on the Description of Conic Sections), as 
well as his Risāla fī ʿamal al-birkār al-tāmm (Treatise on the Construction 
of Perfect Compass); the dependence is obvious even though al-Qūhī’s 
name appears nowhere in them.24 This is not the only important point, how-
ever. The two preceding titles are the best witnesses to the fact that the 
problem of drawing curves had become sufficiently central for one and the 
same author to devote two treatises to it. Moreover, in his relatively late 
book, Fī waṣf al-quṭūʿ al-makhrūṭiyya, one sees that al-Sijzī is as con-
cerned with the drawing by points, the continuous drawing by means of 
patterns constructed for this purpose, as well as the continuous drawing by 
means of the perfect compass. We know, moreover, that he had devoted an 
elegant study to drawing the hyperbola by means of points,25 and written a 
work on the perfect compass that also treats continuous drawing. 

 
23 R. Rashed, Apollonius: Les Coniques, Tome 1.1: Livre I, Berlin/New York, 

Walter de Gruyter, 2008. 
24 R. Rashed, Œuvre mathématique d’al-Sijzī. 
25 R. Rashed, ‘Conceivability, Imaginability and Provability in Demonstrative 

Reasoning: al-Sijzī and Maimonides on II.14 of Apollonius’ Conics Sections’, 
Fundamenta Scientiae, vol. 8, no. 3/4, 1987, pp. 241–56. 
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In this last work, the author apparently wants to modify al-Qūhī’s 
invention in order to expand what it can do: thus in addition to drawing the 
curves al-Qūhī had considered, the modified compass will also be in a 
position to trace similar sections. The proposed modifications focus on the 
way of articulating both the axis and the branch of a compass on the 
devices that allow one to adjust its angle, and finally on the means of 
lengthening or shortening the axis or the branch that carries the drawing 
pen.  

Thus, al-Sijzī begins by presenting a procedure for varying the length 
of the axis of the compass, not to mention the length of the second branch 
that carries the drawing pen. He implies, however, that the point of the 
drawing pen must remain in contact with the plane on which one wishes to 
trace the conic section.  

Indeed he considers two tubes, 
AN and AS articulated at point A, 
the apex of the compass. In tube 
AN, there is a stem AB that will be 
the axis of the compass, and in tube 
AS, the stem AC will carry the 
drawing pen. The articulation of the 
two tubes at point A must allow 
tube AS to rotate around A so that 
one can choose the angle BAC and 
allow AS to be carried along with 
the tube AN in the rotational motion 
around axis AB.  

A

E

N

B

G
G'

S

C
 

Fig. 100 

Next al-Sijzī considers an arc GE from the circle of center A, that goes 
through two notches E and G′, respectively, on the two walls of the tube 
AN and of the tube AS and that slides on two grooves on these walls. One 
must nevertheless have a device that allows one at any moment to stop the 
sliding and preserve the chosen separation for the two tubes, before making 
the tube AS, which holds the drawing pen, rotate with an angle BAC of 
fixed size. The angle BAC is measured by the ratio of arc EG to AE. Since 
arc EG is fixed, one need only make E and G slide in their respective 
notches in order to add the distance AE and to block the spread. 

Al-Sijzī then indicates three methods to adjust the length of the stem 
AB, which is the axis of the compass. Take the first as an example. Assume 
that stem AB is cut at point P, that is, that it is separated into two parts, part 
AP that one assumes fixed, and part PB that one can make slide in tube AN 
by means of a peg or handle placed at point P. In this case, one can go from 
position PB to position P1B1. This assumes that there is a rectilinear slit in 



616 PART II: GEOMETRY 

the wall of tube AN so that the peg P slides in this slit. The axis of the 
compass thus reaches length AB1 which corresponds to the desired distance 
in order to bring point B1 onto the plane on which one wants to trace the 
conic section.  

P

PP

B

B

AAA

N
1

1  
Fig. 101 

 
Al-Sijzī then gives a procedure to make the stem that carries the draw-

ing pen slide in the tube that is the second branch of the compass. Finally 
he presents a third procedure in which the length of the axis remains con-
stant and the stem of the drawing pen continues to be assumed mobile. One 
can thus express the idea that emerges from this work of al-Sijzī. Whatever 
model one chooses, the perfect compass allows one to trace continuously 
the three conic sections, as well as similar sections in addition to the circle 
and the straight line.   

 
To understand this last point, recall briefly that Apollonius, in Conics 

VI.11, shows that all parabolas are similar: for two parabolas of latera 
recta c and c′, the ratio of similarity is c/c′. In Proposition VI.12, he shows 
that the necessary and sufficient condition for two ellipses (or two hyper-
bolas) of diameters d and d′ and of latera recta c and c′ to be similar is that 
(d/d′) = (c/c′), which can written (c/d = c′/d′). 

Consider only the case for the drawing of the parabola.  
Assume that plane ABC is given, corresponding to the initial position 

of the compass, and assume that, in this plane, the axis AB of the compass 
is given in both position and size.  

The plane Π on which the compass can trace a conic section is perpen-
dicular to this plane along a straight line XBY on which the axis of the sec-
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tion is found. Let AB = l, AB̂Y = β , and BÂC = α . The question is there-
fore the following: given these hypotheses, can one trace two similar 
sections?  

According to Apollonius, as we have just noted, all parabolas are sim-
ilar. So let us now turn to the given plane Π and to the compass; such a 
compass allows one to draw only one parabola. Indeed, if Π is given, β is 
known and so is α, because α + β = π . Let us determine the latus rectum c 
of this parabola with apex I. Let M be the point of the curve such that 
MB ⊥ IY; so MB ⊥ AB (because Π ⊥ ABC) and BÂM = BÂC = α ; whence 

 

MB2 = c · BI and MB2 = l2 · tan2 α; 
 

now, BI = l/2 cos α (isosceles triangle IAB); from this, one deduces 
 

c = 2l sin2 α
cosα

. 

 
Fig. 102 

 
By taking a length l′ (l′ ≠ l or l′ = l) as the axis AB of the compass, one 

will trace in Π′ (defined by AB̂ ′Y = ′β  with ′α = π − ′β ) a parabola with 

latus rectum ′c = 2 ′l sin2 ′α
cos ′α

, whence the ratio of similarity ′c
c

. Thus one can 

trace by means of the compass two similar parabolic sections in the same 
plane Π. This is the idea that al-Sijzī recalls briefly at the end of his work.  

Thus, in the wake of al-Qūhī, al-Sijzī establishes generally that the 
nature of the drawn curve depends upon the initial position of the compass 
in relation to the plane on which one wants to draw it.  
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Research on the perfect compass and on continuous drawing does not 
stop with al-Sijzī, however. As we have said, other mathematicians will 
pursue it for more than two centuries.  

 
 

5. CONTINUOUS DRAWING AND CLASSIFICATION OF CURVES 
 

Research on continuous drawing, as we have noted, was a response, 
among other things, to the necessity for mathematicians of this era to 
ensure the continuity of curves. At the time, the only means at their dis-
posal was to introduce motion into geometry. Now it did not take long for 
these new concerns to steer this research toward the major problem of clas-
sifying curves as a function of the kind and the number of motions that 
participate in drawing them. Since this is seminal research, its considerable 
importance deserves to be emphasized. 

Al-Qūhī groups the curves traced by the perfect compass – the straight 
line, circle, conic sections – under a generic name: ‘the qiyāsiyya lines’ 
which we will translate as ‘measurable lines’. At the beginning of his 
second book, he writes:  

This is a treatise on the instrument called the perfect compass, which 
contains two books. The first one deals with the demonstration that it is pos-
sible to draw measurable lines (qiyāsiyya) by this compass – that is, straight 
lines, the circumferences of circles, and the perimeters of conic sections, 
namely parabolas, hyperbolas, ellipses, and opposite sections.26 

Now this expression ‘measurable lines’ will be used throughout the 
entire tradition: it reappears in al-Sijzī, Hibat Allāh al-Baghdādī, Ibn al-
Ḥusayn… In his 19th-century French translation, however, F. Woepcke 
rendered this same expression by ‘regular lines,’ thus throwing a veil over 
this important question.  

The plural adjective qiyāsiyya is derived from the verbs qāsa, yaqīsu, 
or qāsa, yaqūsu, which both express the idea of measure – whence the lit-
eral translation above: ‘measurable lines’. This same term qiyāsī (in the 
singular) also has a figurative sense: it is used of a woman who walks in 
regular fashion. Now it is precisely this figurative sense that F. Woepcke 
chose when he referred to ‘regular lines.’ This translation is not very satis-
factory, not only because it unnecessarily privileges the figurative sense, 
but also it is ambiguous and lacks precision. If one wants to speak about a 
regular curve in the sense in which one understands this since the 19th cen-

 
26 R. Rashed, Geometry and Dioptrics in Classical Islam, p. 726. 
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tury, one would have to exclude the straight line. But al-Qūhī very pre-
cisely lists the latter among these qiyāsiyya lines. 

What then does al-Qūhī mean by ‘measurable lines’? According to the 
geometrical terminology of the time, they are lines (that is, magnitudes) 
that are subject to proportion theory. Such is precisely al-Qūhī’s implica-
tion: it is a matter of the lines generated by a single continuous motion – 
that of the branch of the perfect compass – and to which one can apply the 
theory of proportions. This is the case for the straight line and the circle, 
but also for the three conic sections characterized by the symptomata and 
the properties of the focus and the directrix.  

Thus al-Qūhī has just established a classification of curves: the meas-
urable ones, and the others. But he has also left behind a distinction with 
deep roots in the tradition, that between a straight line, on the one hand, 
and curves (including the circle), on the other.  

Not only did al-Sijzī seize upon al-Qūhī’s gains, but he also will con-
firm them. Thus, in a book entitled Kitāb al-Madkhal ilā ʿilm al-handasa 
(Book of Introduction to Geometry), he carries out different classifications. 
When he comes to lines, he distinguishes three kinds: measurable lines (the 
circle, the straight line, and the conics); nonmeasurable lines that have an 
order (niẓam) and a regularity (tartīb); finally, the nonmeasurable lines that 
have neither order nor regularity. According to al-Sijzī, the first are gener-
ated by a unique continuous motion and are ‘geometrical’, that is, one can 
use them in geometry. The second are generated by two continuous 
motions; they are no longer ‘geometrical’ but ‘mechanical.’ The third, 
which are also generated by two continuous motions, are not even 
mechanical. The example of mechanical curves that he gives is the cylin-
drical helix. It is indeed a skew curve generated by a motion of uniform 
rotation about an axis and by a uniform translation parallel to the axis. This 
is what he writes:  

As to the curve, the cylindrical helix (al-khaṭṭ al-lawlabī), which is used in 
mechanics (al-ḥiyal) and not in geometry, for it is not measurable (ghayr 
qiyāsī) but has an order and a regularity; it is generated by the motion of a 
point following a straight line and following a circle, in common with the 
cylinder.27 

He goes on: 

Given the cylinder ABCD whose two bases are AB and CD. If we imagine 
that point A moves by uniform motion along the straight line AC and that the 
cylinder rotates about the two centers of its bases with uniform motions, the 
line AEGHID is generated, which is a cylindrical helix. As to the line that 

 
27 Ms. Dublin, Chester Beatty 3652, fol. 4r. 
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has no order, it therefore has neither limit (ḥadd, which is also translated by 
‘definition’), nor end, and is used in none of the arts; this is why it is neither 
described nor defined.28 

Al-Sijzī traces the cylindrical helix, but gives no example of nonmeas-
urable curves with no order or regularity. Perhaps he had in mind such 
curves as the quadratrix or the spiral.  

About the meaning of this distinction between measurable and non-
measurable curves, there is not the slightest shadow of a doubt. If need be, 
one can find an additional proof of their meaning in al-Sijzī’s use of these 
terms when he defines the angles: the nonmeasurable angles are precisely 
the curvilinear angles and the angle of contingence (‘horn angle’), whereas 
measurable angles are those that one can study by means of proportion 
theory.29 
 

 

Fig. 103 
 

This seminal research on the concept of curves by means of the concept 
of motion and the number of motions, as well as the separation between 
geometrical curves and mechanical curves, according to whether it is pos-
sible or not to apply the theory of proportions to them, is of major 
importance to the history of geometry, and notably much later for algebraic 
geometry. The crucial question is to find out what became of this chapter, 
whose history we have just sketched, in the mathematics beyond the 10th–
11th centuries.30 

 

 
28 Ibid. 
29 Ibid., fol. 68r. 
30 See above, ‘The first classifications of curves’. 
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 THĀBIT IBN QURRA 
ON EUCLID’S FIFTH POSTULATE*  

 
 
 

1. INTRODUCTION 
 

Two works by Thābit ibn Qurra on the theory of parallels have come 
down to us. Both treatises are well known and have already been the sub-
ject of several commentaries and translations.1 Here we intend to comment 
on them, the better to situate Thābit ibn Qurra’s contribution following the 
recent publication of his works in astronomy and mathematics.2 

The first of these treatises is called If One Draws Two Straight Lines 
According to Two Angles Less than Two Rights, They Meet3 and the 
second, On the Demonstration of Euclid’s Famous Postulate.4 

 
* In collaboration with Christian Houzel. 
1 A. P. Youshkevitch and B. Rosenfeld, The Theory of Parallels in the Medieval 

East, 9th–14th Centuries (in Russian), Nauka, 1983; Kh. Jaouiche, La Théorie des 
parallèles en pays d’Islam: contribution à la préhistoire des géométries non eucli-
diennes, Paris, 1986; I. Tóth, ‘Das Parallelenproblem im Corpus Aristotelicum’, 
Archive for the History of Exact Sciences, vol. 3, nos. 4–5, 1967, pp. 249–422. 

2 Thābit ibn Qurra, Œuvres d’astronomie, edited and translated by R. Morelon, 
Paris, 1987; R. Rashed, Les Mathématiques infinitésimales du IXe

 au XIe siècle, vol. I: 
Fondateurs and commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, 
al-Qūhī, Ibn al-Samḥ, Ibn Hūd, London, 1996, chap. II, pp. 140–673 (English 
translation: Founding Figures and Commentators in Arabic Mathematics. A History of 
Arabic Sciences and Mathematics, vol. 1, Culture and Civilization in the Middle East, 
London, Centre for Arab Unity Studies, Routledge, 2012), and Les Mathématiques 
infinitésimales du IXe

 au XIe siècle, vol. IV: Méthodes géométriques, transformations 
ponctuelles et philosophie des mathématiques, London, 2002, App. I, pp. 687–765; id., 
Geometry and Dioptrics in Classical Islam, London, 2005. 

3 Text established on the basis of ms. Paris, Bibliothèque nationale 2457, fols 
156v–160r. See R. Rashed (ed.), Thābit ibn Qurra. Science and Philosophy in Ninth-
Century Baghdad, Scientia Graeco-Arabica, vol. 4, Berlin, Walter de Gruyter, 2009, pp. 
42–63.  

4 Text established on the basis of the manuscripts Cairo, Dār al-Kutub, Riyāḍa 40, 
fols 200v–202r and Istanbul, Aya Sofya 4832, fols 51r–52r. See R. Rashed (ed.), Thābit 
ibn Qurra. Science and Philosophy in Ninth-Century Baghdad, pp. 64–73. 
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Unfortunately, we have no way of knowing the order in which he com-
posed these two works. We will therefore analyze Thābit ibn Qurra’s 
demonstrations and compare them. Before that, however, we must sketch 
the other known attempts to prove this postulate before Thābit ibn Qurra. 

As is well known, the difficulties presented by the theory of parallels 
were already noticed well before the era of Euclid, for example in certain 
texts by Aristotle.5 These difficulties are linked to the definition of parallel-
ism and to the possibility of drawing parallels. Euclid defined parallel 
straight lines as ‘straight lines which, being in the same plane and being 
produced indefinitely in both directions, do not meet one another in either 
direction’ (Elements, I, Def. 23).6 This definition obviously raises serious 
problems. On the one hand, it is negative; as such, logicians will not accept 
it. On the other hand, it brings in a previously undefined concept, namely 
that of infinity (indefinite extension). Under these circumstances, it would 
therefore seem impossible to verify parallelism. Euclid, however, proved 
capable of demonstrating that a certain angular property implies parallelism 
(Elements, Propositions I.27 and 28): 
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AB and CD are two straight lines in a plane, and EF is a transverse line 

that meets AB at E and CD at F. If the alternate interior angles BEF and 
EFC are equal, or if the two angles AEF and EFC form two right angles, 
then AB and CD meet neither in one direction nor in the other; hence they 
are parallel.  

Euclid needs the reciprocal property to reduce parallelism to an angular 
property (positive and entirely in the finite domain). He states this recipro-
cal property in Proposition I.29, but his demonstration requires a postulate, 
the famous fifth postulate: in the same situation (Fig. 105), if the angles 
AEF and EFC add up to less than two right angles, ‘two straight lines, if 

 
5 Anal. prior., Β 16, 65a4 and 17, 66a11; see also I. Tóth, ‘Das Parallelenproblem’. 
6 The Thirteen Books of Euclid’s Elements, translated with introduction and 

commentary by T. L. Heath, 2nd ed., 3 vols, New York, Dover Publications, 1956, vol. 
1, p. 154. 



 4. THĀBIT ON EUCLID’S FIFTH POSTULATE 623 

produced indefinitely, meet on that side on which are the angles less than 
the two right angles’ (Elements, Book I, Postulate 5).7 

This postulate is obviously ad hoc and its statement has the form of a 
theorem (the reciprocal of I.28). From the Hellenistic period on, therefore, 
it drew many objections, which are known from Proclus’s commentary on 
the first book of Euclid from the 5th century of our era. Geometers thus 
tried to demonstrate the fifth postulate. The grounds for such demonstra-
tions were another definition of parallels and implicit or explicit hypotheses 
that, to the geometers, seemed more natural than Euclid’s postulate. It is in 
his commentary that Proclus summarizes the propositions of Posidonius, 
Geminus, and Ptolemy, as well as his own.8 
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The most frequent definition proposed to replace Euclid’s is a property 

that implies parallelism: two straight lines in a plane are called parallel if 
they preserve the same distance between them, that is, if the distance from 
a point M of AB to CD does not depend on the choice of M on AB. In other 
words, parallelism is replaced by equidistance. This definition has its own 
problems: one must prove that equidistant straight lines exist and that the 
property is symmetrical, that is, that if AB is equidistant to CD, CD is equi-
distant to AB. In the Elements, once Proposition 29 is demonstrated, one 
can establish the existence first of parallelograms, then of rectangles; it is 
then easy to demonstrate that parallels are equidistant. 

 
We know of one detailed attempt to demonstrate Euclid’s postulate 

from a fragment of the 6th-century commentator Simplicius; the Greek text 
is now lost, but it had been translated into Arabic and was cited by al-
Nayrīzī.9 In this fragment, Simplicius credits his friend Aghānis with a 
demonstration of the postulate. Unfortunately, we know nothing about this 

 
7 Heath translation, vol. 1, p. 155. 
8 Proclus, in Eucl. I, ed. Friedlein 191.16–193.9; Proclus: A Commentary on the 

First Book of Euclid’s Elements, transl. G. R. Morrow, Princeton, Princeton University 
Press, 1970, pp. 150–1. 

9 See ms. Leiden, Or. 399/1, fols 16r–17r. 
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mysterious Aghānis, not even his Greek name. He defines ‘parallelism’ by 
equidistance, and after allowing the symmetry of this property, he estab-
lishes that the segment that gives the distance between two straight lines is 
perpendicular to each of them. As far as we know, Thābit ibn Qurra was 
the first to establish this important property. Indeed, as we shall see below, 
Thābit ibn Qurra demonstrates rigorously the symmetry of equidistance 
once the existence of equidistant straight lines is admitted. The demonstra-
tion of the statement corresponding to I.29 is therefore easy:  

One assumes that AB and CD are equidistant and considers a transverse 
line EG. One draws EI perpendicular to CD, and GK perpendicular to AB; 
by hypothesis, EI = GK, so that the right triangles GKE and EIG are equal. 
Then the alternate interior angles EGK and GEI are equal. 
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To demonstrate the fifth postulate directly, it is necessary to determine 

how far one must extend the straight lines AB and CD in Fig. 107 in order 
to be certain that they meet. Aghānis uses Lemma X.1 of Euclid’s 
Elements, a form of what is nowadays called ‘Archimedes’ axiom’; he also 
tacitly uses the fact that a straight line that meets the side of a triangle and 
that is parallel to another side necessarily meets the third side (a special 
case of what will later be called ‘Pasch’s axiom’).  
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From a point I of CD, one draws IJ ‘parallel’ to AB. One divides EG in 

two at T, then TG in two at M, and so on. By Lemma X.1, after a large 
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enough number n of steps, one reaches a division point (call it M) such that 
MG < JG. The ‘parallel’ MN to AB meets CD at N between G and I 
(Pasch’s axiom). Let Q be the extension of CD such that GQ = 2nGN (here 
4GN, since one has assumed that n = 2); let S be such that GS = 2GN. 
‘Parallel’ to EG, draw SX, which meets the extension of MN at O. The tri-
angles MNG and ONS are equal (Elements, I.29 and I.15), such that 
SO = GM = XO (parallelogram) and SX = TG. Then, TS is ‘parallel’ to GX, 
and therefore to AB; proceeding in the same fashion, one demonstrates that 
EQ is ‘parallel’ to AB, that is, that Q is on AB (the unicity of the parallel 
line). 

The main components of this demonstration will recur among several 
other authors: the definition of ‘parallelism’ by equidistance, the demon-
stration of the statement corresponding to I.29 for equidistant lines 
(implicitly) assumed to exist, and the demonstration of the fifth postulate 
by appeal to the axioms of Archimedes and Pasch.  

 
 

2. THĀBIT IBN QURRA’S FIRST TREATISE 
 
Let us now return to the treatises that Thābit ibn Qurra devoted to the 

fifth postulate, beginning with If One Draws Two Straight Lines According 
to Two Angles Less than Two Rights, They Meet. It must be emphasized 
that contrary to his predecessors, Thābit ibn Qurra in this treatise tries to 
justify the existence of equidistant straight lines. To this end, he draws 
upon the motion of rectilinear translation. In Thābit ibn Qurra, as in his 
master al-Ḥasan ibn Mūsā, motion becomes a necessary foundation of 
geometry. Recall that in his other mathematical treatises, notably that 
devoted to cylindrical sections, Thābit ibn Qurra had also introduced the 
concept of motion.10 Here, Thābit ibn Qurra uses the following considera-
tions to justify the necessity of motion: both equality and measurement pre-
suppose the possibility of displacing and superposing figures. For him, both 
the definition of the circle and Euclid’s third postulate implicitly appeal to 
a motion of rotation about a fixed center; by analogy, Thābit ibn Qurra 
allows the motion of rectilinear translation of a rigid body as a primitive 
notion in geometry. He states the corresponding postulate: every point of a 
body subjected to a motion of rectilinear translation describes a straight 
line in the direction of translation. 

In the first proposition, Thābit ibn Qurra proves the existence of equi-
distant straight lines as follows: one considers two straight lines AB and CD 

 
10 Rashed, Founding Figures and Commentators in Arabic Mathematics, Chap. II, 

pp. 333–458. 
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in a plane such that the segments AC and EF are equal and that the angles 
ACD and EFD are equal. Then AG and EH, the perpendiculars to CD, are 
equal and, for every point I of AB, the perpendicular IK to CD is equal to 
AG and EH. 
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To demonstrate this proposition, Thābit ibn Qurra observes that the 

motion of translation of triangle ACG along CG brings it onto triangle EFH 
or onto triangle ILK. 

 
Propositions 2 and 3, which are reciprocals of each other, state the 

properties of a certain quadrilateral (an isosceles trapezium); these 
properties will be the foundation of ʿUmar al-Khayyām’s work on the fifth 
postulate.11 The quadrilateral ABCD has equal base angles, B ˆ A D and C ˆ D A  
and its sides AB and DC are equal; therefore A ˆ B C = D ˆ C B . Inversely, if 
ˆ A = ˆ D  and ˆ B = ˆ C , then AB = CD. 
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Indeed, if Â = D̂  and AB = DC, the triangles ABD and DCA are equal 

(Elements, I.4), such that AC = DB; from this, it follows that the triangles 
ABC and DCB are equal (Elements, I.8), therefore ˆ B = ˆ C . 

To demonstrate the reciprocal, one assumes that AB ≠ DC, for example, 
that AB > DC and by deducing a contradiction. Let AE = DC be transposed 
onto AB; by the direct property, A ˆ E C = D ˆ C E , which is smaller than D ˆ C B . 
But, as an angle exterior to triangle CBE (Elements, I.16), A ˆ E C  must be 
larger than A ˆ B C  and one has assumed that A ˆ B C  = D ˆ C B . 

 
11 R. Rashed and B. Vahabzadeh, Omar Khayyam. The Mathematician, Persian 

Heritage Series no. 40, New York, Bibliotheca Persica Press, 2000, p. 225 (Proposition 
1), p. 230 (Proposition 4). 
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In the fourth proposition, Thābit ibn Qurra demonstrates the symmetry 
of the equidistance property for two straight lines. Let the latter be AB and 
CD; one assumes that EG and FH, the perpendiculars to CD drawn from 
the points E and F of AB, are equal. Then EG and FH are perpendicular to 
AB. 
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First of all, a perpendicular IK to CD drawn from a point I on AB can-

not meet EG: if it met EG at a point L, the triangle LGM would have two 
right angles, at G and at M, which contradicts Elements I.17. By Proposi-
tion 1, we know that IK, the perpendicular to CD, is equal to EG and by 
Proposition 2, that Kˆ I E = G ˆ E I . Likewise Kˆ I F = H ˆ F I  and G ˆ E F = H ˆ F E , so 
that Kˆ I E = K ˆ I F  and the angles at I are right, then the angles GEI and HFI, 
which are equal to them, are also right angles. 

 
Proposition 5 characterizes equidistant straight lines as being those that 

have a common perpendicular; it is founded on a property that will be the 
core of Ibn al-Haytham’s demonstration of the fifth postulate (existence of 
the rectangle12). 

One draws AC and BD perpendicular to a given AB and, from a point E 
on AC, one drops the perpendicular EF to BD. Then angle FEA is right and 
EF is equal to AB. 

 
12 Ibn al-Haytham, Sharḥ Muṣādarāt Kitāb Uqlīdis, ms. Istanbul, Feyzullah 1359, 

fols 170v–176r. 
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Let us demonstrate that AE = BF; otherwise AE > BF if not AE < BF. If 

AE > BF, let AG = BF, with G on AE; since GA and FB are perpendicular 
to AB, one knows by Proposition 4 that they are also perpendicular to FG. 
Thus G ˆ F B  is a right angle, as is E ˆ F B , which is absurd. If AE < BF, let BH 
= AE, with H on BF; by Proposition 4, the angle EHB is right, and therefore 
equal to EFH, which is absurd, since an exterior angle of a triangle is 
greater than each of the opposite interior angles (Elements, I.16). 

Thus AE = BF and by Proposition 2, the angle AEF is equal to the right 
angle BFE; by Proposition 3, it follows that EF = AB. 

 
In Proposition 6, Thābit ibn Qurra proves the equality of the alternate 

interior angles formed by a line that is transverse to two equidistant straight 
lines.  

One assumes that straight lines AB and CD have in common a perpen-
dicular EF and one considers a transverse line GI; then the alternate interior 
angles AHI and FIH are equal. 

To demonstrate this, let L be the center of HI; drop the perpendicular 
LM onto AB. The extension of ML meets CD at a point N, for it penetrates 
into the quadrilateral EHIF and can exit through neither EF nor EH (a form 
of Pasch’s axiom implicitly enters the picture here). By Proposition 5, the 
angle at N is right, like the angle at M, and one has M ˆ L H = N ˆ L I , such that 
the right-angled triangles LNI and LMH are equal and that their angles at H 
and I are equal. 
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This proposition is intended to replace Proposition I.29 of the Elements 
in which Euclid proves that ‘a straight line falling on parallel straight lines 
makes the alternate angles equal to one another, the exterior angle equal to 
the interior and opposite angle, and the interior angles on the same side 
equal to two right angles’.13 

Thābit ibn Qurra concludes his treatise with a demonstration of 
Euclid’s postulate along lines analogous to those of Aghānis, that is, by 
using the axioms of Archimedes and Pasch. 

Let AC and BD be two straight lines such that the sum of the angles 
CAB and DBA is less than two rights; then at least one of the two angles, 
D ˆ B A for example, is acute. Let AE be perpendicular to BD; one chooses a 
point F on AC and one drops the perpendicular FG onto AE. According to 
the axiom of Archimedes, there exists a multiple AH of AG greater than 
AE, let’s say 4AG = AH > AE. 

Let I, K, H on AE be such that AG = GI = IK = KH and let L, M, N on 
AC be such that AF = FL = LM = MN; let us raise perpendicular IS to AE 
and drop the perpendicular FS onto IS. One can apply Proposition 5 to the 
quadrilateral GISF to prove that its angle at F is right and that FS = GI = 
AG. Since the angle AFG is acute, FL remains exterior to rectangle GISF. 
The straight lines FS and AI have a common perpendicular SI, therefore, by 
Proposition 6, the transverse line AF forms with them equal angles GAF 
and SFL; the triangles AFG and FLS are therefore equal, and angle FSL is 
equal to the right angle AGF. Consequently, the points ISL are aligned and 
LI is perpendicular to AE. 
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Likewise one proves that MK and NH are perpendicular to AE; since 

BE is also perpendicular to AE, it cannot meet HN. Therefore the extension 

 
13 Heath translation, vol. 1, p. 311. 
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of BD, which penetrates the triangle ANH, must meet AN (‘Pasch’s 
axiom’). 

The properties established in this proposition are: 
1) The straight lines that join the points of division corresponding to 

each other on the straight lines AH and AN are equidistant. This property is 
obviously an immediate consequence of Proposition VI.2 of the Elements; 
at this stage, however, one cannot use the results of this Book VI, since 
they rely on the theory of parallels.  

2) The property expressed by Pasch’s axiom: straight line BD cuts the 
plane in two half planes, and every straight line joining a point from one of 
the half-planes to a point on the other cuts BD. As far as we know Thābit 
ibn Qurra is the first to have deliberately used this property. In contrast, 
Aghānis makes no mention of such a property, even though it is indispen-
sable.  

Finally, note that whereas Aghānis uses the axiom of Archimedes in its 
multiplicative form (Lemma X.1), Thābit ibn Qurra uses it in its additive 
form. 

As we have just seen, Thābit ibn Qurra in this text draws on the con-
cept of motion as a primitive geometrical concept and also on the axioms 
of Archimedes and Pasch; the combination of these elements makes Thābit 
ibn Qurra’s exposition stand out from those of his predecessors and will 
give Ibn al-Haytham and ʿUmar al-Khayyām their new starting points. It is 
in this respect that Thābit ibn Qurra’s contribution lays the foundation for a 
multi-century tradition of research on the theory of parallels. 

 
 

3. THĀBIT IBN QURRA’S SECOND TREATISE 
 

Thābit ibn Qurra’s second treatise is entitled, On the Demonstration of 
Euclid’s Famous Postulate. The fundamental figure of this demonstration 
is a pair of straight lines ‘that get neither closer nor farther from each other’ 
(i.e., equidistant straight lines). In the first proposition of this treatise, 
Thābit ibn Qurra takes up Proposition I.28 of Euclid’s Elements: if two 
straight lines form equal alternate interior angles with a transverse line, 
they are parallel. Thābit ibn Qurra states that such lines ‘get neither closer 
nor farther from each other’, that is, that they are equidistant. 

The hypothesis is the equality of angles AEG and DGE; Thābit ibn 
Qurra superposes EA on GD and EG on GE such that GC falls onto EB, by 
the symmetry of center (the center of EG). He assumes implicitly that this 
symmetry preserves these angles. If EB and GD approach each other near B 
and D, then EA and GC should approach each other near A and C and the 
two straight lines get closer to one another in both directions, a property 
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that Thābit ibn Qurra rejects as absurd. Likewise, he shows that if the two 
straight lines get farther from one another in the same direction, they 
should also get farther from one another in the other, which he also rejects 
as absurd. 
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The postulate on which Thābit’s demonstration rests – if two straight 

lines get closer in one direction, they get farther in the other (false in ellip-
tical geometry, however) – will also enter into al-Khayyām’s and Naṣīr al-
Dīn al-Ṭūsī’s14 demonstrations of Euclid’s fifth postulate. 

 
The second proposition is the reciprocal of the first and it corresponds 

to Proposition I.29 of Euclid’s Elements: if two straight lines get neither 
closer to nor farther from each other, they form with a transverse line equal 
alternate interior angles, a statement in which ‘parallel straight lines’ is 
replaced by ‘straight lines that get neither closer to nor farther from one 
another’. 

Indeed, if for example A ˆ E G  is smaller than E ˆ G D , one draws HGI such 
that E ˆ G I = A ˆ E G ; then GI is between CD and AB. But, by the first proposi-
tion, HI and AB get neither closer to nor farther from one another, and this 
is absurd, for the same applies to CD and AB. 
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14 Risāla fī Sharḥ mā ashkala min Muṣādarāt Kitāb Uqlīdis, in Rashed and 

Vahabzadeh, Omar Khayyām. The Mathematician, pp. 223–8 and al-Risāla al-Shāfiya, 
no. 8, vol. II, pp. 4–14 of Rasāʾil al-Ṭūsī, 2 vols, Hyderabad, 1359 H. 
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This reasoning recalls that of Proclus in his attempt to demonstrate 
Euclid’s postulate;15 here, Thābit implicitly grants the unicity of a straight 
line that passes through a given point and that gets neither closer to nor 
farther from a given straight line. 

 
Proposition 3 takes up Elements I.33, which proves the existence of 

parallelograms by replacing ‘parallel straight lines’ by ‘straight lines that 
get neither closer to nor farther from one another’. One considers two 
straight lines AB and CD that get neither closer to nor farther from one 
another and that are equal.  

For the angles BAD and CDA are equal (Proposition 2) such that the 
triangles ADB and DAC are equal: B ˆ D A = C ˆ A D  and BD = CA. Then the 
straight lines AC and BD get neither closer to nor farther from one another 
according to Proposition 1. 
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The fourth proposition gives the property of the straight line that joins 

the centers of two sides of a triangle: this is a special case of Elements 
VI.2, if one replaces ‘parallel straight lines’ with ‘straight lines that get 
neither closer to nor farther from one another’: let ABC be a triangle and let 
D, E be the centers of AB and AC respectively. Then DE and BC get neither 
closer to nor farther from one another and DE is equal to half of BC. 

 
A

D

B
C

G
E

 
Fig. 118 

 
15 Proclus, loc. cit., 371.23–373.2; see also Rashed and Vahabzadeh, Omar 

Khayyām The Mathematician, pp. 231–2, Proposition 6.  
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One extends DE by EG = DE and draws CG. The triangles AED and 
GEC are equal (Elements, I.4), therefore A ˆ D E = C ˆ G E  and CG = AD = BD; 
thus AB and GC get neither closer to nor farther from one another (Propo-
sition 1) and one can apply Proposition 3 to prove that BC and DG get 
neither closer to nor farther from one another and that DG = BC. 

This proposition will be used to demonstrate that the straight lines 
joining the corresponding points of division on two given straight lines get 
neither closer to nor farther from one another. 

 
Finally, Thābit ibn Qurra demonstrates Euclid’s postulate by using 

once again the axioms of Archimedes and Pasch. 
With the transverse line EG, the two straight lines AB and CD form two 

angles BEG and DGE less than two rights, and one wishes to demonstrate 
that they meet in the direction of B and D. 

Let GH be the straight line passing through G that gets neither closer to 
nor farther from AB; one chooses a point I on CD and one draws IK, which 
gets neither closer to nor farther from EG. One extends GI by IL = GI and 
GK by KH = GK; according to Proposition 4, IK and LH get neither closer 
to nor farther from one another and IK is equal to half of LH, that is, LH = 
2IK. By iterating this construction, one thus obtains a segment LH greater 
than EG by virtue of Archimedes’ axiom, which in this instance is used in 
its multiplicative form. Let M on HL be such that HM = GE; according to 
Proposition 3, EM and GH get neither closer to nor farther from one 
another and they are equal. This must mean that M is on the extension of 
EB, on account of the already granted unicity of the straight line passing 
though E that gets neither closer to nor farther from (GH); the extension of 
EB then meets CD before LH by the same variant of Pasch’s axiom as in 
the preceding demonstration: M and E are in two different half-planes 
determined by (CD), therefore (ME) cuts (CD) between M and E. 
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Thābit ibn Qurra’s two demonstrations are founded on the same con-
cept of equidistance, which replaces parallelism in the Euclidean sense. But 
this should not obscure the differences between them. The first proves the 
existence of equidistant straight lines by using a motion of rectilinear 
translation and by appealing to the additive form of Archimedes’ axiom 
and to a variant on Pasch’s axiom. The second, by contrast, starts from an 
implicit principle according to which two straight lines can neither con-
verge simultaneously on both sides of a transverse line, nor diverge simul-
taneously on both sides, in order to prove the existence of straight lines that 
neither converge nor diverge. In this second demonstration, Thābit ibn 
Qurra does not introduce motion; and although he uses again Archimedes’ 
axiom and the same variant of Pasch’s axiom used in the first demonstra-
tion, it is the multiplicative form of the first axiom that he brings into play. 
It would be wrong, as some have done, to reduce both of Thābit ibn 
Qurra’s procedures to that of Aghānis, insofar as Thābit in the first treatise 
demonstrates the existence of equidistant straight lines as well as the fun-
damental property of the symmetry of equidistance. 

Finally, the foundational figure of Thābit ibn Qurra’s first demonstra-
tion is the so-called quadrilateral of al-Khayyām (or Saccheri), which also 
appears in Ibn al-Haytham’s demonstration. One can thus see the crucial 
role that this demonstration plays both in the history of the theory of paral-
lels and in the foundation of the tradition that Thābit inaugurates, a tradi-
tion that many mathematicians, including the two just cited, will take up. 
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THE CELESTIAL KINEMATICS OF IBN AL-HAYTHAM 
 
 
 

1. INTRODUCTION 
 

1.1. The astronomical work of Ibn al-Haytham 
 
Ever since Pierre Duhem at least, historians of astronomy have agreed 

on the importance of Ibn al-Haytham’s contribution to the study of celestial 
kinematics. Some have paid particular attention to his criticisms of 
Ptolemy, which later gave rise to the construction of new planetary models. 
But Ibn al-Haytham is seen merely as restricting himself to criticism, not 
participating in construction. Other historians have seen his contribution as 
synthesizing the Almagest with an Aristotelian cosmology. But a careful 
historical reading of Ibn al-Haytham’s writings, including new texts previ-
ously left out of consideration, shows that both of these pictures of him are 
inaccurate. Instead, we find that Ibn al-Haytham tried to carry out a reform 
of astronomy, excluding all cosmology and developing the study of celes-
tial kinematics.1  

However, such a reading requires us to consider Ibn al-Haytham’s 
astronomical work as a whole, in order to define the limits of his concerns 
and to exclude the writings incorrectly ascribed to him, which distort any 
assessment of his contribution. 

The early bio-bibliographers – al-Qifṭī, Ibn Abī Uṣaybiʿa and an 
anonymous predecessor – tell us that Ibn al-Haytham wrote twenty-five 
astronomical works. 2  This means that one quarter of the eminent 

 
1 See R. Rashed, Les mathématiques infinitésimales du IXe au XIe siècle. Vol. V: 

Ibn al-Haytham: Astronomie, géométrie sphérique et trigonométrie, London, al-Furqān, 
2006; English translation by J. V. Field under the title Astronomy and Spherical 
Geometry: The Novel Legacy of Ibn al-Haytham, London, 2014. 

2 The first critical examination of what is known about Ibn al-Haytham and his 
writings is given in R. Rashed, Les mathématiques infinitésimales du IXe au XIe siècle. 
Vol. II: Ibn al-Haytham, London, 1993, together with a summary in the form of a table 
listing all his works, including those on astronomy (pp. 511–35); English translation: 
Ibn al-Haytham and Analytical Mathematics. A History of Arabic Sciences and 
Mathematics, vol. 2, Culture and Civilization in the Middle East, London, Centre for 
Arab Unity Studies, Routledge, 2012, pp. 394–423. 
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mathematician’s works were concerned with astronomy. In other words, he 
wrote twice as many works on this subject as he did on optics, the field 
with which his name is forever associated. The number of these writings 
alone indicates the enormity of Ibn al-Haytham’s accomplishment and the 
sheer importance of astronomy in his life work. 

The writings that have come down to us show clearly that, although the 
author’s primary concerns are theoretical and mathematical, he neglected 
no part of astronomy. Several treatises relate to technical applications of 
astronomy, others to methods of astronomical calculation, yet others to 
procedures for making astronomical observations, and so on. One can 
nevertheless divide his writings into four groups, on the basis of both 
surviving texts and the lost ones for which the books of early bibliogra-
phers mention titles. 

The first group consists of about ten treatises in which Ibn al-Haytham 
is concerned with technical problems: Hour Lines (Fī khuṭūṭ al-sāʿāt), 
Horizontal Sundials (Fī al-rukhāmāt al-ufuqiyya),3 The Direction of Mecca 
(Fī samt al-qibla bi-al-ḥisāb),4 The Exact Determination of the Pole (Fī 
istikhrāj irtifāʿ al-quṭb ʿalā ghāyat al-taḥqīq), The Exact Determination of 
the Meridian (Fī istikhrāj khaṭṭ niṣf al-nahar ʿalā ghāyat al-taḥqīq), The 
Correction of Astrological Operations (Fī taṣḥīḥ al-aʿmāl al-nujūmiyya),5 
and so on. 

The second group consists of two treatises on astronomical observa-
tion: conditions for making observations, the errors that may occur in 
observation, and so on. 

The third group of writings is concerned with such various questions 
and diverse problems as those relating to parallaxes, the Milky Way, and so 
on. 

The fourth group, concerned with astronomical theory, can in turn be 
divided into three subgroups: 

In the writings in the first of these, Ibn al-Haytham discusses the work 
of Ptolemy in three books that are of great historical and theoretical 
interest: 

1. Doubts concerning Ptolemy (Fī al-shukūk ʿalā Baṭlamiyūs)6 
 
3 See our edition, translation and commentary of these two treatises in Les mathé-

matiques infinitésimales, V, Part II, Chap. I and II. 
4 See A. Dallal, ‘Ibn al-Haytham’s Universal Solution for Finding the Direction of 

the Qibla by Calculation’, Arabic Sciences and Philosophy, 5.2, 1995, pp. 145–93. 
5 See R. Rashed, Les mathématiques infinitésimales, vol. V, Appendix. II, p. 895.  
6 Al-Shukūk ʿalā Baṭlamiyūs (Dubitationes in Ptolemaeum), ed. A. I. Sabra and 

N. Shehaby, Cairo, The National Library Press, 1971. 
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2. Corrections to the Almagest (Fī tahdhīb al-Majisṭī) 
3. Resolution of Doubts concerning the Almagest (Fī ḥall shukūk fī 

kitāb al-Majisṭī) 
Of these three books, only the first and the third have come down to us. 
 
In the writings in the second subgroup, Ibn al-Haytham examines 

individual celestial motions: 
1. The Winding Motion (Fī ḥarakat al-iltifāf) 
2. Resolution of Doubts concerning the Winding Motion (Fī ḥall 

shukūk ḥarakat al-iltifāf)7 
3. The Motion of the Moon (Fī ḥarakat al-qamar) 
Only the last two texts of this subgroup survive. 
 
The third subgroup includes four titles: 
1. The Different Altitudes of the Wandering Stars (Fī ikhtilāf irtifāʿāt 

al-kawākib) 
2. The Ratios of Hourly Arcs to their Altitudes (Fī nisab al-qusiyy al-

zamāniyya ilā irtifāʿātihā) 
3. The Configuration8 of the Motions of Each of the Seven Wandering 

Stars (Fī hay’at ḥarakāt kull wāhid min al-kawākib al-sabʿa) 
4. The Configuration of the Universe (Fī hayʾat al-ʿālam) 
The first of these texts has come down to us, but the second has been 

lost. Only a part of the third survives;9 the fourth is not to be identified with 
the apocryphal text of the same title.10 

 
This simple summary shows very clearly that, apart from The 

Configuration of the Universe (of doubtful authenticity, as noted), the trea-
tises on The Different Altitudes of the Wandering Stars, and on The 
Configuration of the Motions of Each of the Seven Wandering Stars, this 
major body of astronomical work is far from being well known. 

Notice also that, in the three books in which Ibn al-Haytham mentions 
Ptolemy or the Almagest, he does so in order to criticize the work, for he 

 
7 A. I. Sabra, ‘Maqālat al-Ḥasan ibn al-Haytham fī ḥall shukūk ḥarakat al-iltifāf’, 

Journal for the History of Arabic Science, 3.2, 1979, pp. 183–212, 388–92. 
8 The Arabic hayʾa could be translated equally by ‘configuration’ or ‘model’. 
9 See our edition, translation and commentary of Treatises 1 and 3 in Les mathéma-

tiques infinitésimales, V, Part I. 
10 See R. Rashed, ‘The Configuration of the Universe: a Book by al-Ḥasan ibn al-

Haytham?’, Revue d’histoire des sciences, 60.1, 2007, pp. 47–63, and Les mathémati-
ques infinitésimales, vol. V, Appendix I. 
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mentions ‘Doubts’, ‘Corrections’, and the ‘Resolution of Doubts’. If to that 
we add the criticism of Ptolemy put forward in The Resolution of Doubts 
concerning the Winding Motion, it is no exaggeration to describe Ibn al-
Haytham’s researches as explicitly and deliberately designed as criticism 
and projects for reform. It remains to be seen when this project of reform 
was actually conceived, and what its outcome was. Here our task is compli-
cated by the fact that some treatises are lost, and by the difficulty of dating 
the extant writings. We know that The Doubts concerning Ptolemy was 
promised at the end of The Resolution of Doubts concerning the Winding 
Motion. We also know that The Resolution of Doubts concerning the 
Almagest was completed after August 1028, the date when Ibn al-Haytham 
finished The Halo and the Rainbow, which he cites.11 Lastly, we know that 
these four books must have been composed at different times. The order of 
composition therefore is: The Winding Motion, The Resolution of Doubts 
concerning the Winding Motion and, finally, The Doubts concerning 
Ptolemy. Like The Resolution of Doubts concerning the Almagest, these 
three treatises were all composed before 1038, as we learn from the list of 
Ibn al-Haytham’s writings up to that date. It would therefore appear that 
around 1028, and certainly before 1038, Ibn al-Haytham was actively 
engaged with astronomy. 

Although we cannot discuss the content of the lost Corrections to the 
Almagest, the titles of these works make it obvious that Ibn al-Haytham 
took a critical stance, a characteristic common to all the titles we have men-
tioned so far. Even in his book The Motion of the Moon, also composed 
before 1038, where he makes a point of explaining the difficulties in 
Ptolemy as the result of a first reading, Ibn al-Haytham does not refrain 
completely from making criticisms. In other words, far from being merely 
incidental, his criticisms express his dissatisfaction with Ptolemy’s astron-
omy. To illustrate the full measure of his radical criticisms of Ptolemy, 
consider what Ibn al-Haytham replies to an anonymous scholar who had 
criticized his treatise The Winding Motion: 

From the statements made by the noble Shaykh, it is clear that he believes in 
Ptolemy’s words in everything he says, without relying on a demonstration 
or calling on a proof, but by pure imitation (taqlīd); that is how experts in 
the prophetic tradition have faith in Prophets, may the blessing of God be 

 
11 In fact, Ibn al-Haytham himself transcribed his book The Halo and the Rainbow 

(Fī al-Hāla wa-qaws quzaḥ) in the month of Rajab 419 of the Hegira (August 1028). 
Ibn al-Haytham refers to this book and to his Optics in his Resolution of Doubts 
concerning the Almagest (Fī ḥall shukūk fī kitāb al-Majisṭī); see ms. Aligarh, ʿAbd al-
Ḥayy no. 21, fol. 12r and ms. Istanbul, Beyazit, 2304, fol. 8v. 
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upon them. But it is not the way that mathematicians have faith in specialists 
in the demonstrative sciences. And I have noted that it pains him (i.e. the 
noble Shaykh) that I have contradicted Ptolemy, and that he finds it distaste-
ful; his statements suggest that error is alien to Ptolemy. Now there are many 
errors in Ptolemy, in many passages in his books, among others, what he 
says in the Almagest: if one examines it carefully, one finds many contradic-
tions. He (i.e. Ptolemy) has indeed laid down principles for the models he 
considers, then he proposes models for the motions that are contrary to the 
principles he has laid down. And this not only in one place but in many pas-
sages. If he (i.e. noble Shaykh) wishes me to specify them and point them 
out, I shall do so.  

I resolved to write a book to establish the truth in the science of astron-
omy; in it I show the contradictory passages in the Almagest, then the correct 
passages, and I show how to correct the [faulty] passages. He made many 
mistakes in the Book on Optics, one of which was a mistake in the proof 
concerning the shape of mirrors, which shows how uncertain his grasp was. 

As for his Book on Hypotheses, if one examines the notions he pro-
pounded in the second chapter and the models he put forward using spheres 
and parts of spheres, the demonstration [of the models] is immediately seen to 
be contradicted and discredited. In my reply I have shown his error in regard 
to the two parts of the sphere, which he postulated for the epicycle, and I have 
explained it with an irrefutable demonstration; and I have shown that, in what-
ever cases one postulates for the [two] parts of spheres, one obtains an 
indefensible impossibility.12 

This radical critique has led many historians to believe that Ibn al-
Haytham’s purpose was limited merely to criticism, or ‘aporetic’, as it is 
sometimes characterized.13  This is not so, however. During this same 

 
12 Ms. St Petersburg, no. B1030/1, fol. 19v.  
13  Because of this clearly stated intention to criticize, some historians have 

followed S. Pines in believing that Ibn al-Haytham belongs to an ancient aporetic 
tradition. Thus we find our mathematician placed in the same category as the eminent 
physician al-Rāzī, the author of the famous Doubts concerning Galen. This taxonomy 
overlooks an important but unnoticed difference that specifically separates Ibn al-
Haytham, al-Rāzī and many others in a very wide range of disciplines, from this so-
called aporetic tradition. Indeed, it is one thing to raise difficulties and criticize 
solutions, quite another to criticize for constructive purposes. In every kind of 
innovative research, criticism is an integral part of the heuristic procedure. For instance, 
Ibn al-Haytham’s doubts and criticisms were not put forward as arguments for a 
principle, but as statements the mathematician strove to prove mathematically and with 
the help of controlled observations. More importantly still, these doubts and criticisms 
cannot be understood except in the light of what, in a sense, is Ibn al-Haytham’s final 
work: The Configuration of the Motions of Each of the Seven Wandering Stars. It is 
thanks to his endeavours to provide a firmer footing for Ptolemy’s astronomy by ridding 

(Cont. on next page) 
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period (before 1038), Ibn al-Haytham had worked on a problem that would 
later prove fundamental: the altitudes of planets in the course of their 
motion. Moreover, in all of his other critical writings except the Doubts 
concerning Ptolemy, Ibn al-Haytham tries to solve particular problems 
encountered in the Almagest, notably those that are not yet connected with 
the work’s theoretical structure. In other words, even at this stage, the criti-
cism is also a heuristic strategy. This will become still clearer when we 
examine the consequences. It is in the course of this research, and after 
carrying out further work to bring it to maturity, that Ibn al-Haytham con-
ceived the idea of writing his monumental book The Configuration of the 
Motions of the Seven Wandering Stars, in which he sets out the details of 
his new astronomy. This is to say that this last book – in which he again 
takes up the problem of altitudes – is the culmination of the critical and 
inventive research he carried out during at least two decades before 1038, 
and which was very probably not published until shortly after that date. 

Now, by an ironic recent coincidence, our mathematician al-Ḥasan ibn 
al-Haytham has confidently been credited with a commentary on the 
Almagest written in strictly Ptolemaic terms by a man with almost the same 
name, a philosopher called Muḥammad ibn al-Haytham14 who was inter-
ested in the sciences but not himself a mathematician. Confusion naturally 
peaks when one cites this text to introduce a deliberately critical book, such 
as the Doubts. Such confusion inevitably creates an error of perspective 
that makes it impossible to understand al-Ḥasan ibn al-Haytham’s 
astronomy. 

As noted earlier, however, Ibn al-Haytham suffers from another 
misapprehension on the part of historians of astronomy. For centuries, he 

                                         
(Cont.) it of its internal inconsistencies that Ibn al-Haytham discovers that to prepare the 
way for this reformulation he needs to separate an account of the motions (i.e. celestial 
kinematics) from cosmology. In short, in Ibn al-Haytham’s case, it is not possible to 
separate doubts and criticisms from the conscious aim of making fundamental reforms. 
See S. Pines, ‘Ibn al-Haytham’s Critique of Ptolemy’, in Actes du dixième Congrès 
international d’histoire des sciences, 1, no. 10, Paris, 1964, pp. 547–50 and id., ‘What 
was Original in Arabic Science’, in A. C. Crombie (ed.), Scientific Change, Leiden, 
1963, pp. 181–205. 

14 In the introduction to the printed edition of al-Shukūk (note 6), A. Sabra believes 
he can shed light on the critical text of this book by drawing upon the Commentary on 
the Almagest of Muḥammad ibn al-Haytham, a book which follows Ptolemy to the 
letter. This strange endeavor stems from the longstanding confusion between 
Muḥammad ibn al-Haytham and al-Ḥasan ibn al-Haytham. In this regard, see 
R. Rashed, Les mathématiques infinitésimales, II, pp. 8–19; III, pp. 937–41 and IV, 
pp. 957–9. 
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has been supposed to be the author of the book called On the Configuration 
of the Universe (Fī hayʾat al-ʿālam). This book, which is cited by early 
biobibliographers, was translated into Hebrew and into Latin. 
Y. T. Langermann, who edited and translated the text, says about it: ‘Many 
of the sharp criticisms of Ptolemy which are developed in the Doubts can, 
in fact, be directed equally well at On the Configuration, which faithfully 
mirrors the astronomical theory of the Almagest’.15 I have added some fur-
ther observations that cast doubt on the attribution of this work to Ibn al-
Haytham.16 

To avoid so flagrant a contradiction, it is tempting to make this an early 
work. There is, however, no evidence to support such a conjecture – on the 
contrary. In fact, even in regard to much less significant matters, when Ibn 
al-Haytham returns to a topic he has treated before, he usually refers back 
to his first treatment and warns the reader that the present one now super-
sedes it.17 One would therefore, a fortiori, expect a similar gesture here, 
particularly since he would be in the process of criticizing the theses 
defended in the first treatment. But it does not happen. 

So our present knowledge of Ibn al-Haytham’s astronomical work is: 
some people see no difficulty in attributing to him a thoroughly traditional 
commentary on Ptolemy, or a treatise that conforms strictly to Ptolemy, 
and ignore the contradiction with Ibn al-Haytham’s Doubts and his criti-
cisms. Others, with good reason, note the contradiction, but stop there. 
Much earlier, yet others had concentrated on the Doubts and expressed 
regret that Ibn al-Haytham was satisfied merely to criticize Ptolemy, with-
out proposing another ‘astronomy’. Thus the astronomer al-ʿUrḍī (d. 1266) 
writes: 

No one came after him (Ptolemy) to bring that art (astronomy) to completion 
in a correct manner; no modern scholar has added anything at all to his work 
or subtracted anything from it; instead, all have followed him. Some among 
them have raised doubts, but without contributing more than the expression 
of doubts, such as Ibn al-Haytham and Ibn Aflaḥ of Andalusia.18  

 
15 Y. Tzvi Langermann, Ibn al-Haytham’s On the Configuration of the World, New 

York/London, 1990, p. 8. 
16 See Rashed, Les mathématiques infinitésimales, V, Appendix I. 
17 See for example Ibn al-Haytham, Exhaustive Treatise on the Figures of Lunes, in 

Rashed, Les mathématiques infinitésimales, vol. II, pp. 102–3; also vol. V, p. 267. 
18 The Astronomical Work of Muʾayyad al-Dīn al-ʿUrḍī: Kitāb al-Hayʾah, edition 

with English and Arabic introductions by G. Saliba, Tārīkh al-ʿulūm ʿind al-ʿArab 2, 
Beirut, 1990, p. 214. 
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If we take them simply at face value, al-ʿUrḍī’s words are surprising 
for several reasons. They seem to ignore the achievements of Thābit ibn 
Qurra (826–901) and all the other contributions in the following three 
centuries of mathematical astronomy; they also seem to place very little 
value on the secure observational results that astronomers obtained since 
the beginning of the 9th century, and they likewise seem to overlook the 
work on instruments. Moreover, they also seem to reflect a mistaken 
outlook, one that had become more extreme in our time, according to 
which there was an independent tradition of mathematical astronomy 
dedicated to criticizing errors in Ptolemy. Finally, al-ʿUrḍī’s words seem to 
indicate that he knew no other astronomical text by Ibn al-Haytham apart 
from the Doubts concerning Ptolemy. Now, all this is very improbable, 
coming as it does from an astronomer like al-ʿUrḍī, the more so since his 
future ‘boss’ at Marāgha, Naṣīr al-Dīn al-Ṭūsī, knew at least Ibn al-
Haytham’s book The Winding Motion, in which the latter proposes a model 
of this motion that combines kinematics with some cosmology.19 Instead, 
everything points to the explanation being that al-ʿUrḍī wanted to 
emphasize that Ibn al-Haytham had not proposed a model of the universe 
based jointly on the two traditions – that of the Almagest and that of the 
Planetary Hypotheses – a model in which a celestial kinematics and a 
cosmology are combined in such a way that the resulting planetary theory 
is coherent and capable of making predictions that are as accurate as 
possible; in other words, a configuration/model (hayʾa) like the one al-
ʿUrḍī believed he had constructed in his own book.20 

 
19 According to what is reported by Naṣīr al-Dīn al-Ṭūsī, on the basis of a text by 

Ibn al-Haytham that is now lost (see F. J. Ragep, Naṣīr al-Dīn al-Ṭūsī: Memoir on 
Astronomy – al-Tadhkira fī ʿilm al-hayʾa, 2 vols, New York, 1993, vol. 1, pp. 215–17), 
the matter concerned is the deviation of the apogee and perigee of the epicycle as well 
as the two points on the epicycle at mean distance. Ibn al-Haytham seems to intend to 
construct a model using solid orbs as the mechanism for the motion. In this model, Ibn 
al-Haytham adds three solid orbs for the epicycles of the superior planets and five solid 
orbs for the inferior planets, so as to take account of the various deviations noticed by 
observers. 

20 Later, Ibn al-Shāṭir expressed a more qualified opinion than that of al-ʿUrḍī. This 
can be found in The New Zīj (al-Zīj al-jadīd, ms. Oxford, Bodleian Library, Arch. Seld. 
A30, fol. 2r): ‘I have noticed that eminent modern scholars, such as al-Majrīṭī, Abū al-
Walīd al-Maghribī [Averroes], Ibn al-Haytham, Naṣīr al-Ṭūṣī, Muʾayyid al-Dīn al-
ʿUrḍī, Quṭb al-Shīrāzī and Ibn Shukr al-Maghribī, have expressed doubts about the 
model of the orbs of the planets, that is, the system of Ptolemy, doubts that contest the 
geometrical and physical principles [he] established, and they [the scholars] have then 
proceeded to work to put in place principles adequate to [explaining] the motions in 

(Cont. on next page) 
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In fact, al-ʿUrḍī’s criticism, which in one sense misses the point, in 
another sense is justified. Ibn al-Haytham did indeed write an Astronomy, 
which will be discussed below. In this Astronomy, Ibn al-Haytham has 
understood that a genuine reform does not consist of constructing a model 
in the sense in which this was understood by al-ʿUrḍī, but first in establish-
ing a kinematic system on a solid mathematical basis, before thinking about 
any kind of dynamics. 

1.2. The Configuration of the Motions of the Seven Wandering Stars 

Ibn al-Haytham’s Configuration of the Motions of Each of the Seven 
Wandering Stars is a monumental achievement.21 It deals with the ‘model’, 
or the ‘structure’ (hayʾa), that is to say, with a new astronomy or a new 
theory of the planets. This innovative and important book, which presents 
mathematical content at the cutting edge of the science of its day, has 
reached us in a unique manuscript, which is in a pitiful state: a substantial 
part of it has been cut away, the leaves are out of order, moisture has made 
some parts illegible and the handwriting is hard to decipher.22 

The Configuration of the Motions of Each of the Seven Wandering 
Stars (henceforth The Configuration of the Motions) was originally organ-
ized into three books. In the first, on mathematical astronomy, Ibn al-
Haytham gives the details of his planetary theory; the second he devoted to 
astronomical calculation or, as he writes, ‘all the operations of calculation’; 
and the third was concerned with an astronomical instrument that was easy 
to manipulate and designed for precise calculation of the altitudes of the 
sun and the planets. Of this complete volume, only the planetary theory has 
come down to us. The sheer bulk of this first section is a reminder of the 
work’s original size before so much of it was lost, and allows us to gauge 
the magnitude of the task Ibn al-Haytham undertook. He very probably 
wanted this book to encompass all parts of astronomy, just as his Book on 
Optics had done for all parts of that subject. But it likewise shows us that, 
at this time, a book about the model/configuration (hayʾa) covered not only 
one, but several areas of investigation: a planetary theory; a study of the 
procedures used in the astronomical calculations needed for compiling 
tables showing the parameters required for calculating positions of planets 
(the zījs); and research on astronomical instruments. 

                                         
(Cont.) longitude and in latitude, among those that do not contest what these principles 
demand. They have not succeeded in this and have conceded as much in their books’. 

21 Rashed, Les mathématiques infinitésimales, V, Part I. 
22 Ms. St. Petersburg, 600 (formerly Kuibychev, V. I. Lenin Library). 
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The surviving first book is on the theory of planetary motion, which 
includes a prologue to the work as a whole, in which Ibn al-Haytham 
explains its organization and the style of his presentation. In this introduc-
tion, Ibn al-Haytham states that the style is that of demonstration, and that 
The Configuration of the Motions renders obsolete all his previous works 
on the same subjects. This introduction is followed by a mathematical 
study that takes up slightly less than half the section. It deals with fifteen 
propositions that feature as lemmas in the construction of the planetary the-
ory, to which the last part of the surviving text is devoted. Note that in the 
first part, Ibn al-Haytham breaks new ground in the mathematics of 
infinitesimals since he is explicitly concerned with variations – variations 
of the elements of a figure as a function of other elements; variations of 
ratios; and variations of trigonometrical relationships. In this new research 
domain, Ibn al-Haytham uses infinitesimal geometry and compares finite 
differences. This work on variable quantities, set into motion by the needs 
of astronomy, made them a part of the geometry of infinitesimals. 

Having completed this mathematics, Ibn al-Haytham is now in a posi-
tion to construct his planetary theory. But the length of the treatment and 
the deep nature of the mathematics in this part of the work point to one of 
the motives that drive Ibn al-Haytham’s astronomical research: he wants to 
make planetary theory even more mathematical, and much more system-
atically so. Here, as in the other disciplines he treats, Ibn al-Haytham takes 
the path opened by his predecessors from Thābit ibn Qurra on, but he 
advances much farther and more deeply in order to take it as far as possi-
ble. If we forget this purpose, we shall fail to understand The Configuration 
of the Motions. 

But what is required for this additional mathematization to be possible 
within a framework that remains geometrical? For the latter to occur with-
out running into the Ptolemaic inconsistencies that he has already censured 
in the Doubts, Ibn al-Haytham is compelled to rethink the fundamental 
tenets of Ptolemaic astronomy. In his eyes, then, far from being merely an 
instrumental or a linguistic task, this systematic mathematization was an 
undertaking that truly engaged with theory. That is how Ibn al-Haytham 
came to devise a new planetary theory that no longer concentrates on 
anomalies but starts by deliberately separating kinematics from cosmology.  

In the Doubts, Ibn al-Haytham comes to the conclusion that ‘the 
configuration (hayʾa) Ptolemy assumes for the motions of the five planets 
is a false one’.23 A few lines later, he reinforces the point: ‘The order 

 
23 Al-Shukūk ʿalā Baṭlamiyūs, ed. Sabra and Shehaby, p. 34. 
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according to which Ptolemy organized the motions of the five planets 
strays from the theory’.24 A little further on, he states: 

The configurations that Ptolemy assumed for the <motions of> the five 
planets are false ones; he chose them knowing that they were false, because 
he was unable <to propose> other ones. For the motions of the planets, there 
is to be found in actual bodies a true configuration that Ptolemy neither 
obtained nor reached.25 

Many other similar remarks appear in various places in his writings. 
Under the circumstances, a mathematician of Ibn al-Haytham’s stature who 
felt enormous respect for Ptolemy (as other comments attest) had no choice 
but to construct a planetary theory of his own that would rest on a solid 
mathematical basis and be free of the internal contradictions endemic to his 
predecessor. The point of Ibn al-Haytham’s treatise on The Configuration 
of the Motions was precisely to bring this programme into being. 

Most of the serious contradictions that Ibn al-Haytham censures set the 
Almagest against the Planetary Hypotheses. To characterize the irreducible 
inconsistencies that, in his view, vitiate Ptolemy’s astronomy, one might 
say that they arise from the poor fit between a mathematical theory of the 
planets and a cosmology. Ibn al-Haytham was familiar with similar, though 
of course not identical, situations when, in optics, he encountered the 
inconsistency between geometrical optics and physical optics as understood 
by the philosophers. To reform optics he adopted, as it were, a kind of 
‘positivism’ avant la lettre: one does not go beyond experience, and one 
cannot be satisfied with concepts alone when investigating natural pheno-
mena, for one cannot acquire an understanding of the latter without 
mathematics. Thus, once he has assumed light is material, Ibn al-Haytham 
does not discuss its nature any further; rather, he restricts himself to 
considering its propagation and diffusion. In his optics, ‘the smallest parts 
of light’, as he calls them, retain only properties that can be treated by 
geometry and verified by experiment; they lack all sensible qualities except 
energy. In other words, he begins by insisting on making optics geomet-
rical, or on reforming geometrical optics by leaving aside the ‘why’ ques-
tions that pertain to teleological physics, while remaining ready to intro-
duce them later when he comes back to physical optics. As can be readily 
ascertained, this imposition of geometry led Ibn al-Haytham to study the 

 
24 Ibid., pp. 33–4.  
25 Ibid., p. 42. 
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propagation of light in kinematic – mechanical – terms.26 Ibn al-Haytham 
adopts a similar approach in astronomy: in The Configuration of the 
Motions he deals with the apparent motions of the planets, without ever 
raising the question of the physical explanation of these motions in terms of 
dynamics. It is not the causes of celestial motions that interest Ibn al-
Haytham, but only the motions themselves observed in space and time. 
Thus, to proceed with the systematic mathematical treatment, and to avoid 
the shoals that Ptolemy had encountered, he first needed to break away 
from any kind of cosmology. And, in fact, in this treatise Ibn al-Haytham 
no longer draws upon the theory of material spheres, which had appeared 
in his Resolution of Doubts concerning the Winding Motion and in the 
Doubts concerning Ptolemy. Thus the purpose of Ibn al-Haytham’s 
Configuration of the Motions is clear: to construct a geometrical 
kinematics.  

Ibn al-Haytham’s second intention is implied by the first one: to avoid 
the difficulties found in Ptolemy’s astronomy. In the Resolution of Doubts 
concerning the Almagest, he states that ‘in the Almagest as a whole there 
are doubts (aporias) too numerous for one to list them all’.27 All the same, 
in the Doubts concerning Ptolemy he distinguishes between doubts that can 
be resolved without modifying the structure of the theory and those whose 
elimination requires that the theory undergo radical reform.28 One of the 
best examples of the latter type is the concept of the equant, exposed as an 
error in the Doubts and banished from The Configuration of the Motions. 
Ibn al-Haytham rejects the idea because one cannot, at the same time, sup-
pose that a sphere rotates uniformly on its axis and suppose that this same 
rotation takes place about a line that is not a diameter of the sphere. In 
rejecting the equant, Ibn al-Haytham is already distancing himself very 
considerably from Ptolemy. 

 
26 R. Rashed, ‘Optique géométrique et doctrine optique chez Ibn al-Haytham’, 

Archive for History of Exact Sciences, 6.4, 1970, pp. 271–98; repr. Optique et 
Mathématiques: Recherches sur l’histoire de la pensée scientifique en arabe, Variorum 
reprints, Aldershot, 1992, II. 

27 Fī ḥall shukūk al-Majisṭī, ms. Istanbul, Beyazit 2304, fol. 195r. 
28 Al-Shukūk ʿalā Baṭlamiyūs, ed. Sabra and Shehaby, p. 5: ‘We shall not mention 

in this book all the doubts contained in his works, but shall only mention the passages 
that contradict one another and the mistakes that cannot be rectified; the ideas he has put 
in place, and the motions of the planets he has arrived at, collapse if we cannot obtain 
true methods or uniform models or <correcting> these passages and these errors. As for 
the remaining doubts, they do not impute error to the established principles and they can 
be resolved without any of these principles being overturned or altered’. 
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Not least, Ibn al-Haytham had written two books on astronomical 
observation and the errors to which it is subject. He was moreover well 
informed about the wealth of observations built up over two centuries. 
Accordingly, Ibn al-Haytham’s third intention in writing The Configuration 
of the Motions was to construct a planetary theory that explained these 
observations. 

These three intentions – mathematization, avoiding Ptolemy’s contra-
dictions and accounting for the observations – work together to fulfil Ibn 
al-Haytham’s overall purpose for The Configuration of the Motions, that is, 
to set up a completely geometrical celestial kinematics. But in order to 
achieve this goal, he needed to find a way of measuring time. To this end, 
he introduced a new concept, that of ‘required time’, that is, a period of 
time measured by an arc.  

A close examination of the way he organizes his exposition of plane-
tary theory shows that Ibn al-Haytham begins by proposing simple – in 
effect, descriptive – models of the motions of each of the seven planets. As 
the exposition progresses, he makes the models more complicated and 
increasingly subordinates them to the discipline of mathematics. This 
growing mathematization leads him to regroup the motions of several plan-
ets under a single model. And it is precisely the mathematical nature of the 
model which makes this regrouping possible, specifically starting from 
Proposition 24. This step obviously has the effect of privileging a property 
that is common to several motions. In this way Ibn al-Haytham opens up 
the way to achieving his principal objective: to establish a system of celes-
tial kinematics. He does so without as yet formulating the concept of 
instantaneous speed, but by using the concept of mean speed, represented 
by a ratio of arcs. 

Here we shall explain the principal results Ibn al-Haytham obtained. A 
detailed commentary together with an edition of the text and a French 
translation of it is published elsewhere.29 

 
 

2. THE STRUCTURE OF THE CONFIGURATION OF THE MOTIONS 
 

The first extant section of The Configuration of the Motions divides 
into two parts. The first, which is mathematical and chiefly devoted to the 
study of variable quantities, comprises 15 propositions. The second part 
deals with planetary theory.  

 
29 Rashed, Les mathématiques infinitésimales, vol. V, Part I. 
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2.1. Research on the variations  

The fifteen propositions with which the section begins may be 
separated into several groups. The first consists of the first four 
propositions, which deal with the variation of trigonometrical functions 

such as sin x
x

. Ibn al-Haytham gives rigorous proofs of the following 

propositions: 
 
1. If the measures in radians of the arcs α and α1 of a circle are such 

that α + α 1 ≤
π

2
 and α > α1, then 

α

α 1

>
sin α

sinα 1   
and  α +α1

α1

>
sin α +α1( )

sinα1

. 

 
2. If the measures in radians of the arcs α and α1 of a circle and of the 

arcs β and β1 of a different circle are such that 
 

β + β1 < α + a1 < π
2

  and  α
α1

= β
β1

= 1
k

 (where k < 1), 

 
then 

sinα

sin α1

<
sin β

sin β1

  or  sinα

sin α
<

sin β

sin β
. 

 
As a corollary to this proposition, Ibn al-Haytham proves that 
 

sin α +α1( )
sin α 1

<
sin β + β1( )

sin β1   
or  

sin 1 + k( )α
sinkα

<
sin 1+ k( )β

sinkβ
. 

 
Ibn al-Haytham had proved this proposition in his treatise On the Hour 

Lines.30 
 
3. If the measures in radians of the arcs α and α1 of a circle and of the 

arcs β and β1 of a different circle are such that 
 

β + β1 < α +α1 ≤ π
2

  and  
sin β + β 1( )

sin β1

=
sin α + α1( )

s in α1

, 

 
30 R. Rashed, Les mathématiques infinitésimales, vol. V, Part II. 
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then 

β < α   and  β
β1

< α
α1

. 

 
4. If the measures in radians of the arcs α and α1 of a circle and of the 

arcs β and β1 of a different circle are such that 
 

β + β1 < α +α1 ≤ π
2

,  α1 < α,  β1 < β  and  sinβ
sinβ1

≤ sinα
sinα1

, 

 
then  

α
α1

> β
β1

. 

 
And if  

sin β + β1( )
sin β1

≤
sin α +α1( )

sinα1

,   

 
then  

β + β1

β1

<
α +α1

α1

  and  β
β1

< α
α1

. 

 
The second group is made up of the next three propositions (5, 6 and 

7), which also deal with variable quantities and variable ratios. In the first 
two (5 and 6) Ibn al-Haytham considers changes in the angular position of 
a point on a quadrant of a circle. In Proposition 7, he examines changes in 
right ascension. In the course of these propositions, he compares finite 
differences, calls upon ideas about the geometry of infinitesimals and 
makes use of the sine rule (which was known to such contemporary 
mathematicians as Abū al-Wafāʾ al-Būzjānī and Ibn ʿIrāq).31 

In Propositions 5 and 6, Ibn al-Haytham considers a sphere with center 
ω on which positions are described with respect to a great circle ABC of 
diameter AC, its pole K and the great circle KC orthogonal to ABC (Fig. 
120). A great circle of diameter AC cuts the arc KB in the point D. With 
any point, such as H, on the arc CD there is associated a great circle KH 
that cuts the arc CB at point P, and a circle through H parallel to (ABC) 

 
31 M.-Th. Debarnot, Al-Bīrūnī: Kitāb maqālīd ʿilm al-hayʾa. La Trigonométrie 

sphérique chez les Arabes de l’Est à la fin du Xe siècle, Institut Français de Damas, 
Damascus, 1985.  
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which cuts the arc KC at point U; we have PH� = CU� . The arcs PH and CP 
are, respectively, the inclination (the declination if the reference circle is 
the equator) and the right ascension of the point H with respect to the circle 
ABC. 
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Fig. 120 
 
First of all, Ibn al-Haytham considers how the inclination of arc PH 

varies when the point H describes the arc CD. 
Let the (rectilinear) dihedral angle between the planes ABC and ADC 

be α, we have Bω̂D = α , so BD�  = α. Let us put CH�  = x and PH� = CU�  = 

y, we have 0 ≤ x ≤ π
2

, 0 ≤ y ≤ α. 

The proposition has two parts that can be summarized as follows 
(Fig. 121): 

a) The arc CD is divided into n equal parts at the points with spherical 

abscissae xi, 0 ≤ i ≤ n, x0 = 0 and xn = π
2

. 

C

B

D

K

I

IIJ
J
Ji

2

1

i

2
1

nJ  = J

 
Fig. 121 

 

For Δx = xi – xi–1 = π
2n

 we have Δy = yi – yi–1. We show that Δy 

decreases when i increases from 1 to n. In other words, y is a concave func-
tion of x. 

b) We consider two equal arcs with a common endpoint, with xi < xj < 
xk and xj – xi = xk – xj. 
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We show that from (a), we have yj – yi > yk – yj. This result may be 
expressed in the form 

xk − x j

x j − xi

>
yk − yj

yj − yi

, 

 
or as  

yk − yj

xk − x j

<
yj − yi

x j − xi

,  

 
which is to say that the gradient of the graph of y as a function of x 
decreases as x increases. 

Proposition 6 extends this result to unequal arcs, such as arcs IJ and 
JK, where xi < xj < xk and xj – xi ≠ xk – xi. 

• If the two arcs in question that have an endpoint in common are 
commensurable, the result follows from a) and b). 

• For the case in which the same two arcs are incommensurable, Ibn al-
Haytham gives a reductio ad absurdum argument to show that it is 
impossible to have 

xk − x j

x j − xi

≤
yk − yj

yj − yi

. 

 
We note that, after proving the required inequality holds when the 

magnitudes are commensurable, Ibn al-Haytham proves the general case by 
‘extension by continuity’, giving a rigorous abductive (apagogic) proof, 
and by applying his extension of Lemma 1 of Elements X. 

So we have an argument based on infinitesimals for extending by 
continuity an inequality for which we have, as yet, no earlier example. We 
also note that Ibn al-Haytham is treating arcs and angles as magnitudes to 
which one can apply proportion theory. 

 
Let us now return to his discussion of the variation of the inclination 

and show that his results are correct: 

Let us put y = PH�  as a function of CP�  = x. We have y = f(x). 
In the spherical triangle CHP, the arcs PH and PC are orthogonal, so 

P̂  = π

2
, and the angle between arcs CP and CH is the angle between their 

tangents, equal to Bω̂D , so we have Ĉ = α . 
The relation 

sinCH�

sin P̂
= sin PH�

sinĈ
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therefore yields 

sin x = sin y
sinα

;  

 
therefore y as a function of x is given by 
 

sin y = sin α · sin x,  y = Arc sin · (sin α · sin x),  
 

we have  
cos y dy = sin α · cos x dx,  

 
that is 

′yx (x) = dy
dx

= sinα ⋅ cos x

1– sin2 α ⋅sin2 x
; 

 
from which it follows that 

′′y = − sinα ⋅ cos2 α ⋅sin x

1− sin2 α ⋅sin2 x( )
3
2

. 

 

So for 0 < x < π
2

, we have y′   > 0 and y″ < 0, y = PH�  = f(x) increases 

from 0 to α. 

But f′ (x) decreases over the interval 0, π
2

⎡
⎣⎢

⎤
⎦⎥
 and the function f is thus 

concave; therefore 
xm − xk

x j − xi

>
ym − yk

yj − yi

. 

 
If in this expression we take: 

• xm – xk = xj – xi = π
2n

, we recover result (a). 

• xm – xk = xj – xi, we recover the result for case (b) for equal arcs. 
• xm – xk ≠ xj – xi, we recover the result for case (c) for unequal arcs. 
  If xj = xk, the arcs concerned are contiguous. 
  If xj < xk, the arcs concerned are disjoint. 
 
In the seventh proposition (Fig. 122), Ibn al-Haytham considers the 

right ascension CP�  when the point H describes the arc CD. We put CH�  = 

x and CP�  = z for 0 ≤ x ≤ π

2
, 0 ≤ z ≤ π

2
, we have: 
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a) as in considering the inclination, we divide the arc CD into n equal 
parts at points with spherical abscissa xi. For the increment Δx = xi – xi–1 the 
corresponding increment in the right ascension, Δz = zi – zi–1, and using 
Menelaus’s theorem for the arcs of great circles, we show that Δz increases 
when i increases from 1 to n. 

 
b) Ibn al-Haytham next says that, as in the treatment of the inclination, 

one can generalize this result by considering two arcs lying on the arc CD, 
be they equal to one another or unequal, contiguous or disjoint, 
commensurable or incommensurable. Thus, for arcs IiIj and IkIm with xi < xj 
≤ xk < xm, one will have 

xm − xk

x j − xi

<
zm − zk

z j − zi

. 

 
In other words, z is a convex function of x. 
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Fig. 122 

 
Let us return to his discussion of the right ascension. 

Considering z = CP�  as a function of x = CH� , when H describes the arc 
CD, z = g(x). 

The four circles involved are all great circles, and Menelaus’s theorem 
yields 

sinCH�

sin HD� = sinCP�

sin PB� ⋅ sin KB�

sin KD�  

 

CH� = x, HD�
 
= π

2
 – x, CP� = z, PB�

 
= π

2
 – z, DB�

 
= α, KD�

 
= π

2
 – α. 

 
We therefore have 

sin x
cos x

= sin z
cosz

⋅ 1
cosα

, 
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which gives 
tan z = cos α · tan x. 

z = Arc tan (cos α · tan x) = g(x). 
 

So we have 
(1 + tan2 z) dz = cos α · (1 + tan2 x) dx, 

 

′z = ′g (x) =
cosα 1+ tan2x( )
1+ cos2 α ⋅ tan2x

= cosα
cos2 x + cos2 α sin2 x

; 

 
from which it follows that 

′′z = sin2x cosα sin2 α

cos2 x + cos2 α sin2 x( )
2 . 

 

So for 0 < x < π
2

, we have z′ > 0, z increases from 0 to π
2

. We also 

have z″ > 0, z′ = g′(x) increases from 0 to 1
cosα

, hence the result Ibn al-

Haytham obtained for the increment Δz. 
As in the discussion of the inclination, Ibn al-Haytham indicates that 

his result can be extended to give an inequality involving differences of the 
right ascensions for unequal arcs, first in the case where these arcs are 
commensurable, then in the general case by using an argument of extension 
by continuity. 

 
The third group is made up of Propositions 8 and 9. Ibn al-Haytham 

considers a circle (D, DC), that is, with center D and radius DC, a point E 
on DC, as well as the equal arcs AB, BH, HI such that chord AB < EC, and 

he shows that AÊB < BÊH < HÊI  (Fig. 123). 
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Fig. 123 
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If we posit AD̂B =θ , where θ ∈ 0, π[ ]  and AÊB = ϕ , we see that Ibn 

al-Haytham is considering how ϕ  varies as a function of θ.  
In Proposition 9 he considers the direction of its variation. 
 
The fourth group is concerned with the variation of ratios in ever more 

complicated cases. This work is done in Propositions 10, 11, 12, 14 and 15. 
Proposition 13 is a lemma to do with technique. In this group, although 
Proposition 10 does not raise the complicated question of the range of the 
variables, Propositions 11 and 12, on the one hand, and Propositions 14 and 
15, on the other, all require a long discussion, which is given in our 
commentary.32 

In Proposition 10, Ibn al-Haytham considers two perpendicular planes 
P  and Q, two points A and C on their line of intersection, a semicircle of 
diameter AC lying in the plane P,  and a circular arc whose chord is AC, an 
arc smaller than a semicircle in the plane Q  (Fig. 124).  

One tries to prove that there exists a point D such that DE ��AC and 

EB ��AC (where B lies on the semicircle) and such that one has DB
DC

 > k > 

1, which is the given ratio. One shows first that there exists a unique point 

K on AC such that KA
CK

= k2 . 

 
Fig. 124 

 
One then draws a circle of diameter CK in the plane Q  and shows that 

any point D on the circle yields the ratio. 
 

 
32 R. Rashed, Les mathématiques infinitésimales, vol. V, Part I. 
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In Propositions 11 and 12, we consider the meridian circle ABC for a 
given place G, the celestial poles A and C, a circle with center O that is 
parallel to the horizon for G and cuts the meridian circle in D and E, a cir-
cle of center Q that is parallel to the equator and cuts the meridian circle in 
H, the horizontal circle in L and the plane of the circle with center Q cuts 
DE in X (Fig. 125). 
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   Fig. 125    Fig. 126 
 
Ibn al-Haytham shows that when point X moves along DE from D 

towards E, point L describes the parallel circle with center O and the ratio 
HL
HD

 decreases and tends to 0. 

In Proposition 12, one assumes that pole A is above the horizon, and 

that GOz is the vertical at point G; we have DX̂H = DÔz , an angle 
independent of the position of X (Fig. 126). Ibn al-Haytham shows that 

when X moves along DE, the arc HE decreases, sin HD̂X  decreases and 

therefore HX
DH

 = sin HD̂X
sin DX̂H

 also decreases from D to E. 

 

Finally, Propositions 14 and 15 bring into play the celestial sphere for a 
given place, its axis, the two poles Π and Π′, the meridian and horizontal 
planes for that place (pole Π is assumed to lie on or above the horizon). 

In Proposition 14, Ibn al-Haytham considers ADB, the meridian for an 
arbitrary place, and ABC, a horizontal circle; two circles parallel to the 
equator cut the meridian in E and D, the circle ABC in I and C and a great 
circle with diameter ΠΠʹ in I and K (Fig. 127). Ibn al-Haytham proves 
that: 

 

if BE� < BD� ≤ 1
2

ADB� , then IE�

EB� > CD�

DB� > CK�

KI� . 
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We are in fact concerned with how
 

IE�

EB�  varies as a function of arc BE; 

that is to say, we want to show that this ratio decreases when E moves from 
B towards F along the chord of the meridian (where F is the midpoint of 
the arc AB). 

Proposition 15 generalizes the preceding one. These two propositions 
show that, using the geometrical means at his disposal, Ibn al-Haytham 
investigated the variation of certain trigonometrical ratios. This was a line 
of inquiry that he could not complete but that set in motion some new 
mathematical research, as will become clear from our commentary on the 
translation. 

2.2. The planetary theory 

Once he has proven these fifteen mathematical propositions, Ibn al-
Haytham immediately goes on to consider the apparent motions of the 
seven planets. He deals with the apparent motion on the celestial sphere, as 
seen from a given place, of a planet that is carried around by the universe’s 
diurnal rotation about its axis, in the case where the planet in question has 
rising and setting points on the horizon of the given place of observation 
(always in the northern hemisphere). From the very first propositions, Ibn 
al-Haytham shows, using results Ptolemy obtained for the orbs of the plan-
ets and for the different motions of the planets, that the observed trajectory 
of each planet’s apparent motion, as seen on the celestial sphere, differs 
from the horary circle passing through a point of this trajectory. In other 
words, it is different from the circle parallel to the equator swept out by a 
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star whose position coincides, at a given moment, with that of the planet.33 
He deals in turn with the moon, the sun, and the five planets. For the 
motion of the latter along the celestial orb,34 he distinguishes direct motion, 
retrograde motion and the planet’s stations. 

From this investigation, Ibn al-Haytham draws out and defines two 
new concepts: ‘the required time’ (al-zamān al-muḥaṣṣal), and ‘the inclina-
tion proper to the required time’ (al-mayl alladhī yakhuṣṣu al-zamān al-
muḥaṣṣal). The ‘required time’ corresponds to two known positions of the 
planet during a motion of known duration. It is measured by an arc of the 
horary circle, and is equal to the difference between the right ascensions of 
the two observed positions. The inclination proper to the ‘required time’ is 
equal to the difference of their inclinations. Note that, since the celestial 
sphere rotates uniformly, that physical time can be represented by an arc of 
the horary circle, this concept of ‘required time’ is essentially a geometrical 
one. This is precisely how Ibn al-Haytham represents physical time, which 
has the added advantage of allowing him to draw upon proportion theory 
when time is involved. 

Ibn al-Haytham then shows that, in all possible cases, there exists a 
ratio greater than the ratio of the required time to the inclination for that 
time. Thanks to this property, he proves that, for each of the planets 
observed from a given place, the planetary position whose altitude above 
the local horizon is a maximum does not correspond to the point of the 
planet’s meridian transit, unlike the situation for a star. For a planet, the 

 
33 In his treatise on The Different Altitudes of the Wandering Stars, composed 

before this one, Ibn al-Haytham writes as if the trajectory of this apparent motion can be 
identified with a horary circle (see Rashed, Les mathématiques infinitésimales, vol. V, 
Part I). 

34 In Arabic astronomy, the word falak designates the orb as defined in the 
Almagest, i.e. the spherical shell within which the planet moves. Every planet has its 
own orb. For example, Thābit ibn Qurra (d. 901) wrote in his Almagest Simplified: ‘The 
orb in which the moon moves is the nearest orb to the earth and it is thick (lahu sumk). 
The moon moves sometimes in its upper part, sometimes in its lower part, and 
sometimes between them. The same happens for all the other planets’ (Thābit ibn Qurra, 
Œuvres d’astronomie, ed. R. Morelon, Paris, Les Belles Lettres, 1987, p. 5, for Arabic 
text with French translation). This was the conventional meaning of the word in the 
Arabic tradition of Ptolemy, and it is also the sense in which Ibn al-Haytham employed 
the word in the works he wrote before The Configurations of the Motions. In this last 
book, Ibn al-Haytham used the word falak in a new – and unconventional – meaning, 
indeed so unconventional that the word ‘orb’ seems in places inappropriate. The right 
translation, as we shall see later, would be ‘trajectory’, ‘path’, or even simply ‘orbit’. 
But, as Ibn al-Haytham himself continued to use the same word, though with a new 
meaning, we have no choice but to follow his example. 
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maximum altitude is greater than that of its meridian transit and, depending 
on the position of the planet in its trajectory, it will reach maximum altitude 
either before meridian transit (hence to the east of the meridian) or after 
meridian transit (to the west of the meridian). 

The inquiry into the apparent motion of a planet, when it is above the 
horizon, ends with a discussion of the case in which the geographical lati-
tude of the place of observation is equal (or very close) to the complement 
of the maximum declination of the observed axis. Ibn al-Haytham shows 
that, for places such as these, the planet may set in the east and then rise in 
the east, or rise in the west and then set in the west. 

The work whose outline is sketched above presents a concept of astron-
omy that is new in several respects. Ibn al-Haytham sets himself the task of 
describing the motions of the planets exactly in accordance with the paths 
they draw on the celestial sphere. He is neither trying ‘to save the phenom-
ena’, that is, to explain the irregularities in the assumed motion by means 
of artifices such as the equant (which he criticizes in his Doubts concerning 
Ptolemy), nor trying to account for the observed motions by appealing to 
underlying mechanisms or hidden natures. He wants to give a rigorously 
exact description of the observed motions in terms of geometry. The only 
mechanical device involved in describing the motions of the five planets is 
an epicycle, which is employed to account for their retrograde motions and 
variable speeds near apogee and perigee. Ibn al-Haytham no doubt knew 
that using an epicycle and a deferent was equivalent to using an eccentric, 
and also knew the precise conditions for this equivalence. 

What Ibn al-Haytham therefore proposes – thereby driving him farther 
from the Ptolemaic tradition – to describe the motion in two dimensions on 
the celestial sphere. In his view, the motion appears to be composed of two 
elementary motions along great circles of the celestial sphere. The free 
parameters are the speeds of the elementary motions, treated as independ-
ent of one another. But for planets whose trajectory has a variable inclina-
tion to the ecliptic, Ibn al-Haytham nevertheless draws upon an epicycle to 
account for the variation in the inclination, thus temporarily returning to a 
three-dimensional model. That puts him squarely in the Ptolemaic tradition, 
but without appealing to the equant. 

The guiding principle of Ibn al-Haytham’s description is thus clear: to 
use Ptolemy’s mechanisms as sparingly as possible. In considering the 
apparent motions of the planets on the celestial sphere, always with respect 
to the horizon, Ibn al-Haytham picks out four reference points: the rising, 
the meridian transit, the setting, and the maximum altitude. He shows that 
this last point is unique and may lie to the east or to the west of the point of 
meridian transit. 
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The new astronomy no longer aims at constructing a model of the uni-
verse, but only at describing the apparent motion of each planet, a motion 
composed of elementary motions, and, for the inferior planets, also of an 
epicycle. Ibn al-Haytham considers various properties of this apparent 
motion: localisation and the kinematic properties of the variations in speed. 
In the last part of The Configuration of the Motions, he considers the appar-
ent motion of the planet on the celestial sphere during the course of a day 
and proves two conclusions: that the planet reaches its maximum altitude 
once and only once, and that it reaches any altitude less than the maximum 
twice, once on each side of the maximum altitude. For altitudes greater 
than that of meridian transit, the two points at which the planet reaches 
such an altitude are on the same side of the meridian. Together, these dis-
cussions add up to twenty-one propositions. 

In this new astronomy, as in the old one, every observed motion is cir-
cular and uniform, or composed of circular and uniform motions. Ibn al-
Haytham considers three basic motions: the diurnal motion parallel to the 
equator; the motion of the oblique orb relative to the axis (the line joining 
the two poles of the ecliptic); and the motion of the nodes of the proper orb. 
The observed motion of a planet is composed of these three motions plus, 
for the five planets only, a motion on an epicycle. For the sun, only the first 
two basic motions are involved. To find these, Ibn al-Haytham uses various 
systems of spherical coordinates: equatorial coordinates (the required time 
and its proper inclination), which are primary; horizon coordinates (altitude 
and azimuth); and ecliptic coordinates. 

The use of equatorial coordinates marks a break with Hellenistic astro-
nomy. In the latter, the motion of the orbs was measured against the 
ecliptic, and all coordinates were ecliptic ones (latitude and longitude). 
Thus, basing the analysis of the planets’ motion on their apparent motions 
drives a change in the reference system for the data; we are now dealing 
with right ascension and declination. Ibn al-Haytham’s book thus transports 
us into a different system of analysis. 

Ibn al-Haytham then considers, for any given planet, the variation in 
the speed of the inclination, measuring it by the mean speed over an inter-
val that is itself variable. He looks at the change in altitude of the planets 
between their rising and setting. Ibn al-Haytham carries out all these inves-
tigations rigorously, using the mathematical propositions he proved in the 
first part and relying constantly upon considerations involving infinite-
simals. The geometrical proofs he brings to bear assume only that the 
motion of the planet is from east to west, and that it is monotonic along the 
north-south axis. 
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When the geometry is conceptualized in this way, the question of a 
possible motion of the earth does not arise, because we are concerned only 
with the motion of the planet on the celestial sphere as it appears to a 
terrestrial observer. In other words, we have a kind of phenomenological 
description of the motions of the planets, which can, however, be given 
only in terms of spherical geometry, infinitesimal geometry, and trigono-
metry. There is nothing surprising about this since Ibn al-Haytham is 
concerned to insure that his description employs only minimal hypotheses 
about the properties that characterize the motions: variation of speed and 
day-by-day variation of altitude. 

Let us briefly summarize the various chapters of the section devoted to 
astronomy. 

I. The apparent motion of the planets 
In the first part of the section devoted to astronomy, Ibn al-Haytham 

starts from results Ptolemy proved for each of the seven planets (the three 
fundamental motions) and introduces definitions of the ‘required time’, the 
inclination of the motion of the planet, and the inclination of the ascending 
node. He investigates in turn: 1. The motion of a planet between its rising 
and meridian transit; 2. The motion of known duration between two points 
of known position. 

1.1 The apparent motion of the moon between rising and meridian 
transit 

Ibn al-Haytham begins by citing the results proven by Ptolemy in rela-
tion to the inclined orb of the moon, the position of this orb in relation to 
the circle of the ecliptic and to the nodes, that is, to the points of intersec-
tion of these two orbs. Ibn al-Haytham considers as fixed the dihedral angle 
between the plane of the inclined orb and the plane of the ecliptic. In fact, 
this angle varies little, remaining close to 5°. The orb of the moon would 
thus lie within the zodiac. 

Ibn al-Haytham then reminds us that the motion of the moon on its orb 
is in the direction of the zodiacal signs (direct motion) and that each node 
has a uniform motion around the ecliptic in the direction opposite to that of 
the zodiacal signs (retrograde motion). Thus the north pole of the lunar orb, 
X, describes on the celestial sphere a circle centered on the pole of the 
ecliptic, P, and each point of the lunar orb describes a circle parallel to the 
ecliptic (in retrograde motion). Now, the angle between the circle of the 
ecliptic and the circle of the equator is constant; because the nodes move, 
however, the inclination of the lunar orb to the equator of the celestial 
sphere varies. The inclination will be equal to the arc of the great circle HX, 
where H is the north pole of the celestial equator. 



664 PART III: ASTRONOMY 

B
P AX

N
M

H

Q

Q

M

N

O

�

��	

	

	

	

pole of the 
celestial equator

ecliptic

celestial equator

great circle through the poles
"orb"

pole of the "orb"

pole of the ecliptic

ax
is

 o
f t

he
 

w
or

ld
 

Fig. 128 
 
Ibn al-Haytham investigates in minute detail how this arc varies as the 

node N makes a complete circuit around the ecliptic. In this preliminary 
inquiry, he ignores the precession of the equinoxes (in his terms, the retro-
grade motion of the equinoxes), which is very slow. He treats the planes of 
the celestial equator, of the ecliptic, and of the circle through the poles of 
the celestial sphere as if they were all fixed with respect to one another. He 
will later return to this procedure, to give it more detail, when he considers 
the maximum and minimum inclinations of the orb of each of the seven 
planets to the equator. He behaves as if he were deliberately constructing a 
simple model first, in order to increase its complexity later. 

Ibn al-Haytham then defines the northernmost and southernmost points 
of the lunar orb with respect to the equator. These points are the mid-points 
of the semicircles into which the orb is divided by the diameter, that is, its 
line of intersection with the plane of the equator. Accordingly, they lie on 
the great circle HX that passes through the poles of the lunar orb and those 
of the equator; their inclination to the equator is equal to HX and is thus 
variable (Fig. 128). 

 Ibn al-Haytham then investigates the apparent motion of the moon, in 
relation to a horizon ABCD, between its rising at B and its meridian transit 
at a point N (Fig. 129, where ABC is the eastern half of the horizon circle); 
he considers first the case in which the motion along its orb is from north to 
south, then the case in which it is from south to north. He points out that his 
argument does not involve the horizon, and is consequently applicable to 
the motion of the moon between any point B east of the meridian and the 
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point of its meridian transit. At this point, Ibn al-Haytham introduces the 
following three definitions: 

‘Required time’: the time a fixed star takes to travel from a point B to a 
point I on the meridian; this is the arc BI. It is also the difference of the two 
right ascensions, δ(B, N), between the moon’s initial position B and its 
final position N. This arc BI will also be called the right ascension of the 
motion. 

Inclination of the motion of the moon: IN� = Δ B, N( ) , the difference 

between the inclinations of the initial position B, and the final position N. 

Inclination of the motion of the ascending node: IQ� . 
 

Q

I

N

A
B

B

H

1

C

 
Fig. 129 

 
This investigation of the apparent motion of the moon from its rising to 

its meridian transit is interrupted by a discussion of the relative positions of 
two circles through B, whose poles are respectively the pole of the equator 
and the pole of the ecliptic. Finally, Ibn al-Haytham considers the motion 
of the moon between its meridian transit and its setting, making use of the 
concepts he has already defined. 

Note that, in this geometrico-kinematic model, Ibn al-Haytham does 
not introduce an epicycle since, as he says, ‘the epicycle of the moon does 
not diverge from the plane of the orb, hence the center of the moon does 
not diverge from the plane of the inclined orb’.35 

 
1.2. The apparent motion of the sun between its rising and its meridian 

transit 
Ibn al-Haytham covers the same stages as in the previous investigation: 

he begins by recalling what is known about the orb of the sun (the ecliptic) 
and the sun’s proper direct motion through the zodiacal signs. He defines 

 
35 R. Rashed, Les mathématiques infinitésimales, vol. V, p. 429, 23–25.  
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the points of the orb that are called equinoxes and solstices. He then deals 
with two examples, which are referred to a horizon ABCD, concerned with 
the apparent motion of the sun between its rising at B and its meridian 
transit. In the first case, the motion of the sun along its orb is from north to 
south, in relation to the equator; and in the second case, from south to 
north. In each example, Ibn al-Haytham finds the arcs that represent ‘the 
required time’ and the inclination of the motion of the sun. 

This investigation is simpler than the one he carried out for the motion 
of the moon, which required that one take account of the node’s motion 
along the ecliptic. 

 
1.3. The apparent motion of each of the five planets between rising and 

meridian transit 
Here, as in previous cases, Ibn al-Haytham begins by recalling what 

Ptolemy had established. He also tells us that his investigation will not take 
into account the motion of the node, since, he writes, it is ‘a slow motion 
that does not become perceptible’.36 We should remember that Ibn al-
Haytham has always maintained that, unlike the case of mathematics, 
where reasoning is exact, in physics we always allow a certain amount of 
approximation. And here, the inclination of the plane of the epicycle to that 
of the orb is variable. Accordingly, its variation must be taken into account 
when investigating the motion of each of the five planets towards the 
meridian circle. Ibn al-Haytham does exactly this when he considers the 
motion of a planet between its rising at a point B on the horizon, and its 
meridian transit. He distinguishes three cases: when the planet’s motion is 
direct; when it is retrograde; and finally when the planet is stationary. Ibn 
al-Haytham’s investigation ends with a conclusion on the planets as a 
whole, concerning the ‘required time’ and the ‘inclination of the motion’. 

 
2. In the preceding section of the work, the two positions considered 

for each of the seven planets were the rising at the point B, and the merid-
ian transit at point N; sometimes, the motion considered was from point N 
to setting. In this part of his work, Ibn al-Haytham investigates, for each of 
the seven planets, an apparent motion of known duration between two 
points A and B, whose position on the celestial sphere is known. He shows 
that the ‘required time’ and the ‘inclination of the motion’ are then known. 

Ibn al-Haytham begins by dealing briskly with the case of the sun, 
which is simple because his model omits the precession of the equinoxes. 

 
36 Ibid., p. 429, 2. 
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Thus if A and B are, respectively, the starting and end points of the motion, 
we at once have:  

• ‘the required time’: δ(A, B), the difference of the right ascensions of 
the two points A and B;  

• ‘the inclination of the motion’: Δ(A, B), the difference of the declina-
tions of the two points A and B, that is, the difference of their inclinations 
to the equator. 

The investigation of the motion of the moon must, however, take 
account of the motion of the ecliptic and the motion of the node of the orb 
of the moon.37 Here, as in the case of the sun, the motion is described in 
equatorial coordinates, namely ‘required time’ and ‘proper inclination’. 

For each of the inferior planets (Venus and Mercury), the ecliptic 
coordinates – ecliptic latitude and longitude – depend on the inclination of 
the epicycle to the orb.38 All the same, if at some known time the ecliptic 
coordinates are known, we use them to find the equatorial coordinates. Ibn 
al-Haytham carries out his investigation just as he had done in the case of 
the moon. 

For the superior planets (Mars, Jupiter, and Saturn), the motion of the 
nodes is very slow, and insensible over the course of a day. As a result, the 
arc that corresponds to arc KG, which is parallel to the ecliptic in the case 
of the moon, is insensibly small; the point G merges with the point K and 
therefore lies on the horary circle AD (Fig. 130). 
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Ibn al-Haytham concludes with a generalization about the five planets: 

 
37  See commentary on Proposition 20 in R. Rashed, Les mathématiques 

infinitésimales, vol. V, pp. 189 ff. 
38 I.e. the circle on which the epicycle moves (circulus deferens). We shall find this 

formulation more than once. 
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if the motion of the planet along its orb is direct, ‘the required time’ δ(A, B) 
is less than the known time, as happens also for the sun and the moon; and 
if the motion of the planet is retrograde, the ‘required time’ is then greater 
than the known time. 

 
II. The inclination of the planets to the equator 
Ibn al-Haytham begins by discussing first the sun, then the moon and 

finally the five planets. As always, he first reminds the reader of Ptolemy’s 
results. Here Ibn al-Haytham further determines, in each case, the ecliptic 
coordinates of the point I, the southernmost point of the orb with respect to 
the equator. 

In the case of the sun, the dihedral angle α between the plane of its path 
(the ecliptic) and the plane of the equator is constant (α = 23°27´). This 
angle α is the maximum inclination of points on the ecliptic with respect to 
the equator, and corresponds to the solstices. The two points of maximum 
inclination are thus the first point of Cancer to the north of the equator, and 
the first point of Capricorn to the south. 

In the case of the moon, the dihedral angle β between the orb of the 
moon and the circle of the ecliptic is constant, but the orb of the moon 
rotates about the axis of the ecliptic. Accordingly, the dihedral angle δ 
between the orb of the moon and the plane of the equator is variable; it 
depends on the position of the ascending node. If the ascending node is at 
point γ (spring equinox), we have δ = α + β. But if the descending node is 
at point γ, the ascending node is then at point γ´, the autumn equinox, and 
we have δ = α – β. In either case, the positions of the northernmost and 
southernmost points of the inclined orb are known. 

For the case in which the ascending node is not at an equinoctial point, 
Ibn al-Haytham embarks on a very detailed investigation using spherical 
trigonometry, in which he applies Menelaus’s theorem four times, and 
shows that, if we know the position of a node on the ecliptic, we can calcu-
late the maximum inclination of the inclined orb with respect to the equa-
tor, and find the position, with respect to the ecliptic, of the northernmost 
or southernmost point of the inclined orb with respect to the equator. 

For the superior planets, the procedure is the same as for the moon, 
since the inclinations of their orbs to the plane of the ecliptic are more or 
less constant: for Mars, 1°51´; for Jupiter, 1°19´; and for Saturn, 2°30´. On 
the other hand, the inclination of the orb of each of the inferior planets to 
the ecliptic is variable. Ibn al-Haytham accordingly devotes many pages to 
studying this problem. 

He begins by examining the inclination as a function of the planet’s 
position in its orb, a position for which there is a corresponding point on 
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the eccentric. He shows that this inclination is known at any known time. 
He goes on to investigate the case in which the nodes are at the 

equinoctial points. When related to the ecliptic, the northernmost and 
southernmost points of the orb relative to the equator are the solsticial 
points. We calculate the inclination relative to the equator as we did for the 
moon. Ibn al-Haytham next considers the case in which the nodes are not 
the equinoctial points. The positions of the northernmost and southernmost 
points relative to the equator are found from the northernmost and 
southernmost points relative to the ecliptic, and he then employs the same 
method as before. 

Ibn al-Haytham goes on to describe – still for the inferior planets – the 
oscillating motion of the plane of the inclined orb about the nodal line. The 
motion of the nodal line is very slow, and for the purposes of this calcula-
tion, the line is accordingly assumed to be fixed. So any point I of the orb 
describes a circle with the nodes as its poles, and the point will have a to-
and-fro motion along an arc of the orb. With this point I is associated a 
point L that represents its position in regard to the ecliptic; this point L will 
also have a to-and-fro motion along an arc of the ecliptic. In his investiga-
tion of the motion of points I and L, Ibn al-Haytham takes point I as lying, 
successively, on each of the four arcs into which the orb is divided by the 
nodes and the northernmost and southernmost points. He assumes that the 
initial position of the orb is when its inclination to the ecliptic is at a maxi-
mum, and he calls the two points in question I and L.39 He first describes 
the motion of points I and L. Next he shows that the circular arc described 
by point I in a known time is known; finally, he shows that the arc of the 
ecliptic described by point L in a known time is known. 

 
III. From Proposition 24 to the end of the book, Ibn al-Haytham pro-

poses general models for the planets as a set, models that are constructed 
with the help of the mathematical propositions he has already proven. His 
work, which is explicitly analytical and uses infinitesimals, concerns itself 
with some kinematic properties of the motion. In this instance, one cannot 
follow Ibn al-Haytham’s procedure without examining his demonstration in 
detail, which we do in the commentary of his text.40 Here, however, we 
shall merely present a general outline. 

 
39 The great circle through the pole cuts the orb in I and the ecliptic in L. The 

points I and L have the same ecliptic longitude. 
40 See Rashed, Les mathématiques infinitésimales, vol. V, Part I. 
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In the first four propositions – 24 to 27 – Ibn al-Haytham investigates 
the variation of a planet’s mean speed. He expresses the mean speed as the 

inverse ratio 
δ X,Y( )
Δ X,Y( )

, where X and Y are two general known positions of a 

planet in its orb, δ (X, Y) is the ‘required time’, and Δ (X, Y) is the differ-
ence between the inclinations of points X and Y with respect to the equator. 
Ibn al-Haytham proves that, if we consider the four arcs into which the orb 
is divided by the diameter, that is, the line of intersection of the planes of 
the orb and the equator, and the northernmost and southernmost points of 
the path with respect to the equator, and if we take two positions X and Y 

on one of these arcs, then there always exists a ratio k such that k > 
δ X,Y( )
Δ X,Y( )

. 

Note that the known time is a real interval that can be measured by the 
motion of the planet. Ibn al-Haytham’s idea of comparing ‘required time’, 
an equatorial coordinate, to this known time looks like the beginnings of a 
kinematic description of the motion. 

In the next group of propositions, Ibn al-Haytham investigates the 
apparent motion of a planet above the horizon of a given place. This 
observed motion depends on the place and on the date of the observation. 
In the course of this investigation, Ibn al-Haytham uses the planet’s equato-
rial coordinates, and consequently its position in its trajectory, the inclina-
tion of the orb to the equator, and the inclination of the equator to the hori-
zon; that is to say, he uses the geographical latitude of the place where the 
observation is made. Throughout this investigation, Ibn al-Haytham 
assumes that the celestial sphere is inclined to the south; the observation 
site thus has a northern latitude. The case of the sphaera recta, that is to 
say, the case where the observer is on the terrestrial equator, appears as a 
special case. Ibn al-Haytham assumes that the planet’s meridian transit 
takes place between the zenith and the southern horizon, which means that 
the geographical latitude of the place where the observation is made must 
be greater than the declination of the planet for the date in question. He 
also assumes that the latitude of the observation site is smaller than the 
complement of the declination. Ibn al-Haytham makes a detailed study of 
the part played by the latitude, which leads him to consider the cases in 
which meridian transit occurs at the zenith or north of the zenith, and 
finally the case of places whose latitude is equal to the complement of the 
maximum declination of the planet. 

So, in two propositions, 28 and 29, Ibn al-Haytham investigates the 
altitudes of a planet above the horizon. Let us suppose that the planet rises 
at point B and crosses the meridian at D. The arc BD which it describes is 
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to the east of the meridian plane. Let the altitude of the planet above the 
horizon be h (Fig. 131). Ibn al-Haytham shows that on arc BD there exist: 

• points of altitude h > hD (the altitude of point D). Let M be one of 
these points; 

• at least one point X on the arc BM such that hX = hD; 
• at least two points with the same altitude h with hD < h < hM, one on 

the arc XM and the other on the arc MD. 
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Fig. 131 

 
He also shows that, after it crosses the meridian at D, the planet contin-

ues its motion towards the western horizon and its altitude h decreases from 
hD to 0. Any altitude h < hD is thus reached at least once. 

Ibn al-Haytham also shows that, if hm is the maximum altitude, the 
planet will reach it only once, say at a point W; and that altitude hD will be 

reached once and only once at a point X ≠ D, such that X ∈ BW� . 
In Proposition 29, Ibn al-Haytham investigates the movement of the 

planet from the southernmost to the northernmost points of its trajectory. 
The planet crosses the meridian at G and sets at D. The arc GD that it 
describes is to the west of the meridian (Fig. 132). 
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Fig. 132 

Ibn al-Haytham shows that there exist on the arc GD: 
• points with altitude h > hG, let M be one of them; 
• at least one point X, on the arc MD, such that hX = hG; 
• two points with the same altitude h, where hG < h < hM, one of which 

is on the arc XM and the other on the arc MG. 
He also shows that, between the planet’s rising in the east at B and its 

meridian transit at G, the altitude h increases from 0 to hG and that any 
altitude is reached at least once. 
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Later on Ibn al-Haytham returns to this investigation to calculate the 
altitudes reached by the planet to the west of the meridian. He shows that if 
hm is the maximum altitude, the planet reaches it only once – let it be at 
point W; and that the altitude hG, which is that of the planet’s meridian 
transit, is reached once, and only once, at a point other than G – let it be at 
point X on the arc WD; that any altitude h < hG is reached once, and only 
once, at a point between X and D; and that any altitude h such that 
hG < h < hM is reached at two points and at only two points – one on arc GW 
and the other on arc WX. 

In Proposition 30, Ibn al-Haytham proves that the point at which maxi-
mum altitude is reached is unique; then, in Proposition 31, he returns to the 
investigation of altitudes to the east of the meridian. In these two proposi-
tions, Ibn al-Haytham once again introduces innovations in infinitesimal 
geometry. He is in fact developing an entirely original new method of 
working in spherical geometry: he considers infinitesimal curvilinear trian-
gles on the sphere (triangles whose sides are not necessarily arcs of a great 
circle) – he constructs a sequence of such triangles whose sides tend to zero 
– and he handles these triangles as if they were infinitesimal rectilinear 
triangles. What we encounter here is in effect a geometry of infinitesimals 
like that used later in differential geometry. 

In order to sum up some results that Ibn al-Haytham established in his 
investigation of the point D at which the planet crosses the meridian (that 
is, in this group of Propositions 28 to 36 where he is investigating the alti-
tudes of a planet), let us consider the meridian plane, with pole Z, and the 
equator, whose north pole is N (Fig. 133). 
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Let λ be the latitude of the place, δ the declination of the planet at 
meridian transit, and α the maximum value of the declination; we have 
arc AN = arc XZ = λ, arc XD = δ, arc XD1 = arc Z ′D1  = α. 

We consider only places in the northern hemisphere, and we use the 
sun as our example, so α = 23°27´. 

We may summarize the investigation of the position of D, as a function 
of the geographical latitude λ and the date, in the form of a table. Let us 

assume that α < λ < π
2

 – α. 

 
latitude date position of D 

λ = 0 
terrestrial equator 
 

• Spring and Autumn equinoxes  
• Summer solstice 
• Winter solstice 
• Spring and Summer 
• Autumn and Winter 

D = Z = X 
D = D1 to the north of Z 
D = ′D1  to the south of Z 
D between Z and D1 to the north of Z 
D between Z and D1 to the south of Z 
 

λ = α 
tropic of Cancer 

• day of the Summer solstice δ = λ 
• any other day δ < λ 
 

D = D1 = Z 
D lies on the arc Z ′D1 , south of Z 

0 < λ < α 
northern tropical zone 

• day of the Summer solstice δ = α, 
so δ > λ. 
The declination δ = λ will be reached  
once in the Spring and once in the  
Summer on these two dates 
between these two dates  
for any other day of the year 
 

D at D1 north of Z 
 
 
 
D is at Z 
D lies on the arc ZD1, north of Z 
D lies on the arc Z ′D1 , south of Z 

λ > α for any day of the year D lies south of Z 
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In the case of the sphaera recta, whether meridian transit is north or 
south of the zenith Z, we can apply the method employed in Proposition 28 
or Proposition 29 and show that the planet will have equal altitudes h that 
are pairwise equal (h > hD) either to the east of the meridian, or to the west 
of it. 

In the case where the point D, the point of meridian transit, is at the 
zenith Z,41 the maximum altitude of the planet is hD, and any altitude h < hD 
will be reached once, and only once, to the east, and the same will apply for 
the west. 

So far, Ibn al-Haytham has considered places north of the equator with 

latitude λ < π

2
 – α, where α is the inclination of the orb to the equator; to 

complete his investigation of the trajectory of a planet seen above the hori-

zon, he considers places with northern latitude λ = π
2

 – α or λ ≅ π
2

 – α and 

shows that in such places, and on particular dates, the planet in question 
may set in the east and rise in the east and that, on other dates, it may set in 
the west and rise in the west. 

Let BHID (Fig. 135) be the meridian plane for some place, BD the 
diameter of the horizon, EG the diameter of the equator, H the pole of the 

equator BH�  = λ = π

2
 – α, HZ�  = α. If we draw BI || EG and DI´ || EG, we 

have BG� = EI� = ED� = G ′I� = α , so the circles with diameters BI and DI´ 
touch the horizon of the place in question at B and D respectively. The 
trajectories of the planet’s diurnal motion therefore lie between these two 
circles. 
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41 See Rashed, Les mathématiques infinitésimales, vol. V, p. 255.  
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We have assumed that the planet reaches point B, the north cardinal 
point of the horizon in question, ABCD, at the time it gets to the northern-
most point of its trajectory, that is to say, at the moment when its declina-
tion is a maximum and equal to α. So thereafter the declination decreases 
and the trajectory of the planet moves away from the circle BI and begins 
to cut the meridian again at point N above the horizon. 

Ibn al-Haytham then defines: 
• a point L that belongs to this trajectory and is above the horizon 

ABCD and to the east of B; 
• a horizon circle with diameter JS, of latitude λ + ε which shares the 

same meridian and is such that point L is below the horizon. 
But the points B and N are above this horizon JS, so when the planet 

moves from B towards L, it sets at a point on the eastern part of this hori-
zon, and when it moves from L towards N, it rises at a point that is likewise 
on the eastern part of this horizon. 

At the other extreme, the planet is assumed to be at the southernmost 
point of its trajectory, at the point B of the horary circle BQI (Fig. 136), and 
this point B is the south cardinal point of the horizon in question, which has 

latitude λ = 
π

2
 – α. The declination thus increases thereafter and the trajec-

tory of the planet diverges from the circle BQI and begins to cut the merid-
ian again at a point N above the horizon. The method is accordingly the 
same as in the previous part. Ibn al-Haytham defines: 

• a point L that lies on this trajectory and is above the horizon ABCD 
and to the west of B; 

• a horizon circle AJCS at latitude λ – ε that shares the same meridian 
and is such that point L is above it. 
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When the planet moves from B towards L, it rises at a point on the 
western part of this horizon, and when it moves from L towards N, it sets at 
a point on the western part of this horizon. 

Ibn al-Haytham has thus shown that on the day when a planet reaches 
its maximum northern declination α, there exist places in the northern 

hemisphere, with latitude λ = 
π
2

 – α + ε, on whose horizons the planet sets 

and rises in the east, and that on the day when the planet reaches its maxi-
mum southern declination α, there exist places in the northern hemisphere, 

with latitude λ = 
π
2

 – a – ε, on whose horizons the planet rises and sets in 

the west.  
In both cases, the points at which the planet rises and sets are very 

close to one another.  
 
We have sketched the principal results that Ibn al-Haytham obtains in 

his Configuration of the Motions. Our aim was not so much to expound all 
the results in detail, which we have done elsewhere, but rather to give an 
overview of what he was trying to do in his book. All the way through The 
Configuration of the Motions he directs his efforts to constructing a 
descriptive phenomenological theory of the celestial motions, as they are 
seen by an observer on the earth. This theory, as one can easily assure 
oneself, does not incorporate any idea of a teleological physics, though it 
does not conflict with what Aristotle calls the most physical parts of 
mathematics, which here is geometrical optics, a subject reformed by Ibn 
al-Haytham himself. When Ibn al-Haytham is constructing his astronomy, 
his obvious concern is, as we have noted, to adopt at each stage the least 
possible number of hypotheses. 

Thus his theory for the motion of the planets calls upon no more than 
observation and conceptual constructs susceptible of explaining the data, 
such as the eccentric circle and in some cases the epicycle. However, this 
theory does not aim to describe anything beyond observation and these 
concepts. In no way is it concerned to propose a causal explanation of the 
motions. In this respect, The Configuration of the Motions is both in the 
astronomical tradition that Ibn al-Haytham inherited and in a tradition that 
continues after Ibn al-Haytham as far as Kepler. To sum it up, in The 
Configuration of the Motions, Ibn al-Haytham’s purpose is purely kine-
matic; more precisely, Ibn al-Haytham wanted to lay the foundations of a 
completely geometrical kinematic tradition. 

Carrying out such a project involves first of all developing some 
branches of geometry required for solving new problems that arise from 
this kinematic treatment: Ibn al-Haytham took a huge step forward in 
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spherical geometry as also in plane and spherical trigonometry. To get a 
measure of how far he has advanced beyond the Greeks, one need only 
compare The Configuration of the Motions with Chapters 9 to 16 of the 
first book of Ptolemy’s Almagest; and to appreciate the distance that sepa-
rates him from his contemporaries one may compare The Configuration of 
the Motions with, for example, the Almagest of Abū al-Wafāʾ al-Būzjānī. 
As we have seen, Ibn al-Haytham considers the changes in infinitesimal 
magnitudes that necessarily arise in astronomical research. 

In astronomy, there are two major processes that are jointly involved in 
carrying through this project: freeing celestial kinematics from cosmologi-
cal connections, that is, from all considerations of dynamics, in the ancient 
sense of the term; and to reduce physical entities to geometrical ones. The 
centers of the motions are geometrical points without physical significance; 
the centers to which speeds are referred are also geometrical points without 
physical significance; even more radically, all that remains of physical time 
is the ‘required time’, that is, a geometrical magnitude. In short, in this new 
kinematics, we are concerned with nothing that identifies celestial bodies 
as physical bodies. All in all, though it is not yet that of Kepler, this new 
kinematics is no longer that of Ptolemy nor of any of Ibn al-Haytham’s 
predecessors; it is sui generis, half way between Ptolemy and Kepler. It 
shares two important ideas with ancient kinematics: every celestial motion 
is composed of elementary uniform circular motions, and the center of 
observation is the same as the center of the Universe. On the other hand, it 
has in common with modern kinematics the fact that the physical centers of 
motions and speeds are replaced by geometrical centers. 

There remains a major question, that of the relation of this kinematics 
to the celestial dynamics of the day, that is to say to cosmology. The ques-
tion is relevant here only if we come across evidence that Ibn al-Haytham 
had intended to write on cosmology once he had completed The Configura-
tion of the Motions. In that case, one would expect a new cosmology to go 
with the new kinematics. In fact none of the titles that have come down to 
us, none of the manuscripts of Ibn al-Haytham’s undoubtedly authentic 
astronomical works gives grounds for claiming that such a cosmology, 
based on the new kinematics, ever existed. The only cosmology text known 
to have been composed by Ibn al-Haytham (that is of well-attested 
authenticity) is earlier than The Configuration of the Motions since it forms 
part of his treatise on the winding motion. When in his Resolution of 
Doubts concerning the Winding Motion, he himself mentions this work 
(now lost), he writes: 

The winding motion to which Ptolemy referred, and from which arise the 
motions in latitude of the five planets, can only be according to the 
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configuration that I demonstrated and according to the account that I gave. It 
is a configuration that is not subject to any impossibility or any absurdity. 
From this motion is generated a motion of the planet which, by the motion of 
its center, produces a curve imagined as if the planet were wound around on 
the body of the small sphere which moves the body of the planet. It is 
because of the winding of this curve around the body of the epicycle that this 
motion has been called the winding motion, and for no other reason.42 

There is no room for doubt: in his treatise on the winding motion, Ibn 
al-Haytham had indeed proposed a model for the motions in latitude of the 
epicycles of the five planets, a model in which he considered the physical 
‘small spheres’ that moved the celestial bodies; in other words, he had pro-
posed a cosmology. Many other passages of the treatise confirm this. 

Now, from the order of composition of Ibn al-Haytham’s writings that 
we have already established, we know that, of these writings, the two 
books on the winding motion were composed before the Doubts concern-
ing Ptolemy. Moreover, while in the first two books he makes use of the 
idea of an equant, in the last one he criticizes it, and eventually ends up 
completely excluding it from The Configuration of the Motions. Further-
more, since Ibn al-Haytham emphasizes in the introduction to The 
Configuration of the Motions that the results described in this work super-
sede any different ones to be found in all his other writings, we may safely 
conclude that The Configuration of the Motions was written after the 
Doubts concerning Ptolemy and, a fortiori, after the two books about the 
winding motion. Thus Ibn al-Haytham’s contribution to cosmology is (as it 
were) local, since it relates only to a particular motion and antedates the 
Doubts and The Configuration of the Motions. We proved elsewhere that 
The Configuration of the Motions is also later than his treatise on The 
Different Altitudes of the Wandering Stars.43 

Another argument in favour of this historical and conceptual sequence 
is drawn from the language used in The Configuration of the Motions. The 
book not only contains new concepts such as ‘required time’ and ‘proper 
inclination for the required time’, but also terms from ancient astronomy 
whose meaning has changed. For example let us consider a concept central 
to traditional astronomy, that of falak. It is well known that in traditional 
astronomy this term signifies ‘orb’. It refers to the various solid bodies con-
nected with a specific planet. These solid bodies move with uniform circu-

 
42 On the Resolution of Doubts relating to the Winding Motion (Fī ḥ all shukūk 

ḥarakat al-iltifāf), ms. St Petersburg, B1030/1, fols 15v–16r. 
43 See Rashed, Les mathématiques infinitésimales, vol. V, Part I. 
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lar motions, and the sum of these motions constitutes the apparent motion 
of the planet under consideration, as seen from the earth, which is at the 
center of the universe. In this system, a planet does not have a motion of its 
own, it is moved by something else, and one cannot speak of the motion of 
a planet along its particular orbit, but only of its apparent motion resulting 
from the composition of the motions of its various spheres. This same word 
falak is also used in the same context to designate the (plane) circles that 
are the lines on the sky that correspond to the solid bodies in question. 

In fact, Ibn al-Haytham uses this term falak in these senses in all the 
works we have cited above, except in The Different Altitudes of the 
Wandering Stars, where he does not need it. On the other hand, in The 
Configuration of the Motions, the term falak no longer has the same 
meaning. In this book, it refers mainly to the apparent trajectory of a 
particular planet across the celestial vault, and everything else derives from 
the analysis of this apparent motion, without reference to solid bodies that 
might move the planet in question. This semantic difference, taken together 
with the new concepts, shows that The Configuration of the Motions was 
composed after the books we referred to earlier. This difference alone also 
shows that this treatise cannot be placed within a purely Ptolemaic 
tradition. One might almost translate the term as the ‘orbit’ of a planet44 
since the apparatus of the orb, in the sense in which the term was conven-
tionally understood, no longer enters into it. 

In the Doubts, we have seen a turning point in Ibn al-Haytham’s astro-
nomical thought. There is every indication that The Configuration of the 
Motions is the most substantial result produced by this change. The book 
gives us a new astronomy even though it retains a geocentric framework 
within which all motions are circular and uniform. We have a break with 
tradition despite the background of continuity. 

We need to know the reasons for such a change. On this matter the 
available texts are silent. We may, however, offer the following hypothesis. 
In the absence of a theory of gravitation, the mathematician-astronomer 
was faced with two alternatives: either to abide by the traditional principle 
whereby the motion of each planet derives from a cause specific to that 
body, and thus to construct a cosmology of material spheres; or to accept 
the necessity of abandoning that route and instead to start by constructing a 
kinematic account, thus acknowledging the primacy of kinematics in any 
investigation of dynamics. In many of his astronomical writings, Ibn al-

 
44 However, we do not do this in the translation, preferring to retain period usage. 

We simply need to alert the reader here. 
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Haytham had been tempted by the first alternative. But, once he had 
engaged upon mathematizing astronomy and had noted not only the inter-
nal contradictions in Ptolemy, but doubtless also the difficulty of construct-
ing a self-consistent mathematical theory of material spheres using an 
Aristotelian physics, he turned to the second alternative, that of giving a 
completely geometrized kinematic account. His experience in optics per-
haps helped him to take this step: here kinematics and cosmology are 
entirely separated to effect a reform of astronomy, just as in optics, work 
on the propagation of light is entirely separated from work on vision to 
effect a reform of optics; in the one case as in the other, Ibn al-Haytham 
arrived at a new idea of the science concerned. 

 



  
 
 

– 2 – 
 

FROM THE GEOMETRY OF THE GAZE TO THE 
MATHEMATICS OF THE PHENOMENA OF LIGHT 

 
 
 
Let us begin by remembering one fact and evoking one metaphor. 

Optics, the oldest and most mature of the physical sciences because it was 
the first to be mathematized, was developed and transformed in its ancient 
and classical periods around the Mediterranean. This is the fact. As to the 
metaphor, it pertains to the production and circulation of scientific 
knowledge around the Mediterranean. The inland sea presents itself as a 
locus, a topos in the Aristotelian sense, a place of exchange between most 
civilizations of the ancient world, both those that encircle its shores and 
those that are more distant from it. To illustrate this situation, let us leave 
the minefield of metaphors and examine briefly the predicament of the 
historian before returning to the science itself. If, for example, a historian 
nowadays wants to study the beginnings of Hellenistic optics, he will inev-
itably encounter the work of Diocles from the second century B.C. His 
research will therefore require an examination of the Arabic version of this 
work, the only one that survived. If he now turns to a later period of 
Hellenistic optics, he will have to devote most of his efforts to studying the 
fundamental contribution attributed to Ptolemy (2nd century). He will now 
have to be content with the 12th-century Latin translation that Admiral 
Eugenius of Sicily made from the 9th-century Arabic version, which in turn 
had been translated from the Greek; indeed, both the Arabic and the Greek 
texts are lost. Assume now that our historian is interested only in Arabic 
optics, and is sufficiently cavalier to neglect the Greek sources and the 
Arabic translations of the latter; he will nevertheless not be able to avoid 
the Latin and Hebrew translations from the Arabic. We know that one of 
the first works in Arabic optics was written by the philosopher Abū Isḥāq 
al-Kindī. Of his book on optics, there remains only the Latin translation, 
which became an essential touchstone as much for Roger Bacon as for 
John Pecham and Robert Grosseteste. But if our historian studies a specific 
chapter of Arabic optics, such as that devoted to atmospheric phenomena, 
he will inevitably encounter the book of the Andalusian, Ibn Muʿādh, De 
crepusculis, which exists only in Latin and Hebrew translations. 
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It would be easy to multiply such examples, all of which point to the 
fact that this is a highly specific situation in both time and space. If indeed 
one compares our historian to a colleague working on later (e.g., 18th-
century) optics or to a historian of optics in a different cultural era (e.g., 
China), the historian of science and mathematics in the Mediterranean 
cultures up to the 17th century must follow a more sinuous path. The latter 
must travel everywhere without reprieve; he cannot rely on a fixed point; 
unless he wants to run the risk of completely missing his quarry, he must 
resist every temptation of culture-centrism and of linear history. But the 
predicament that is peculiar to our historian is in fact only a reflection of 
the meandering constitution and diffusion of optics itself. Let us therefore 
take a moment to pause on the elaboration of this science, and to consider, 
not the research of today’s historian, but the journey of the scholar of 
yesteryear. 

In Greek and Hellenistic antiquity, research in optics is essentially 
divided into five chapters, which sometimes are superimposed or overlap: 
optics proper, that is, the geometrical study of the perception of space and 
of perspectival illusions; catoptrics, that is, the geometrical study of the 
reflection of visual rays in mirrors; burning mirrors, the study of the con-
verging reflection of solar rays on mirrors; atmospheric phenomena, such 
as the halo and the rainbow; and finally, the study of vision by natural 
philosophers and physicians. In the chapters that simultaneously treat 
vision and the propagation of light, the doctrine of the ‘visual ray’ domi-
nates. The latter consists of a divergent beam emitted by the eye, that is, a 
cone whose vertex is the eye, and whose edges consist of the visual rays 
that propagate rectilinearly and skim over the objects that interfere with 
them. According to this teaching, to see is to illuminate, and the conditions 
of propagation are those of vision. Each type of problem, whether propa-
gation or vision, immediately refers back to the other. In this twofold 
motion of referral were grounded not only the conditions of possibility of 
ancient optics, but also its limits and the obstacles to its development.  

On this account of the visual ray, vision is conceived as a tactile act, a 
palpation at a distance. This doctrine was developed in the Optics 
attributed to Euclid, found its nearly definitive formulation in the Optics 
attributed to Claudius Ptolemy, and dominated optics until the end of the 
10th century and beyond. In this sense, optics is only a geometry of percep-
tion, a geometry of the gaze. Its main theme concerns the variation of the 
magnitude of the visible in relation to the variation of its distance from the 
eye as source, or better yet, the eye as headlight, and in relation to its posi-
tion among other objects. In this optics, the primary concern is with the 
visible object, not as such, but only in relation to the question: how does 
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the object appear to the eye? It is in some sense a geometry of appearance, 
in which light and vision have no distinct ontological status. In this regard, 
recall the postulates of Euclid’s Optics. 

I. Assume that the straight lines that emanate from the eye are carried over a 
space of immense magnitudes (μεγεθῶ μεγάλων). 

II. That the figure bounded by these visual rays is a cone having its vertex in 
the eye and its base at the boundaries of the seen magnitudes. 

III. And that the magnitudes on which the visual rays fall are seen; whereas 
those on which the visual rays do not fall, are not seen. 

IV. And that the magnitudes seen under a greater angle appear larger; 
whereas those that are seen under a smaller angle, appear smaller, and those 
that are seen under equal angles, appear equal.  

V. And that the magnitudes seen under rays that are more lifted up, appear 
higher; whereas those that are seen under rays that are more lowered, appear 
lower; 

VI. And that likewise the magnitudes seen under rays that are more to the 
right, appear more to the right, whereas those that are seen under rays more 
to the left, appear more to the left; 

VII. Finally, that the magnitudes seen under more numerous angles appear 
more distinctly. 

In this Optics, the eye is the headlight, as it were, the vertex of a cone 
of visual rays that illuminate objects, and it is the angles and directions of 
these rays that determine the appearance of visible things.  

On this Euclidean base, a geometrical science of optics is constituted 
that reaches its most accomplished form in Ptolemy’s Optics. In the four 
books of this work, Ptolemy treats successively: direct vision, vision by 
reflection in different mirrors (plane, spherical-concave, spherical-convex, 
cylindrical, conic), and finally vision by refraction. Even if the doctrine 
remains essentially the same, the perception now becomes the result of a 
complex judgment, grounded in the intervention of several faculties of the 
soul.  

Thus it is this optics-as-geometry-of-the-gaze that was transmitted into 
Arabic, along with most of the Greek and Hellenistic works on burning 
mirrors, optical meteorology, as well as the writings of philosophers and 
physicians. This Arabic dependence on Greek and Hellenistic optics – and, 
one might even say, on it alone – nevertheless did not obstruct the emer-
gence of rather precocious, innovative research. Indeed, very soon after the 
massive transmission of Greek writings, the history of the discipline devel-
oped three foci: the rectification or correction of these writings, the accu-
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mulation of new results, and the renewal of its main domains. It took only 
two centuries to prepare what, in the end, became a genuine revolution, one 
that left a permanent mark on the history of optics, and arguably on the 
history of physics. It is this dialectical movement between a solid continu-
ity and a profound break that I would now like to sketch. 

After gaining access to Euclid’s Optics and Anthemius of Tralles’s 
treatise on Burning Mirrors, the mid-9th century philosopher and scientist 
al-Kindī composes several treatises on the various branches of optics. In 
the wake of Euclid, he assigns himself the task of ‘giving an exposition of 
the ancients’ teaching’, ‘developing what they had begun’, and correcting 
the errors they made. Thus, in his book, lost in Arabic but preserved in 
Latin, entitled Liber de causis diversitatum aspectus [De aspectibus], he 
wants to demonstrate what Euclid had postulated. Indeed, one quarter of 
the De aspectibus is devoted to justifying the rectilinear propagation of 
light rays, using geometrical considerations on shadows and the passage of 
light through slits. Having thus established rectilinear propagation, al-Kindī 
returns to the theory of vision. He begins by bringing up and criticizing the 
main doctrines known since Antiquity, in the end adopting extramission. 
He does not, however, accept the Euclidean doctrine without seriously 
amending it. According to him and in contrast to Euclid’s view, the visual 
cone is not composed of discrete rays, but presents itself as the volume of 
continuous radiations. The importance of this amendment derives from the 
idea that it undergirds: that of the ray. Al-Kindī pushes aside a purely geo-
metric conception of the ray: rays are not geometrical straight lines, but 
impressions produced by three-dimensional bodies. In al-Kindī’s words:  

a ray is an impression of the luminous body on opaque bodies, the name of 
which is derived from that of light on account of the alteration of the acci-
dents that have occurred to bodies that receive this impression. Therefore the 
impression along with what is in that impression – all of that is a ray. But the 
body that produces the impression is a body with three dimensions: length, 
width, and depth. Therefore the ray does not follow straight lines between 
which there would be intervals.1  

Important in itself, this critique of the concept of ray in a sense pre-
pares the fundamental step that Ibn al-Haytham will take approximately a 
century and a half later: the distinction between the light and the straight 
line along which it propagates. Al-Kindī, however, must still explain the 
diversity of perception according to the various regions of the cone. On this 

 
1 R. Rashed, Œuvres philosophiques et scientifiques d’al-Kindī, vol. I: L’optique et 

la catoptrique, Leiden, E. J. Brill, 1997, pp. 459–61. Transl. here by M. H. Shank.  
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occasion, he distances himself from the positions of both Euclid and 
Ptolemy by assuming that a visual cone issues from every point of the eye.  

Al-Kindī next investigates the reflection of visual rays in various types 
of mirrors. He devotes an entire book to burning mirrors, which situates 
itself both in continuity with the ancient scientists and against them. In it, 
al-Kindī proposes to remedy the inadequacies of Anthemius of Tralles’s 
work, which he completes. Did not the latter indeed take as an unquestion-
able truth the legend according to which Archimedes had set fire to the 
Roman fleet, without even demonstrating that it was possible? Did he not 
work on the construction of a mirror in which twenty-four rays are 
reflected towards a single point, without rigorously determining the dis-
tance from this point to the mirror? This is the task that al-Kindī proposes 
to take up. To this end, he studies five types of burning mirrors: the dihe-
dral mirror, the conical mirror, the spherical-concave mirror, the catoptric 
system of twenty-five mirrors, the parabolic mirror. 

One of the important results of this research on the propagation and 
focalisation of light is that, following al-Kindī, no scientist of any renown 
in optics will omit the study of burning mirrors from his research program. 
Such is at least the case for the two most important authors: Ibn Sahl and 
Ibn al-Haytham. This topic is no longer a separate speciality, as it had been 
in Antiquity, but is now a central chapter of optics. Moreover, as we shall 
see, this investigation will in fact lead in the 10th century to the inaugura-
tion of a new chapter – the geometrical theory of lenses – and, with Ibn 
Sahl, around 980, to anaclastics. 

Before Ibn Sahl, catoptricians raised questions about the geometrical 
properties of mirrors, and the ignition that they produced at a given dis-
tance. This is in effect the problem that Diocles, Anthemius of Tralles, and 
al-Kindī all set themselves. Ibn Sahl immediately modifies the question by 
considering not only burning mirrors, but also burning instruments, that is, 
those that are susceptible of causing ignition not only by reflection, but 
also by refraction. Ibn Sahl then successively studies the following in rela-
tion to the distance of the source (finite or infinite) and the mode of igni-
tion (reflection or refraction): the parabolic mirror, the ellipsoidal mirror, 
the plano-convex lens, and the biconvex lens. In each of these sections, he 
undertakes a theoretical study of the curve, then details a mechanical pro-
cedure to draw it. For the plano-convex lens, for example, he begins by 
studying the curve as a conic section, then proceeds to the continuous 
drawing of an arc of hyperbola, in order to take up the investigation of the 
plane tangent to the surface generated by the rotation of this arc around a 
fixed straight line, and finally to return to the laws of refraction. If one 
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wants to understand Ibn Sahl’s investigation of lenses, however, one must 
first determine the state of his knowledge of refraction. 

While he was investigating the fifth book of Ptolemy’s Optics, Ibn 
Sahl composed another treatise, still extant, on which Ibn al-Haytham 
would later comment. In this Proof that the Celestial Sphere is Not of the 
Utmost Transparency, Ibn Sahl applies to the study of refraction concepts 
that were already present in Ptolemy. In this inquiry, however, the concept 
of medium occupies an important place. Ibn Sahl shows that every 
medium, including the celestial sphere, is characterized by a certain opacity 
that defines it. But Ibn Sahl’s genuine discovery is that, in his treatise on 
Burning Instruments, he characterizes the medium by a certain ratio. It is 
precisely this concept of a constant ratio characteristic of the medium that 
constitutes the master idea of his investigation of refraction in lenses.2 

Ibn Sahl had conceived and constituted an area of inquiry on burning 
instruments, and on dioptrics in addition. But since he was forced to think 
of other conics besides the parabola and the ellipse (notably the hyperbola) 
as anaclastic curves, he was very naturally led to discover Snel’s law. We 
can therefore understand that dioptrics, when it is born with Ibn Sahl, treats 
only what concerns the propagation of light, independently of problems of 
vision. The eye thus has no place in the midst of burning instruments, no 
more than the subject of vision. The point of view that he adopts when 
analyzing the phenomena of light is thus deliberately objective. Rich in 
technical material, this new discipline is in fact very poor in physical con-
tent: it is fleeting, and restricted to a few energetic considerations. For 
example, at least in the writings that have come down to us, Ibn Sahl never 
tried to explain why certain rays change direction or become concentrated 
when they enter a new medium: it was enough for him to know how a bun-
dle of rays parallel to the axis of a hyperbolic plano-convex lens yields a 
convergent bundle by refraction. To the question of why the concentration 
of rays produces ignition, Ibn Sahl is content to answer by defining the 
luminous ray by its action of igniting by postulating – as many of his suc-
cessors would do long thereafter – that heating is proportional to the num-
ber of rays. 

With Ibn Sahl, we are on the eve of one of the first revolutions in 
optics, if not physics. Scarcely a generation after Ibn Sahl, Ibn al-Haytham 
begins his work.  

Compared to the writings of the Greek and Arabic mathematicians that 
precede him, even Ibn al-Haytham’s optical work at first glance reveals 
two striking characteristics: extension and reform. Upon closer examina-

 
2 See R. Rashed, Geometry and Dioptrics in Classical Islam, London, al-Furqān, 

2005, Chap. II. 
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tion, one notices that the first characteristic is a material remnant of the 
second. Indeed, no one before Ibn al-Haytham included in his research so 
many domains pertinent to so many diverse traditions: philosophical, 
mathematical, medical. The titles of his books nicely illustrate this wide 
spectrum: The Light of the Moon, The Light of the Stars, The Halo and the 
Rainbow, Spherical Burning Mirrors, Parabolic Burning Mirrors, The 
Burning Sphere, The Form of the Eclipse, The Quality of Shadows, The 
Discourse on Light, as well as his magisterial book on Optics, translated 
into Latin in the 12th century, and studied and commented on in Arabic and 
Latin until the 17th century. Ibn al-Haytham thus broached not only the tra-
ditional themes of optical research, but also many other new ones, eventu-
ally encompassing the following domains: optics, meteorological optics, 
catoptrics, burning mirrors, dioptrics, the burning sphere, physical optics. 

A more detailed examination reveals that, in most of his work, Ibn al-
Haytham pursues a program to reform the discipline, a program that leads 
him to take up in turn its various problems. The founding act of this reform 
consists, for the first time in the history of optics, in clearly distinguishing 
between the conditions for the propagation of light and the conditions for 
the vision of objects.3 On the one hand, it led to providing a physical 
foundation for the rules of propagation: its basis is a mathematically sup-
ported analogy between the motion of light and a mechanical model of the 
motion of a solid ball hitting an obstacle.4 On the other hand, it led to pro-
ceeding geometrically everywhere, by observation and experimentation. 
Optics no longer has its former meaning of a geometry of perception. 
Henceforth it includes two parts: a theory of vision, to which are also asso-
ciated a physiology of the eye and a psychology of perception, and a theory 
of light, to which are linked a geometrical optics and a physical optics. The 
organization of his Optics already reflects this new circumstance. It 
includes chapters devoted entirely to propagation (the third chapter of 
Book I and Books IV to VII); others treat vision and problems relevant to 
it. Among other things, this reform leads to the emergence of new prob-
lems, such as the famous problem of Alhazen in catoptrics, the investiga-
tion of the spherical lens and of the spherical diopter, not only as burning 
instruments, but also as optical instruments, in dioptrics; and to experi-

 
3 R. Rashed, ‘Optique géométrique et doctrine optique chez Ibn al-Haytham’, 

A.H.E.S., 6, 4, 1970, pp. 271–98 (repr. in Optique et mathématiques, II), and id. 
‘Lumière et vision: L’application des mathématiques dans l’optique d’Ibn al-Haytham’, 
in R. Taton (ed.), Roemer et la vitesse de la lumière, Paris, Vrin, 1978, pp. 19–44 (repr. 
in Optique et mathématiques, IV). 

4 R. Rashed, ‘Optique géométrique et doctrine optique chez Ibn al-Haytham’, 
pp. 281 ff. 
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mental control, both as a research practice and as a standard of proof in 
optics and in physics more generally.  

Let us now follow the implementation of this reform in the Optics and 
in other treatises. The Optics opens with a rejection and a reformulation. At 
the outset Ibn al-Haytham rejects out of hand all variants of the doctrine of 
the visual ray (extramission) and takes sides with the philosophers who 
defend an intromissionist doctrine of the forms of visible things. Never-
theless, there is a fundamental difference between him and such philoso-
phers as his contemporary Avicenna: Ibn al-Haytham does not consider the 
forms that the eye perceives as totalities that emanate from the visible thing 
under the effect of light. Rather, he treats them as reducible to their ele-
ments: from every point of the visible object, a ray emanates towards the 
eye. The latter has become a simple optical instrument without visual spirit 
(πνεῦμα ὀπτικóν). The crux of the problem thus became to explain how the 
eye perceives the visible thing by means of these rays emitted from every 
point of the visible thing. 

After a short introductory chapter, Ibn al-Haytham devotes the second 
and third chapters of his Optics to the foundation of this new edifice. In the 
second, he determines the conditions of possibility for vision, whereas in 
the third he turns to the conditions of the possibility of light and its propa-
gation. These conditions, which Ibn al-Haytham presents in each case as 
empirical notions, that is, as the result of a regulated observation or a con-
trolled experiment, are so many constraints on the elaboration of the theory 
of vision, and therefore of his new style of optics. Ibn al-Haytham enumer-
ates six conditions of vision: the visible thing must be self-luminous or 
illuminated by something else; it must face the eye, that is that one must be 
able to draw a straight line from each of its points to the eye; the medium 
that separates it from the eye must be transparent, without being blocked 
by any opaque obstacle; the visible thing/object must be more opaque than 
the medium; it must have a certain volume in relation to visual acuity.5 Ibn 
al-Haytham writes that these are the concepts ‘without which vision cannot 
take place’. One cannot avoid noticing that these conditions do not hark 
back, as they do in ancient optics, to those of light and its propagation. The 
most important of the latter, established by Ibn al-Haytham, are the fol-
lowing: light exists independently of vision and outside of it; it moves with 
a very great velocity and not instantaneously; its intensity diminishes 
insofar as it moves away from the source; the light from a luminous source 
(substantial) and that from an illuminated object (secondary or accidental) 
are propagated to the surrounding bodies, penetrate transparent media, 

 
5 Ibn al-Haytham, Kitāb al-Manāẓir: Books I–III (On Direct Vision), ed. 

A. I. Sabra, Kuwait, 1983, p. 189. 
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illuminate opaque bodies, which in turn emit light; light is propagated from 
every point of the luminous or illuminated object, along straight lines, in 
transparent media, and in all directions; these virtual straight lines along 
which light (substantial or accidental) is propagated form with the latter the 
‘rays’; these lines can be parallel or cross each other, the substantial and 
the accidental light do not mix in either of the two cases; reflected or 
refracted lights propagate along straight lines in specific directions. Note 
that none of these concepts refers to vision. Ibn al-Haytham complements 
them by other concepts pertaining to color. According to him, colors exist 
independently of light in opaque bodies. Consequently, only light emitted 
by these bodies (secondary or accidental light) accompanies the colors that 
are then propagated according to the same principles and the same laws as 
light. As we have explained elsewhere, it is this doctrine of colors that 
compelled Ibn al-Haytham to make concessions to the philosophical tradi-
tion, forcing him retain the language of ‘forms’ already emptied of its 
content, when he was treating only light. 

Henceforth, a theory of vision will have to meet not only the six con-
ditions of vision, but also the conditions of light and of its propagation. Ibn 
al-Haytham devotes the rest of Book I of his Optics and the next two books 
to the elaboration of this theory, in which he takes up the physiology of the 
eye and a psychology of perception, both integral to his new intro-
missionist theory.  

Three books of the Optics (IV to VI) treat catoptrics. Although this 
domain is as ancient as the discipline itself and Ptolemy had widely studied 
it in his Optics, it had never been the object of research as extensive as Ibn 
al-Haytham’s. Beyond these three voluminous books of his Optics, Ibn al-
Haytham devotes to catoptrics other works that complete it, when dealing 
with cognate problems such as that of burning mirrors. Among other char-
acteristics, Ibn al-Haytham’s catoptric research distinguishes itself, by the 
introduction of physical concepts, both to explain known concepts and to 
understand new phenomena. It is during this research that Ibn al-Haytham 
asks himself new questions, notably the problem that is now associated 
with his name.6 

Let us now consider the several axes of Ibn al-Haytham’s catoptric 
research. He presents again the law of reflection, explaining it by means of 
the previously mentioned mechanical model. He then studies this law for 
various mirrors: plane, spherical, cylindrical, and conical. In each case, he 

 
6 The famous ‘problem of Ibn al-Haytham’ was magisterially analyzed by 

M. Nazif, Al-Ḥasan b. al-Haytham, Buḥūhuhu wa-kushūfuhu al-baṣariyya (Ibn al-
Haytham, His Optical Researches and Discoveries), 2 vols, Cairo, 1942–1943, pp. 487–
521. 
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focuses above all on determining the plane tangent to the surface of the 
mirror at the point of incidence in order to determine the plane that is 
perpendicular to the latter and includes the incident ray, the reflected ray, 
and the normal to the point of incidence. Here, as in his other 
investigations, in order to verify his results experimentally, he invents and 
constructs an apparatus that is inspired by the one Ptolemy had built to 
study reflection, but more complex7 and suitable for all cases. Ibn al-
Haytham also studies the image of an object and its position for the various 
mirrors. He takes up an entire class of problems: the determination of the 
incidence of a given reflection for the various mirrors, and inversely. He 
also raises for these various mirrors the problem that is now associated 
with his name (‘Alhazen’s problem’): given any two points in front of a 
mirror, how to determine on its surface a point such that the straight line 
that joins this point to one of the two given points be the ‘support’ of the 
incident ray, whereas the straight line joining this point to the other given 
point is the ‘support’ of the reflected ray. Ibn al-Haytham solves this 
problem, which very soon becomes more complex.8 

Ibn al-Haytham carries out this catoptric research in other treatises, 
some of which post-date the Optics, such as the Spherical Burning 
Mirrors.9 It is in this highly interesting work that Ibn al-Haytham discovers 
longitudinal spherical aberration. 

The seventh and last book of Ibn al-Haytham’s Optics is devoted to 
dioptrics. As he had done for catoptrics, Ibn al-Haytham inserts into this 
book the elements of a physical (mechanical) explanation of refraction. 
Moreover this book is completed by such works as his treatise on the 
burning sphere, and even his Discourse on Light, in which, following up on 
Ibn Sahl, he returns to the concept of the medium. 

In this seventh book of the Optics, Ibn al-Haytham begins by relying 
on two qualitative laws of refraction, and on several quantitative rules, all 
of which are experimentally controlled by means of an apparatus that he 
invents and builds, as in the preceding case. The two qualitative laws, 
which his predecessors Ptolemy and Ibn Sahl knew, can be stated as fol-
lows: (1) the incident ray, the normal to the point of refraction, and the 

 
7 Ibid., pp. 685–90. 
8 This is ‘Ibn al-Haytham’s problem’; cf. note 6. 
9 ‘Al-marāyā al-muḥriqa bi-al-dāʾira’, fourth treatise in Ibn al-Haytham, Majmūʿ 

al-rasāʾil, Hyderabad, 1938–1939. See also E. Wiedemann, ‘Ibn al-Haythams Schrift 
über die sphärischen Hohlspiegel’, Bibliotheca Mathematica, 3rd series, 10, 1909–10, 
pp. 393–407, and H.J.J. Winter and W. ‘Arafat, ‘A Discourse on the Concave Spherical 
Mirror by Ibn al-Haytham’, Journal of the Royal Asiatic Society of Bengal, 3rd series, 
Science, 16, 1950, pp. 1–6. 
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refracted ray are all in the same plane; the refracted ray gets closer (or far-
ther) from the normal if light passes from the less (or more) refracting 
medium to the more (or less) refracting one; (2) the principle of inverse 
return. 

Instead of following the path that Ibn Sahl blazed by discovering 
Snel’s law, however, Ibn al-Haytham returns to the ratios of angles and 
establishes his quantitative rules: 

– the angles of deviation vary in direct proportion to the angles of inci-
dence: if in the medium n1, one takes i′ > i, one will have d′ > d in 
medium n2 (where i is the angle of incidence, r the angle of refrac-
tion, d the angle of deviation; d = ∣i – r ∣);  

– if the angle of incidence increases by a certain quantity, the angle of 
deviation increases by a smaller quantity: if i′ > i, d′ > d, one then 
has d′ – d < i′– i; 

– the angle of refraction increases in proportion to the angle of inci-
dence: if i′ > i, one has r′ > r;  

– if light penetrates from a less refracting medium into a more refract-

ing one (n1 < n2), one has d < 1
2

 i; inverting the path, one has 

d < i + d
2

, and one will be 2i > r; 

– Ibn al-Haytham takes up again the rules that Ibn Sahl had stated in 
his work on The Celestial Sphere; he affirms that, if light penetrates 
at the same angle of incidence from a medium n1 into two different 
media n2 and n3, then the angle of deviation is different for each of 
these media, on account of the difference of opacity. If, for example, 
n3 is more opaque than n2, then the angle of deviation will be greater 
in n3 than in n2. Inversely, if n1 is more opaque than n2, and n2 than 
n3, the angle of deviation will be greater in n2 than in n3. 

 
Contrary to what Ibn al-Haytham believed, these quantitative rules are 

not all generally valid.10 But all are verifiable within the limits of the 
experimental conditions that Ibn al-Haytham effectively considered in his 
Optics: the media are air, water, and glass, with angles of incidence no 
greater than 80°. 

 
10 M. Nazif, Al-Ḥasan b. al-Haytham, Buḥūhuhu wa-kushūfuhu al-baṣariyya, 

pp. 720–3, and R. Rashed, ‘Le discours de la lumière d’Ibn al-Haytham (Alhazen)’, 
Revue d’histoire des sciences, 21, 1968, pp. 197–224, at pp. 201–4 (repr. in Optique et 
mathématiques, V). 
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Ibn al-Haytham devotes a substantial part of the seventh book to 
investigating the image of an object by refraction, notably when the surface 
separating the two media is either plane or spherical. It is in the course of 
this investigation that he pauses at the spherical diopter and the spherical 
lens, thus effectively continuing Ibn Sahl’s research, but with one profound 
modification; his study of the diopter and of the lens appears in the chapter 
devoted to the problem of the image, and is not separated from the problem 
of vision. For the diopter, Ibn al-Haytham considers two examples, 
according to whether the source, which is a point located at a finite dis-
tance, is located on the concave or the convex side of the diopter’s spheri-
cal surface.11 

Next Ibn al-Haytham studies the spherical lense, devoting particular 
interest to the image it produces of an object. He restricts himself, how-
ever, to examining one single case, when the eye and the object are on the 
same diameter. In other words, he studies the image, through a spherical 
lens, of an object placed in a specific position on the diameter that passes 
through the eye. His procedure brings to mind that of Ibn Sahl when he 
was studying the hyperbolic bi-convex lens. Ibn al-Haytham considers sep-
arately two diopters, and applies the results he has previously obtained. 
During this investigation of the spherical lens, Ibn al-Haytham draws on 
the spherical aberration of a point at a finite distance for the case of the 
diopter in order to study the image of a segment that is a portion of the 
segment defined by the spherical aberration. 

In his treatise on The Burning Sphere, one of the high points of 
research in classical optics, Ibn al-Haytham details and fine-tunes several 
results about the spherical lens that he had already obtained in the Optics. 
Moreover, he also returns here to the question of ignition by means of this 
lens. It is in this treatise that we encounter the first deliberate study of 
spherical aberration for parallel rays that are incident on a glass sphere and 
undergo two refractions. During this investigation, Ibn al-Haytham uses the 
numerical data from Ptolemy’s Optics for the two angles of incidence of 
40° and 50°. To explain this phenomenon of the focalization of light prop-
agated along trajectories parallel to the diameter of the sphere, he returns to 
the angular values instead of applying the law now known as Snel’s Law.12 

In this treatise on The Burning Sphere, just as in the seventh book of 
his Optics or in others of his dioptric writings, Ibn al-Haytham presents his 
research in a rather paradoxical fashion. Whereas he takes great care to 
invent, set up, and describe experimental arrangements that are very 
sophisticated for their day, and that allow him to determine numerical val-

 
11 R. Rashed, Geometry and Dioptrics in Classical Islam, Chap. III, esp. pp. 162 ff.  
12 Ibid., pp. 170 ff. 



 2. FROM THE GEOMETRY OF THE GAZE 693 

ues, in most cases he avoids giving these values. When he does so, as in the 
treatise on The Burning Sphere, it is with parsimony and circumspection. 
To account for this attitude (already noted above), at least two possible 
explanations stand out. The first pertains to the style of scientific practice 
itself: quantitative description seems not yet to be a normative requirement. 
The second is probably linked to the latter: the experimental set-ups could 
only yield approximate values. It is probably for this reason that Ibn al-
Haytham used the values that he borrowed from Ptolemy’s Optics.  

Experimentation, however, was already a category of proof in optics. 
The meaning of this discipline changed, becoming a science of luminous 
phenomena. It was no longer a psychological discipline, but a physical one. 
Neither reflection nor refraction could be considered exclusively as causes 
of error. In the optics of the ancients, which is an optics of the visual ray, 
the image is effectively a mirage: in the absence of the onlooker who is 
gazing, it has no objective existence, no reason for being. In Ibn al-
Haytham, by contrast, the image acquires an objective status. This physical 
and material anchorage of optics, with the epistemological conditions for 
bringing it about, will be consolidated by Ibn al-Haytham’s Arabic and 
Latin successors, and especially his 17th century readers – above all, 
Kepler, Descartes, and Huygens. 
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CONCLUSION 
 

THE PHILOSOPHY OF MATHEMATICS 
 
 
 
Historians of Islamic philosophy take a particular interest in what some 

people occasionally see fit to call falsafa. In their view, it is one of these 
doctrines of Being and the Soul that authors from Islamic culture 
developed, a doctrine indifferent to other kinds of knowledge and 
independent of all determination except for its bond with religion. On this 
account, these philosophers would thus be in the Aristotelian tradition of 
Neoplatonism, heirs of late antiquity with an Islamic hue. This historical 
bias insures, in appearance at least, a smooth transition from Aristotle, 
Plotinus, and Proclus, among others, to the philosophers of Islam from the 
9th century onward. But the price of this move is high: it often (though not 
always) results in a pale and impoverished picture of philosophical activity 
and transforms the historian into an archaeologist, albeit one deprived of 
the latter’s tools. Indeed, it is not unusual for such an historian to set his 
main task as the excavation of the site of Islamic philosophy, in search of 
the vestiges of Greek works lost in their original language but preserved in 
Arabic translation; or failing that, to be content with the shards of the 
ancient philosophers’ writings, which historians of Greek philosophy have 
often studied with skill and competence. 

To be sure, some historians have recently turned to doctrines elaborated 
in other fields, at the edge of the Greek heritage’s wake: the philosophy of 
law, which jurists developed brilliantly; the profound and refined 
philosophy of kalām, i.e., that of the theologian-philosophers; the Sufism of 
such great masters as al-Ḥallāj and Ibn ʿArabī, etc. Such studies have 
enriched and improved the picture, and they reflect more faithfully the 
philosophical activity of the time. They also enable us better to understand 
the place of the Greek heritage in Islamic philosophy. 

But the sciences and mathematics have not yet drawn the same 
appreciation as law, kalām, linguistics, or Sufism. Even today, the essential 
links between sciences and philosophy, and notably between mathematics 
and philosophy, are left in the lurch. To be sure, the links between 
mathematics and philosophy are sometimes tackled in the works of the 
philosophers of Islam such as al-Kindī, al-Fārābī, Ibn Sīnā, etc., but in a 
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manner that in effect is completely external. By this, I mean that, one 
reports their views on the links between the two domains; one attempts to 
connect these views to Platonic or Aristotelian doctrines; and one checks 
for the presumed influence of the neo-Pythagoreans. In other words, one 
never tries to understand the repercussions of their mathematical know-
ledge on their philosophies, nor even the impact, on their philosophical 
teachings, of their activities as scientists, which is what they were in the 
vast majority of cases. This lacuna is not the fault of historians of philoso-
phy alone; historians of sciences are also responsible for it. Admittedly, to 
examine the links between the sciences and philosophy, one needs a 
particularly wide range of competencies – a linguistic knowledge much 
more refined than that required to work in geometry, which is syntactically 
elementary and lexically poor; and a knowledge of the history of philoso-
phy itself. If to the shortfall on these prerequisites, one adds a conception of 
the relations between science and philosophy inherited from the ambient 
positivism, it is easier to understand the deep indifference of the historians 
of science in this domain. One should not have to repeat that the links 
between the sciences and philosophy form an integral part of the history of 
science. 

Truth be told, the situation is rather paradoxical. For seven centuries, 
scientific and mathematical research of the most advanced kind was 
elaborated in the Arabic language and in the urban centers of Islam. Is it 
likely that philosophers, who themselves were sometimes mathematicians, 
physicians, etc., should have carried out their philosophical activity as 
recluses? Is it probable that they were indifferent to the transformations 
taking place under their eyes, and remained blind to the steady stream of 
scientific results? The list is impressive: an astronomy critical of Ptolemaic 
models, the reform and renewal of optics, the creation of algebra, the 
invention of algebraic geometry, the transformation of Diophantine analy-
sis, the discussion of the theory of parallels, the development of projective 
methods, etc. In the face of such an unprecedented flowering of disciplines 
and successes, how can one imagine that the philosophers might have been 
so insensitive as to remain confined to the relatively narrow framework of 
the Aristotelian tradition of Neoplatonism? The apparent poverty of 
classical Islam’s philosophy perhaps owes more to historians than to 
history. 

And yet, to examine the links between philosophy and science or 
philosophy and mathematics (our limited focus here) as they transpire only 
in the philosophers’ works, is to go down the road only one third of the 
way. It is also necessary to question the mathematician-philosophers and 
the mathematicians. But the decision to consider only mathematics 
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demands first a justification, which is all the more necessary because this 
move is in no way the specific prerogative of Islamic philosophy. 

No scientific discipline has contributed more to the genesis of theo-
retical philosophy than mathematics. None has cultivated more numerous 
or more ancient links with philosophy. Since antiquity, mathematics has 
continuously offered philosophers food for thought about the central 
themes of the discipline; it has supplied them with methods of exposition, 
argumentative procedures, sometimes even the tools appropriate to their 
analyses. Finally, mathematics presents itself to the philosopher as an 
object of study: he indeed applies himself to clarifying mathematical 
knowledge itself by studying its object, its methods, and by probing into 
the characteristics that make it apodictic. From the entire span of the 
history of philosophy, philosophers have constantly raised questions about 
the conditions of mathematical knowledge, its origins, its power of exten-
sion, the nature of the certainty it reaches, and its place among other kinds 
of knowledge. The philosophers of classical Islam were no exception: al-
Kindī, al-Fārābī, Ibn Bājja, Ibn Sīnā, and Maimonides, also did so, among 
many others. 

Although they are less obvious, other ties have linked mathematics and 
theoretical philosophy. Often they have collaborated in order to hammer 
out a method, even a logic, such as the encounter between Aristotle and 
Eudoxus about the ‘axiomatic method’, or al-Ṭūsī’s appeal to combina-
torial analysis to solve the philosophical problem of emanation from the 
One. Of all the forms that this link may take, however, one is particularly 
notable; this time, it was not philosophers, but mathematicians who created 
it. We refer to the doctrines that mathematicians have elaborated to justify 
their own practices. The conditions most propitious to these theoretical 
constructions typically come together in the following circumstances: when 
a mathematician in the forefront of contemporary research confronts an 
insurmountable obstacle owing to the unsuitability of available mathema-
tical techniques for handling the newly emerging mathematical objects. 
Consider, for example, the several variants of the theory of parallels, 
notably from the time of Thābit ibn Qurra (d. 901), or the kind of analysis 
situs that Ibn al-Haytham conceived, or the doctrine of indivisibles in the 
17th century. 

 
In the main, the relations between theoretical philosophy and 

mathematics are established in four types of works, whose authors are: 
philosophers; philosopher-mathematicians such as al-Kindī, Muḥammad 
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ibn al-Haytham (not to be mistaken for al-Ḥasan ibn al-Haytham1); 
mathematician-philosophers such as Naṣīr al-Dīn al-Ṭūsī, etc.; and 
mathematicians such as Thābit ibn Qurra, his grandson Ibrāhīm ibn Sinān, 
al-Qūhī, Ibn al-Haytham, etc. By restricting oneself to only one category or 
the other while examining the relations between philosophy and 
mathematics, one inevitably loses a dimension that is essential to this 
domain. 

On several occasions, we have simply taken a few core samples in 
order to reveal the richness of the field – much more a sounding than a 
systematic examination of the domain. 

Indeed, such a project deserves a big volume that still remains to be 
written. That said, the road that seemed best adapted to the task goes 
beyond the straightforward exposition of the views that philosophers 
presented about mathematics and their importance. Rather, it seeks out the 
themes that they broached, the intimate links that united mathematics to 
philosophy, and their role in the scaffolding of doctrines and systems – that 
is, the organisational role of mathematics. For philosopher-mathematicians, 
we will show among other things how they proceeded to solve philo-
sophical problems mathematically, a fruitful approach that generated new 
doctrines, and even new disciplines. For mathematicians, we will highlight 
their attempts to solve mathematical problems philosophically, and we 
shall see that this approach is both necessary and profound. 

To shed more light on these different situations, I deal with the 
following topics in succession: 

1. Mathematics as conditions and sources of models for philosophical 
activity. Of the many philosophers who could illustrate this theme, we have 
selected but two: a philosopher-mathematician (al-Kindī), and a philoso-
pher who, without being a mathematician, nevertheless was knowledgeable 
in mathematics (Maimonides). 

2. Mathematics within philosophical synthesis. It is within the first 
known synthesis, that of Ibn Sīnā, that mathematics entered directly into 
philosophical work. Not the least result of this is the ‘formal’ inflection of 
ontology, which made possible the mathematical treatment of a 

 
1 See R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: 

Ibn al-Haytham, London, al-Furqān, 1993, pp. 8–19; 2000, vol. III, pp. 937–41; English 
translation: Ibn al-Haytham and Analytical Mathematics. A History of Arabic Sciences 
and Mathematics, vol. 2, Culture and Civilization in the Middle East, London, Centre 
for Arab Unity Studies, Routledge, 2012, pp. 11–26, 364–81; and Ibn al-Haytham’s 
Theory of Conics, Geometrical Constructions and Practical Geometry. A History of 
Arabic Sciences and Mathematics, vol. 3, Culture and Civilization in the Middle East, 
London, Centre for Arab Unity Studies, Routledge, 2013. 
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philosophical problem. In this rubric, naturally we consider here Ibn Sīnā, a 
philosopher well read in mathematics, whose contribution was continued 
by the mathematician Naṣīr al-Dīn al-Ṭūsī. 

3. The third theme was mainly cultivated by mathematicians dealing 
with the problem of mathematical discovery. This concerns the ars inve-
niendi and the ars analytica with Thābit ibn Qurra, Ibrāhīm ibn Sinān, al-
Sijzī, and Ibn al-Haytham.  

Note that the point at issue in these chapters is not individual works, 
but a genuine tradition characterized by names and titles and extending 
over several centuries. 

 
 

1. MATHEMATICS AS CONDITIONS AND MODELS OF PHILOSOPHICAL 

ACTIVITY: AL KINDĪ AND MAIMONIDES 
 

The links between philosophy and mathematics are essential to the 
reconstitution of al-Kindī’s system (9th century). It is precisely this depend-
ence that the philosopher notices when he writes a book entitled Philosophy 
can only be Acquired through Mathematical Discipline2 and when, in his 
epistle on The Quantity of Aristotle’s Books,3 he presents mathematics as 
propaedeutic to the teaching of philosophy. He even goes so far as to 
confront the philosophy student, warning him that he faces the following 
alternative: either to begin with the study of mathematics before tackling 
Aristotle’s books in the order that al-Kindī specifies – only then can he 
hope to become a true philosopher; or to do without mathematics, in which 
case he becomes a mere reciter of philosophy, assuming he can memorize 
by heart. After listing the different categories of Aristotle’s books, al-Kindī 
writes: 

This is the number of his books that we have already mentioned and that a 
perfect philosopher must know after mathematics, that is, the [areas of] 
mathematics I have defined by name. For if someone lacks knowledge of 
mathematics, i.e. arithmetic, geometry, astronomy and music, in order to use 
these books [of Aristotle] for the rest of his life, he will not be able to perfect 
his knowledge of them, and all his efforts will only allow him to master the 
<ability> to repeat them, if he can remember by heart. As for deep know-
ledge of them and the way to acquire it, these are completely non-existent 
without knowledge of mathematics.4  

 
2 Al-Nadīm, Kitāb al-Fihrist, ed. R. Tajaddud, Teheran, 1971, p. 316. 
3 Al-Kindī, Rasāʾil al-Kindī al-falsafiyya, ed. M. ʿA. Abū Rīda, 2 vols, Cairo, 

1369/1950, vol. I, pp. 363–84. 
4 Ibid.,  pp. 369–70. 
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For al-Kindī, then, mathematics is the very foundation of philosophical 
instruction. Although it is not our purpose here, by exploring more deeply 
the role of mathematics in al-Kindī’s philosophy, one could understand 
more rigorously the specificity of his work. Indeed, historians often illumi-
nate it from two rather different angles. According to the first interpreta-
tion, al-Kindī appears as a Muslim representative of the Aristotelian tradi-
tion of Neoplatonism, in effect a late-antique philosopher twice over. The 
second interpretation sees him as a follower of philosophical theology 
(kalām), a theologian who effectively switched languages in order to speak 
that of Greek philosophy. But if we restore to mathematics the role that it 
actually played in the elaboration of his philosophy, the fundamental op-
tions that al-Kindī faced will appear before our very eyes. According to the 
first, which originates in his Muslim convictions, and is expressed and 
articulated in the tradition of philosophical theology, notably the doctrine 
of al-Tawḥīd (God’s unity), revelation gives us the truth, which is one and 
rational. The second refers us to Euclid’s Elements as a method and model: 
whereas the rational can be reached very concisely and almost instantane-
ously by revelation, it can also be reached by a collective and cumulative 
effort of philosophers, starting from the truths of reason, which are 
independent of revelation and must correspond to the criteria of geome-
trical proof. At the time of al-Kindī, the Aristotelian tradition of Neoplato-
nism furnished these truths of reason, which served as primitive notions 
and postulates. In philosophical theology, they were chosen to replace the 
truths that revelation offers, insofar as they met the requirements of 
geometric thought and made possible an exposition with an axiomatic 
appearance. It was then that the ‘mathematical examination (al-faḥṣ al-
riyāḍī)’ became the instrument of metaphysics. 

That is in fact the case for the epistles in theoretical philosophy, like 
First Philosophy, the Epistle for Explaining the Finitude of the Body of the 
World, etc.5 To take the latter text as an example, al-Kindī methodically 
proceeds to prove the inconsistency of the concept of infinite body. He 
begins by defining the primitive terms magnitude and homogeneous magni-
tudes. He then introduces what he calls ‘the certain proposition (qaḍiya 
ḥaqq)’6 or, as he explains elsewhere, ‘the first true and immediately intel-
ligible premises (al-muqaddimāt al-uwal al-ḥaqiyya al-maʿqūla bi-lā 
tawassuṭ)’,7 or else ‘the first, evident, true and immediately intelligible 

 
5 R. Rashed and J. Jolivet, Œuvres philosophiques et scientifiques d’al-Kindī. Vol. 

II: Métaphysique et cosmologie, Leiden, E. J. Brill, 1998. 
6 Ibid., p. 161, l. 16. 
7 Ibid., Philosophie Première, p. 29, l. 8. 
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premises’,8 i.e., tautological propositions. These are expressed in terms of 
primitive notions, of order relations on them, of union and separation oper-
ations on them, of finite and infinite predications. The following statements 
illustrate such propositions: homogeneous magnitudes that are no bigger 
than each other are equal; or, if, to one of the equal homogeneous magnitu-
des, one adds a magnitude that is homogeneous with it, then they become 
unequal.9 Finally, al-Kindī proceeds by reductio ad absurdum, by adopting 
a hypothesis: the part of an infinite magnitude is necessarily finite. 

This is the path that al-Kindī follows in his other writings. Again 
following his First Philosophy, he uses more geometrico in his epistle On 
the Quiddity of What Cannot be Infinite and of What is Called Infinite, in 
which he seeks to demonstrate the impossibility that the world and time are 
infinite. Here too, al-Kindī begins by stating four premises: 1° ‘Of anything 
from which some thing is taken away, what remains is smaller than what 
was before the subtraction was carried out’; 2° ‘From anything, if some-
thing is taken away, if what is taken away is put back to the former, it 
returns to the original quantity’; 3° ‘For all finite things, if they are put to-
gether, a finite thing is obtained’; 4° ‘If there are two things such that one is 
smaller than the other, then the smaller measures the greater or measures a 
part of it, and if it entirely measures it, then it measures a part of it’.10 From 
these premises directly inspired by Euclid’s Elements, al-Kindī intends to 
establish his philosophical proposition. Assuming an infinite body from 
which some finite thing is taken away, he asks whether the remainder is 
finite or infinite. He then shows that both hypotheses lead to contradictions, 
and he concludes that an infinite body cannot exist. He goes on to show 
that the same thing goes for the accidents of the body, notably time; but 
time, motion, and the body mutually imply one another. He then shows that 
there is no infinite time a parte ante and that neither the body, nor motion, 
nor time is eternal. Therefore there is no eternal thing; the infinite is only 
potential, as is the case for number. However brief, these examples show 
how al-Kindī articulated at once mathematical principles and means, and 
philosophy, according to the Aristotelian tradition of Neoplatonism. Note 
however that al-Kindī the philosopher was also a mathematician as his 
works in optics11 and mathematics12 attest. In philosophy, he was also 

 
8 Ibid., On the Unicity of God, p. 139, l. 1. 
9 Ibid., Epistle for Explaining the Finitude of the Body of the World, p. 160. 
10 Ibid., On the Quiddity of What Cannot be Infinite, p. 150. 
11 R. Rashed, Œuvres philosophiques et scientifiques d’al-Kindī. Vol. I: L’optique 

et la catoptrique d’al-Kindī, Leiden, E.J. Brill, 1996. 
12 R. Rashed, ‘Al-Kindī’s commentary on Archimedes’ The Measurement of the 

Circle’, Arabic Sciences and Philosophy, 3.1, 1993, pp. 7–53. 
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familiar not only with the accounts of Aristotle and of the Aristotelian and 
Neoplatonist tradition, but also with the commentaries of such Aristotelians 
as Alexander of Aphrodisias. 

 
As to Maimonides (1135–1204), without being mathematically produc-

tive like al-Kindī, he was nevertheless informed about the subject. The 
philosopher obviously has enough knowledge of mathematics to try, pen in 
hand, to read, perhaps even to teach and to comment upon, mathematical 
works like Apollonius’s Conics, i.e. the highest level works at the time. But 
his commentary never pertains to the fundamental ideas, to the properties 
closely studied in this work; he is interested only in the elementary techni-
ques of proof, which for the most part were taught in the first six books of 
Euclid’s Elements. To put it briefly and clearly, his commentary was simp-
ly not on the same level as the works upon which he commented. Why then 
did Maimonides spend so much time and energy for such a meagre result? 
Using Maimonides’ own words, we can certainly invoke the role of mathe-
matics in training the mind (tarwīḍ al-dhihn) to reach human perfection.13 
But there is more: at issue are the other relations between mathematics and 
philosophy. We restrict ourselves to the most important ones. 

 
Maimonides’ starting point, it must emphasized, is dogma, not philo-

sophy: ‘to elucidate, the difficulties of dogma (mushkilāt al-sharīʿa)’, he 
says, ‘and to make plain its hidden truths, which are far above the 
comprehension of the multitude’.14 This has been one of the major tasks of 
philosophy since al-Kindī (see his treatise on the number of Aristotle’s 
books), which consists in reaching the truth passed on by the Scriptures 
through reason and philosophical speculation. And to accomplish this task, 
or even simply to begin it, a perfect accord had to be assumed between the 
two kinds of truth, that of the Scriptures and that of reason and philosophy. 
This ‘concordance’ rests on a principle that Ibn Rushd (1126–1198) 
formulated as follows: ‘a truth does not contradict a truth but accords with 
it and bears witness to it’.15 In this respect, the means that Maimonides 
chose are the same as those that his predecessors used: ‘the method of 
demonstration about which there can be no doubt (al-ṭarīq alladhī lā rayba 

 
13 Maimonides, Dalālat al-Ḥāʾirīn (The Guide of the Perplexed), ed. H. Atay, 

Ankara University, Ilâhîyat Fakültesî Yayinlari 93, Ankara, 1972; repr. Cairo, n.d., 
p. 80; The Guide of the Perplexed, English transl. S. Pines, Chicago, University of 
Chicago Press, 1963, p. 75. 

14 Maimonides, Dalālat al-Ḥāʾirīn, ed. Atay, p. 282.  
15 Manāhij al-adilla, p. 32. 
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fīhi’,16 i.e. to establish by ‘true demonstration (al-burhān al-ḥaqīqī)’ the 
truths of dogma: the existence of God, His unity and His incorporeality. 
For these philosophers, however, such a demonstration could only follow a 
mathematical pattern. For this to be so, however, it was necessary to use a 
language other than that of Revelation, a language whose concepts, defined 
by reason alone, are endowed with a certain ontological neutrality. 

 
‘True demonstration’, i.e. according to the model of mathematics, is the 

necessary way for the truths of Revelation also to attain the status of truths 
of reason, which is not in any way specific to a particular religion, whether 
revealed or not. Such is the first relation between mathematics and 
philosophy. As we shall see, however, these relations occur at different 
levels. First of all, the general approach of Maimonides consists in borrow-
ing concepts from the Aristotelian philosophy of his predecessors, and 
proof and exposition techniques from mathematics; this is effectively the 
approach that Maimonides has used, for example, in the greater part of 
Book II of the Guide. His method thus follows that of the geometers, to 
whom he owes some of the techniques of proof – mainly the reductio ad 
absurdum – he uses to ground each element of his exposition. In the Guide, 
there are twenty-five such elements – twenty-five lemmas, most of which 
are presented as statements without proof, since Maimonides believed that 
his predecessors had rigorously demonstrated them. To these lemmas, he 
adds one postulate, and from these twenty-six propositions he deduces his 
‘principal theorem’: GOD EXISTS, HE IS UNIQUE, AND HE IS NEITHER A 
BODY NOR IN A BODY. The importance of this passage derives less from 
the strength of the proof than from its deliberate use of a geometrical mode 
of exposition in metaphysics. Ever since Aristotle, the first lemmas them-
selves have been susceptible to logico-mathematical treatment, an approach 
revived by al-Kindī, and taken up by many a subsequent metaphysician, 
such as Ibn Zakariyā al-Rāzī, Abū al-Barakāt al-Baghdādī (d. c. 1164), 
Fakhr al-Dīn al-Rāzī (1150–1210), Naṣīr al-Dīn al-Ṭūsī (1201–1274), 
among others. Finally, these lemmas reappear together in commentaries on 
the Guide by al-Tabrīzī and later by Hasdai Crescas (1340–c. 1412). At 
issue is the impossibility of an infinite magnitude, and the impossibility of 
an infinite number of coexisting magnitudes. The third lemma states the 
impossibility of an infinite chain of causes and effects, whether material or 
not, thus banning in advance an infinite regress of causes. Three proposi-
tions follow the three lemmas. The first deals with change; four categories 
are subject to change: substance, quantity, quality, and place. The second 
concerns motion: every motion is a change and a transition from 

 
16 Maimonides, Dalālat al-Ḥāʾirīn, ed. Atay, p. 187; Guide, Pines transl. p. 180. 
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potentiality to actuality. The third proposition enumerates the species of 
motion. The seventh lemma states: ‘Everything changeable is divisible. 
Hence everything movable is divisible, and is necessarily a body; but 
everything that is indivisible is not movable; hence it will not be a body at 
all’.17 The eighth lemma asserts that: ‘Everything that is moved owing to 
accident must of necessity come to rest’.18 The ninth, that ‘every body that 
moves another body moves the latter only through being itself in motion 
when moving the other body’.19 This is how the statement of the prelimi-
nary propositions proceeds, the fourteenth of which posits that locomotion 
precedes all other motions, and the twenty-fifth that ‘the principles of an 
individual compound substance are matter and form’.   

These twenty-five lemmas, a few of which we have just cited, all come 
from Aristotelian philosophy. They are nevertheless not homogeneous: 
their origins, as well as their logical complexity, distinguish them. 
Maimonides certainly does not ignore this heterogeneity, since he generally 
gives us his sources in bulk: ‘the Physics and the commentaries on it’, and 
‘the Metaphysics and the commentary on it’. The books of the Physics and 
Metaphysics are easy to identify: the third and eighth book of Physics and 
the tenth and eleventh of Metaphysics. But it is a completely different 
matter, which we will not take up here, when it comes to situating precisely 
the commentaries on the Physics and the commentary on the Metaphysics. 
Maimonides describes the logical complexity of the lemmas as follows: 
‘some <lemmas> become manifest with very little reflection and are 
demonstrative premises and first intelligibles or notions approaching the 
latter’ and ‘others require a number of demonstrations and premises leading 
up to them. However, all of them have been given demonstrations as to 
which no doubt is possible’.20 In other words, there are lemmas which are 
so close to axioms that they become self-evident ‘with very little reflection 
(al-taʾammul al-aysar)’; and others that are so far from being axioms that 
proving them requires several intermediate propositions, a task which has 
been carried out by Aristotle, his commentators, and his successors. The 
twenty-five lemmas of the system belong to one of these two types.  

Maimonides is fully aware that, to deserve its name, a proof must be 
both universal and compelling. But this is not the case for the question 
discussed here, if one takes into account the irreducible opposition between 
the two truths, revealed and philosophical, concerning the eternity of the 

 
17 Dalālat al-Ḥāʾirīn, ed. Atay, p. 249; Guide, Pines transl. p. 236. 
18 Dalālat al-Ḥāʾirīn, ed. Atay,  p. 251; Guide, Pines transl. p. 236. 
19 Dalālat al-Ḥāʾirīn, ed. Atay, p. 252; Guide, Pines transl. p. 236. 
20 Dalālat al-Ḥāʾirin, ed. Atay, p. 272; Guide, Pines transl. p. 239, substituting 

‘lemma’ for Pines’s ‘premise’. 



 PHILOSOPHY OF MATHEMATICS 705

world. For the proof to be similar to a mathematical proof, i.e., truly 
apodictic, it should be always valid, whether one believes in the eternity of 
the world or not. It is therefore as a mathematician, so to speak, and against 
his own conviction that Maimonides introduces the eternity of the world 
into the system as a postulate, raising the number of the preliminary propo-
sitions to twenty-six. In this connection, he states without the slightest 
ambiguity: 

I shall add to the <lemmas> mentioned before, one further <lemma> that 
affirms as necessary the eternity of the world. Aristotle deemed it to be 
correct, and the most fitting to be believed; we therefore grant it 
conventionally (ʿalā jihat al-taqrīr) in order to show what we wanted to 
demonstrate.21 

Maimonides thus introduces the eternity of the world as a postulate that 
is necessary for the completion of the system, and hence for the deduction 
of his ‘theorem’. This conventional but non-arbitrary aspect of the 
proposition shines with its full brilliance when one knows that Maimonides 
does not believe in the eternity of the world. Here is what he has to say on 
this issue, for example: 

For according to me the correct way, which is the method of demonstration 
about which there can be no doubt, is to establish the existence and the 
oneness of the deity and the negation of corporeality through the methods of 
the philosophers, which methods are founded upon the doctrine of the 
eternity of the world. This is not because I believe in the eternity of the 
world, or because I concede this point to the philosophers; but because it is 
through this method that the demonstration becomes valid and perfect 
certainty is obtained with regard to these three things: I mean the existence 
of the deity, His oneness, and His not being a body – and all this without 
making a judgment upon the world’s being eternal or created in time.22 

In fact, Maimonides knew that the problem of the eternity of the 
universe cannot have a positive solution; some will later say that dialectical 
reason comes up against an antinomy, since one would have to determine 
the properties of things that do not yet exist. 

Maimonides surely conceived the architectonics of this part of the 
Guide in the manner of a mathematical exposition, following a geometrical 
order. This order appears as a condition for the certainty of metaphysical 

 
21 Dalālat al-Ḥāʾirīn, ed. Atay, p. 272. Pines translates the last sentence of this 

quotation as follows: ‘We shall grant him this premise by way of a hypothesis [here 
Pines reads ‘alā jihat al-taqdīr ‘in conformity with Ibn Tibbon’s Hebrew translation’] 
in order that the clarification of that which we intended to make clear should be 
achieved’ (p. 239).  

22 Dalālat al-Ḥāʾirīn, ed. Atay, p.  187. 
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knowledge, namely that of God, of His existence, of His unity, and of His 
incorporeality. This seminal idea, already present in al-Kindī, will later 
reappear in Spinoza. But, as Crescas had pointed out, the major remaining 
problem is to know if these twenty-five propositions have effectively been 
demonstrated; and, whether the ‘theorem’ can truly be deduced from them. 
These two questions will continue to haunt the successors of Maimonides. 
Thus commentaries by al-Tabrīzī and Crescas both seem to demonstrate 
these propositions. Maimonides himself makes an attempt at this deduction, 
which we can present only in the barest outline, but with an emphasis on 
the spirit in which he undertook it. 

According to the twenty-fifth lemma, to exist, every compound 
individual substance needs a mover, which suitably prepares the matter and 
enables it to receive the form. According to the fourteenth lemma, how-
ever, there necessarily exists another mover, which can be of a different 
species, prior to the latter mover. According to the third lemma, this chain 
of movers/mobiles is necessarily finite: the motion thus ends at the celestial 
sphere. The latter is endowed with locomotion, since this motion precedes 
every other motion for the four categories of change, according to the 
fourteenth lemma. But according to the seventeenth lemma, everything that 
moves necessarily has a mover, therefore the celestial sphere necessarily 
has a mover. And this mover is either outside the mobile or inside it. This is 
a necessary division. If the mover is outside the mobile, it is either outside 
the celestial sphere, or else it is not in a body; in the latter case, the mover 
is said to be ‘separate’ from the celestial sphere. If the mover is inside the 
latter, it must be either a force distributed throughout, or an indivisible 
force, like the soul in a human. One thus confronts four possibilities, three 
of which Maimonides will reject as impossible by means of different 
lemmas. The last remaining possibility is that of a non-body outside the 
celestial sphere, separated from it, which moves it with locomotion in 
space. Maimonides concludes his long chain of reasoning with the 
following words: 

It accordingly has been demonstrated (faqad tabarhana) that it is necessary 
that the mover of the first sphere, if the movement of the latter is regarded as 
eternal and perpetual, should not at all be a body or a force in the body; in 
this way the mover of this sphere would have no movement, either according 
to essence or to accident, and would not be subject to division or to change, 
as has been mentioned in the fifth and the seventh of the <lemmas>. Now 
this is the deity, may His name be sublime; I am referring to the first cause 
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moving the sphere, and it is absurd that there should be two or more of 
them… [QED].23  

We have just seen that, for Maimonides, there are three senses in which 
mathematics can be considered a condition of metaphysical knowledge. 
Most immediately, mathematics is an exercise of the mind. Secondly, it 
provides a model of construction – an architectonics – that allows one to 
reach certainty. Finally, it offers procedures for demonstration, notably the 
method of reductio ad absurdum. But these relations between mathematics 
and metaphysics are not the only ones that appear in the Guide. We 
recently drew attention to another relation that is no less important: 
mathematics can play the role of means of argumentation in metaphysics. 
The most famous and most pertinent example comes from Apollonius’s 
Conics: the asymptote to an equilateral hyperbola allows one to reflect on 
the problem of the relations between imagining and conceiving. In his 
treatment of kalām, Maimonides indeed intends to refute the thesis accord-
ing to which: ‘for reason, everything that can be imagined is possible’. To 
do so, he wants to prove the negation of this thesis: some things exist that 
one cannot imagine, that is, one cannot in any way represent them to the 
imagination, but one can establish their existence by demonstration. In 
other words, for Maimonides, there is no principle that allows one to pass 
from imagination to metaphysical reality. He formulates his thesis thus: 

Know that there are things that a man, if he considers them with his imagi-
nation, is unable to represent to himself in any respect, but finds that it is as 
impossible to imagine them as it is impossible for two contraries to agree; 
and that afterwards the existence of the thing that is impossible to imagine is 
established by demonstration as true and existence manifests it as real.24  

With these words, as we have shown elsewhere,25 Maimonides gives a 
new inflection to the problem of demonstrating what one cannot conceive, 
a problem that the mathematician al-Sijzī had already raised in the 10th 
century. To illustrate this question, Maimonides draws on the very same 
example that his predecessor had discussed. Proposition II.14 of 
Apollonius’s Conics concerns asymptotes to an equilateral hyperbola: the 

 
23 Dalālat al-Ḥāʾirīn, p. 276; Guide, Pines transl., p. 246, substituting ‘lemma’ for 

Pines’s ‘premise’. 
24 Dalālat al-Ḥāʾirīn, p. 214; Guide, Pines transl., p. 210. 
25 R. Rashed, ‘Al-Sijzī et Maïmonide: commentaire mathématique et philosophique 

de la proposition II–14 des Coniques d’Apollonius’, Archives internationales d’histoire 
des sciences, no. 119, vol. 37, 1987, pp. 263–96. English transl, ‘Conceivability, 
Imaginability and Provability in Demonstrative Reasoning: al-Sijzī and Maimonides on 
II.14 of Apollonius’ Conics Sections’, Fundamenta Scientiae, vol. 8, nο. 
3/4, 1987, ��� 241−56. 
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curve and its asymptotes can always get nearer each other as long as they 
are prolonged indefinitely, and yet they never meet. Maimonides writes: 

This cannot be imagined and can in no way enter within the net of the 
imagination. Of these two lines, one is straight and the other curved, as has 
been made clear there in the above-mentioned book. Accordingly, it has 
been demonstrated that something that the imagination cannot imagine or 
apprehend and that is impossible from its point of view, can exist.26  

The imagination to which Maimonides appeals here is the 
mathematical imagination: even for it, nothing guarantees the passage to 
metaphysical reality. But without risk of contradiction, one can assert that 
what is true for the mathematical imagination is a fortiori also true for all 
other forms of this faculty. Appealing to this proposition from the Conics 
seems, in Maimonides’ mind, to have much greater force than citing a mere 
example: it is a form of argumentation that the metaphysician borrows from 
mathematics. 

In conclusion, just like his predecessors since al-Kindī, Maimonides 
has found in mathematics both a model for architectonics, demonstration 
procedures, and means of argumentation. For him, therefore, the role of 
mathematics in no way reduces to that of propaedeutic to the teaching of 
philosophy. We now understand that when Maimonides devoted time and 
energy to the acquisition of even a modest amount of mathematical 
knowledge, it was because he thought of this, as his predecessors had, as a 
profoundly philosophical task: that of solving metaphysical problems 
mathematically.  

 
 

2. MATHEMATICS IN THE PHILOSOPHICAL SYNTHESIS  
AND THE ‘FORMAL’ INFLECTION OF THE ONTOLOGY:  

IBN SĪNĀ AND NAṢĪR AL-DĪN AL-ṬŪSĪ 
 
In his monumental al-Shifāʾ, as well as in his book al-Najāt and his 

Danish-Nameh, Ibn Sīnā (980–1037) gives a particularly prominent place 
to the mathematical sciences. In the Shifāʾ alone, he devotes no fewer than 
four books to them. To this, one should also add several independent 
writings in astronomy and music. It has not been adequately understood 
that, in all of these writings, the presence of mathematics has two 
concurrent significations. We have seen that al-Kindī is interested in 
mathematics from a double point of view, as a philosopher but also as a 
mathematician. Thus when he treats burning mirrors, optics, sundials, 

 
26 Dalālat al-Ḥāʾirīn, ed. Atay, p. 215; Guide, transl. Pines, pp. 210–11. 
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astronomy, and when he comments on Archimedes, he does so as a 
mathematician. For him as a philosopher, mathematics is also a source of 
inspiration and a model of argumentation. Al-Kindī’s approach outlived 
him in the writings of Muḥammad ibn al-Haytham. Ibn Sīnā belongs only 
in part to this tradition. His mathematical knowledge is wide-ranging even 
as it remains classical. He probably knew the writings of Euclid, 
Nicomachus of Gerasa, and Thābit ibn Qurra on the amicable numbers. But 
he was also familiar with elementary algebra, number theory, and some 
works in Diophantine analysis. He seems not to have known about 
contemporary research, however, witness his statements about the regular 
heptagon. One can therefore safely say that Ibn Sīnā had a good knowledge 
of mathematics, sufficient to allow him to deal with certain applications but 
without engaging in genuine mathematical research. In other words, it is 
just as incorrect to reduce Ibn Sīnā’s mathematical knowledge to Euclid’s 
Elements and Nicomachus of Gerasa’s Introduction to Arithmetic as it is to 
make of him a 10th-century mathematical counterpart to al-Kindī. For this 
great logician, metaphysician, and physician, mathematics played a 
different role than it did for al-Kindī. It was not only a source of inspiration 
in certain philosophical inquiries, but also an integral part of his philo-
sophical synthesis. Precisely herein lies the significance of his inclusion in 
al-Shifāʾ of four books devoted in sequence to the disciplines of the quadri-
vium. The question at hand, then, is to assess the philosophical implications 
of their presence in this work. 

In fact, if one restricts oneself to Ibn Sīnā’s theoretical statements about 
the status of mathematics, the nature of their objects, and the number of the 
disciplines that constitute it, one can conclude that he is the direct heir of 
tradition: the status of mathematics is defined by means of the Aristotelian 
theory of the classification of sciences, which is itself grounded in the 
famous doctrine of Being; its objects are defined by means of the theory of 
abstraction; as to the number of the disciplines, it is the well-known quartet 
transmitted by the ancient Greek tradition. At issue therefore is the middle 
science (al-ʿilm al-awsaṭ) of the three disciplines that constitute theoretical 
philosophy, the objects of which are divided between physics, mathema-
tics, and metaphysics (an order that the composition of the Shifāʾ follows) 
as a function of their materiality and changeability. Thus mathematics 
focuses on objects abstracted from the sensible realm and separated from 
physical objects, which are material and mobile. The disciplines that 
constitute it are those of the quadrivium: Arithmetic, Geometry, Astrono-
my, and Music. It is to this doctrine that Ibn Sīnā always returns in the 
Shifāʾ (not only in the Isagoge that opens it, but also in the Metaphysics) as 
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well as in a short work devoted to the classification of the sciences, among 
other writings. 

The various kinds of sciences either focus on considering entities insofar as 
they are in motion, according to their conception and constitution, and 
according as they pertain to specific matters and species; or focus on consi-
dering entities insofar as they are separated from these matters, according to 
conception but not constitution; or again, they focus on considering entities 
insofar as they are separated according to both constitution and conception.  

The first part of these sciences is physics; the second part is pure mathe-
matics, in which the science of numbers is famous. As to knowledge of the 
nature of numbers qua numbers, it does not pertain to this science. The third 
part is metaphysics. Since entities by nature fall into these three parts, these 
just are the theoretical philosophical sciences.  

Practical philosophy either pertains to the teaching of opinions, the use 
of which allows one to organize participation in ordinary human affairs, and 
<this part> is known as the organization of the city; it is called politics; or, it 
pertains to that which allows one to organize participation in private human 
affairs, and <this part> is known as the organization of the household 
<economics>; or it pertains to that which allows one to organize the state of 
an individual person in order to edify his soul: this is called ethics.27 

There is nothing new in this conception. If therefore one does not go 
beyond Ibn Sīnā’s Aristotelian preferences, one cannot hope to grasp the 
genuine role that mathematics play in the Shifāʾ. One should perhaps 
wonder above all if such a statement of principle corresponds to the philo-
sopher’s mathematical knowledge, and if the theoretical classification 
reflects an eventual de facto classification. To gauge and understand the 
gap, if any, between these two classifications, one must first take into 
account Ibn Sīnā’s mathematical studies. We consider here only arithmetic, 
even though geometry gave him much food for thought (the fifth postulate, 
for example, as in the Danish-Nameh). 

Starting first with biographical matters alone, we know that while Ibn 
Sīnā was getting his philosophical training, he was learning Indian arith-
metic and algebra. Only later did he learn logic, Euclid’s Elements, and the 
Almagest, witness the reports of such biobibliographers as al-Bayhaqī, Ibn 
al-ʿImād, Ibn Khallikān, al-Qifṭī, Ibn Abī Uṣaybiʿa. Thus al-Bayhaqī notes:  

 
When he was ten years old, he knew by heart several fundamental literary 
texts. His father was then studying and meditating upon a treatise by the 
Brothers of Purity. He too was meditating on it, and his father put him in 

 
27 Al-Shifāʾ, al-Manṭiq, 1. al-Madkhal (Isagoge), ed. G. Anawati, M. al-Khuḍayrī, 

F. al-Ahwānī, Cairo, 1952, p. 14. 
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touch with a vegetable merchant named Maḥmūd al-Massāḥ who knew 
Indian computation and algebra and al-muqābala.28  

Citing Ibn Khallikān, Ibn al-ʿImād recalls this biographical detail in 
similar language: ‘When he was ten years old, he had perfected the 
knowledge of the Glorious Qur’an, and of literature, and he knew by heart 
some of the foundations of religion, Indian calculation, and algebra, and al-
muqābala’.29 Ibn Sīnā himself writes: ‘My father directed me to a man who 
sold vegetables and who practised Indian computation, so that he might 
teach me’.30  

Since these new disciplines – Indian arithmetic and algebra – were 
unknown to the Alexandrians, however, they could not find a place in the 
traditional classification of sciences without, at the very least, altering its 
general framework, if not completely overturning its underlying concepts. 
Now in Ibn Sīnā’s classification, these disciplines appear under the single 
rubric of ‘secondary parts of arithmetic (al-aqsām al-farʿiyya)’. 

Ibn Sīnā does not explain this concept of ‘secondary parts of 
arithmetic’; he is satisfied merely to list its contents.  

The secondary parts of the mathematical sciences – some branches of the 
<science of> numbers: the science of addition and of separation of the Indian 
arithmetic; the science of algebra and al-muqābala. And the branches of the 
science of geometry: the science of measurement; the science of mobile 
ingenious devices; the science of the traction of heavy bodies; the science of 
weights and balances; the science of instruments specific to the techniques; 
the science of perspectives and mirrors; the science of hydraulics; and the 
branches of astronomy: the science of astronomical tables and of calendars. 
And the branches of music: the use of marvellous and curious instruments 
such as the organ and the like.31  

We thus know only that arithmetic has, as its secondary parts, Indian 
computation and algebra. But the number of arithmetic disciplines to which 
Ibn Sīnā alludes is not limited to these last two, which he lists in his 
classification of sciences. Indeed we have already mentioned the book, 
called al-arithmāṭīqī, that he devotes to this science of calculation in the 
Shifāʾ. To this, one must add two disciplines: the first, which Ibn Sīnā 

 
28 Tārīkh Ḥukamāʾ al-Islām, ed. M. Kurd Ali, Damascus, 1946, p. 53. 
29 Ibn al-ʿImād, Shadharāt al-dhahab fī akhbār man dhahab, Beirut, n.d., vol. III, 

p. 234; see also Ibn Khallikān, Wafayāt al-Aʿyān, ed. I. ʿAbbās, Beirut, 1969, vol. II, 
pp. 157–8. 

30 Al-Qifṭī, Taʾrīkh al-Ḥukamāʾ, ed. J. Lippert, Leipzig, 1903, p. 413 and Ibn Abī 
Uṣaybiʿa, ʿUyūn al-anbāʾ, ed. N. Riḍā, Beirut, 1965, p. 437. 

31 Parts of the Rational Sciences, p. 112. 
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names, but whose status he never specified, is al-ḥisāb; the second is 
present only through its objects: integer Diophantine analysis. 

The theory of numbers, al-arithmāṭīqī, Indian arithmetic, algebra, al-
ḥisāb, and integer Diophantine analysis: six disciplines that overlap and are 
sometimes superimposed in order to cover the study of numbers. The 
reality is evidently much more complex than might appear from Ibn Sīnā’s 
schematic classification of the sciences. In order to untangle the 
intertwinings of these disciplines and to clarify their relations, however, 
one must briefly recall the work of contemporary mathematicians. Indeed 
the latter used two different terms to distinguish, on the one hand, the 
arithmetic in the Hellenistic tradition and its Arabic development: the 
theory of numbers (ʿilm al-aʿdad); and on the other hand, the discipline 
designated by the phonetic transcription of ἡ ἀριθμητική (al-arithmāṭīqī) 
Although their connotations are not completely unrelated, each of these 
terms nevertheless referred to a distinct tradition. The expression ‘theory of 
numbers (ʿilm al-aʿdad)’ referred to the arithmetic books of Euclid’s 
Elements, as well as to such later works as those of Thābit ibn Qurra, for 
example; whereas the phonetic transcription of ἡ ἀριθμητική (al-
arithmāṭīqī) designated the arithmetic tradition of the neo-Pythagoreans, 
that is, in the sense in which Nicomachus of Gerasa understands it in his 
Introduction, a book that Ibn Qurra had translated under the title Kitāb al-
Madkhal ilā ʿilm al-ʿadad (Introduction to Arithmetic).32 Although not 
systematic, this terminological difference between the 9th and 10th centuries 
seems to measure the gap that separated the two disciplines at the time. In 
order to understand how that gap was later understood, consider what Ibn 
al-Haytham writes: 

The properties of numbers can be displayed in two ways: the first is induc-
tion, for if one follows the sequence of numbers one by one, and if one dis-
tinguishes them, by distinguishing and considering them, one finds all of 
their properties; to find the number in this way is called al-arithmāṭīqī. This 
is shown in the work of al-arithmāṭīqī, a work by Nicomachus of Gerasa. 
The other way in displaying the properties of numbers proceeds by demons-
trations and deductions. All the properties of number grasped by demonstra-
tions are contained in these three books [of Euclid] or what is reduced to 
them (Sharḥ Muṣādarāt Kitāb Uqlīdis, ms. Feyzullah 1359, fol. 213v).33  

For this eminent mathematician each way of proceeding is a science; 
his remark is all the more important because Ibn al-Haytham demanded 

 
32 Nicomachus of Gerasa, Kitāb al-Madkhal ilā ʿilm al-ʿadad, translated by Thābit 

ibn Qurra, ed. W. Kutsch, Beirut, 1958. 
33 R. Rashed, ‘Ibn al-Haytham et le théorème de Wilson’, Archive for History of 

Exact Sciences, 22.4, 1980, pp. 305–21. 
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rigorous demonstrations everywhere and without restriction. And in fact, in 
the 10th century at least, these two traditions offered mathematicians the 
same conception of the object of arithmetic: an arithmetic of integers 
represented by line segments. But whereas, in the theory of numbers, the 
standard of demonstration is obligatory, in al-arithmāṭīqī, one can proceed 
by simple induction. For the scientists of the 10th century, the difference 
between the two traditions thus reduces to a distinction of methods and of 
standards of rationality. 

In Ibn Sīnā, one finds precisely this conception of this connection 
between the two disciplines. In al-Shifāʾ, arithmetic appears twice: the first 
time in the Geometry section of al-Shifāʾ in which he merely summarizes 
Euclid’s arithmetic books; as to the second time, he composes his own 
book of al-arithmāṭīqī – a text that will be read and taught for centuries – 
and whose genuine foundations, according to the author, are primarily 
found in the Elements. It is perhaps this picture of the relation between the 
two disciplines that explains why, in his al-arithmāṭīqī, Ibn Sīnā did not 
merely summarize Nicomachus, as he had done for number theory with 
Euclid’s Elements. This approach thus clarifies how in this field, he had 
distanced himself from the neo-Pythagorean tradition. And in fact, all the 
ontological and cosmological considerations that burdened the concept of 
number have henceforth been banished from al-arithmāṭīqī, which is now 
treated as a science. The only remnant of this earlier stage is the 
philosophical goal common to all branches of philosophy, both theoretical 
and practical, namely the perfection of the soul. It is thus against the neo-
Pythagoreans that Ibn Sīnā writes: 

Among those who treat the art of arithmetic, it is customary to appeal, in this 
place and analogous places, to developments foreign to this art, and even 
more foreign to the custom of those who proceed by demonstration, and 
closer to the discourses of rhetoricians and poets. One must abandon <this 
custom>.34  

Here he even partly gives up the traditional language, drawing on that 
of the algebraists, in order to express the successive powers of an integer. 
This is how, to name the powers of an integer, philosophers came to use the 
terms ‘square (māl)’, ‘cube (kaʿb)’, ‘square-square (māl māl)’ to designate 
the successive powers of the unknown.35 

Under these conditions, there was nothing to prevent Ibn Sīnā from 
integrating into his al-Arithmāṭīqī theorems and results obtained elsewhere, 

 
34 Al-Shifāʾ, al-Ḥisāb (al-Arithmāṭīqī), ed. ʿA. Maẓhar, Cairo, 1975, p. 60. Note 

that a few lines earlier, Ibn Sīnā clearly mentions them by their name, i.e. the 
Pythagoreans. 

35 Ibid., p. 19. 
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without needing to repeat the proof, if there was one. So it was that without 
demonstrating it, he takes up Thābit ibn Qurra’s theorem on amicable 
numbers, in the latter’s pure Euclidean style. Ibn Sīnā likewise recalls 
several problems of congruence. 

If you add evenly-even numbers and one, if you get a prime number, 
provided that, if the last of them is added, and if the preceding one is taken 
away, and if the sum and the remainder are prime, then the product of the 
sum by the remainder, and then the whole by the last of the added numbers, 
yields a number that has a friend; its friend is the number obtained by adding 
the sum and the remainder, multiplied by the last of added numbers, and by 
adding the product to the first number that had a friend. These two numbers 
are amicable.36  

To these two traditions, it is appropriate to add a third, to which Ibn 
Sīnā also alludes, namely that of integer Diophantine analysis. In the 
logical part of al-Shifāʾ devoted to demonstration, Ibn Sīnā indeed takes as 
an example the first case of Fermat’s conjecture, which had already been 
treated by at least two 10th-century mathematicians, al-Khujandī and al-
Khāzin. Ibn Sīnā writes: 

If one asks […] if the sum of two cubic numbers is a cube, just as the sum of 
two square numbers was a square, one is raising a problem of arithmetic 
(ḥisāb).37  

One can clearly see here that the word ḥisāb seems to designate a 
discipline that includes disciplines other than the Euclidean theory of 
numbers and al-arithmāṭīqī. Indeed, by ḥisāb, Ibn Sīnā seems to mean a 
science that includes all those that treat numbers, whether rational or 
algebraically irrational or irrational. The last paragraph of his al-
arithmāṭīqī leaves no room for doubt about it. This is how it reads: 

That is what we wanted to say about the science of al-arithmāṭīqī. We have 
omitted some cases, the mention of which we considered to be external to 
the rule of this art. What remains in the science of al-ḥisāb is what is 
convenient for us in the use and determination of numbers. Finally, what 
remains in practice is along the lines of algebra and al-muqābala, of the 
Indian science of addition and of separation. As to the latter, however, it is 
best to mention them among the secondary parts.38  

Everything points to the fact that, in al-Arithmāṭīqī as well as in his 
summary of Euclidean arithmetic books, Ibn Sīnā, like his predecessors and 
his contemporaries, restricts his inquiry to natural integers. As soon as he 

 
36 After correcting some errors in the Cairo edition, p. 28. 
37 Al-Shifāʾ, al-Manṭiq, 5. al-Burhān, ed. A. E. Afifi, Cairo, 1956, pp. 194–5. 
38 Al-Shifāʾ, al-Arithmāṭīqī, p. 69. 
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runs into problems that would force him to examine the conditions of 
rationality, whether to find a positive rational solution, or, more generally, 
to consider a class of irrational numbers, he finds himself outside of these 
two sciences. The term of ḥisāb therefore covers the whole of this 
arithmetic research, which takes place thanks to disciplines such as algebra, 
Indian computation and their analogues. These disciplines therefore take on 
a character that is instrumental and applied, so to speak, which sets them 
against ancient number theory. It is precisely by means of this instrumental 
and applied character that, as one can readily check, Ibn Sīnā in his classifi-
cation distinguishes the whole of the ‘secondary parts’, defining them as 
such. Thus the ‘secondary parts (al-aqsām al-farʿiyya)’ of physics are 
medicine, astrology, physiognomy, oneiromancy, the art of divination, 
talismans, theurgy, and alchemy. 

However, to understand how far Ibn Sīnā’s own theoretical classi-
fication has moved beyond the traditional Greek and Hellenistic classifica-
tions, one must go back to his predecessor al-Fārābī (872–950). It was 
Steinschneider who first asked whether Ibn Sīnā’s little treatise on The 
Parts of the Rational Sciences was linked to al-Fārābī’s classification in his 
Enumeration of the Sciences. Steinschneider went on to deny any connect-
ion between the two works. Wiedemann confirms this opinion, and main-
tains that Ibn Sīnā enumerates only separate sciences, whereas al-Fārābī 
designates and characterises them by their interconnections;  or, as he puts 
it, ‘Ibn Sīnā essentially enumerates the individual sciences, whereas al-
Farābī characterizes them in a mutually dependent representation’.39 

This convergence makes good sense since an examination of the 
‘secondary parts’ of arithmetic in Ibn Sīnā shows that they are none other 
than those disciplines that al-Fārābī brings together under the heading, ‘the 
science of ingenious procedures’, and which he defines as follows: 

the science of the manner of proceeding when one applies to physical bodies 
everything, the existence of which is proved, by predication and demonstra-
tion, in the aforementioned mathematical sciences; and when one brings it 
about and puts it into action in physical bodies.40  

Indeed according to him, mathematical science has, as its object, lines, 
surfaces, solids and numbers, and it considers them as intelligible in 
themselves, and separated (muntaziʿa), that is, abstracted from physical 

 
39 E, Wiedemann, ‘Über al-Fârâbîs Aufzählung der Wissenschaften (Die 

Scientiis)’, in Aufsätze zur arabischen Wissenschafts-Geschichte, Hildesheim, G. Olms, 
1970, p. 327. ‘Ibn Sīnā zählt im wesentlichen die einzelnen Wissenschaften auf, 
während al-Farābi sie in zusammenhängender Darstellung charakterisiert’.  

40 Iḥṣāʾ al-ʿUlūm, ed. ʿU. Amīn, Cairo, 1968, p. 108. 
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objects. In order to discover and intentionally to make manifest the 
mathematical concepts present in these physical objects by means of the 
art, it would be necessary to construct procedures and to invent techniques 
and methods that allow one to overcome the obstacles presented by the 
materiality and sensibility of these objects. In arithmetic, al-Fārābī writes, 
these ingenious procedures include, among other things, ‘the science 
known to our contemporaries by the name of algebra and al-muqābala, and 
that which is analogous to it’.41 He also notes, however, that ‘this science is 
common to arithmetic and geometry’ and, a little later, that it  

includes the ingenious procedures for determining the numbers that one 
seeks to determine and to utilize, those among the rationals and the 
irrationals, for which Euclid gave the principles in Book X of his Elements 
(Usṭuqusāt), and those that are not mentioned in this book. Indeed, since the 
ratio of rationals to irrationals, the one to the other, is like the ratio of 
numbers to numbers, then every number is homologous to a certain rational 
or irrational magnitude. If therefore one determines the numbers that are 
homologous to the ratios of magnitudes, then one determines these magnitu-
des in a certain way. This is why one posits certain rational numbers so that 
they might be homologous to rational magnitudes, and certain irrational 
numbers so that they might be homologous to irrational magnitudes.42  

In this crucial text, algebra is distinguished as a science in two respects: 
whereas it is apodictic like every other science, it nevertheless constitutes 
the domain of application not of one science alone, but of two simulta-
neously, namely arithmetic and geometry. As to its objects, it includes 
geometrical magnitudes as well as numbers, which can be both rational and 
algebraically irrational. Confronted by this new discipline that they must 
take into account, the new classifications of the sciences, with their 
aspirations to universality and exhaustiveness, must also justify one way or 
the other the abandonment of certain Aristotelian theses. This is how 
designations such as ‘the science of the ingenious procedures’, ‘secondary 
parts’, … came to be created, in order to carve out a non-Aristotelian zone 
in the midst of a classification that remains decidedly Aristotelian. 

The philosophical impact of such a reworking goes far beyond, and 
especially much deeper than, a simple taxonomic change. If algebra is 
indeed common to both arithmetic and geometry without making any 
concessions about its status as a science, it is insofar as its very object, the 
‘algebraic unknown’ – the ‘thing (shayʾ, res)’ – can designate indifferently 
a number or a geometric magnitude. What is more, since a number can also 
be an irrational, ‘the thing’ then designates a quantity that will be known 

 
41 Ibid., p. 109. 
42 Ibid. 
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only by approximation. Thus the object of the algebraists, ‘the thing’ must 
be sufficiently general to hold a variety of contents; but it must in addition 
exist independently of its own determinations, so that one can always 
improve the approximation. Aristotelian theory clearly cannot give an 
account of such an object’s ontological status. One must therefore bring to 
bear on the problem a new ontology that makes it possible to discuss an 
object stripped of the very characteristics that alone would have made it 
possible to determine that of which it is the abstraction. This is an ontology 
that must also allow us to know an object without being in position to 
represent it exactly. 

It is specifically since al-Fārābī that one begins to see in Islamic 
philosophy the development of an ontology that is sufficiently ‘formal’, as 
it were, to meet the aforementioned requirements, among others. In this 
ontology, ‘the thing (al-shayʾ)’ takes on a more general connotation than the 
existent. It is in this sense that al-Fārābī writes: ‘One can call a thing 
everything that has a quiddity, whether it is exterior to the soul or whether 
it is [merely] conceived of in any manner whatsoever.’ Whereas the 
‘existent is always said of every thing that has a quiddity, external to the 
soul, and cannot be said of a quiddity that is merely conceived’. Thus, 
according to him, the ‘impossible (al-mustaḥīl)’ can be called ‘thing’ but 
cannot be called ‘existent’.43 In the history of mathematics, such a tendency 
became more pronounced between al-Fārābī and Ibn Sīnā. Al-Karajī in 
particular gives algebra a more general status, and emphasizes the exten-
sion of the concept of number. Al-Bīrūnī, a contemporary of Ibn Sīnā, goes 
even further when he dares to write:  

The circumference of a circle stands in a given ratio to its diameter. The 
number of the one also stands to the number of the other in a ratio, even if it 
is irrational.44 

On the plane of philosophy, Ibn Sīnā as an important metaphysician 
integrates al-Fārābī’s concept into a doctrine that he wanted to make more 
systematic and that he presented in al-Shifāʾ. According to this doctrine, 
like the ‘existent’ and the necessary, the thing is given in immediate 
evidence or, to use Ibn Sīnā’s own language, it is immediately inscribed in 
the soul and, along with these two other ideas, stands at the origin of all 
others. Whereas the existent picks out the same meaning as ‘asserted 
(muthbit)’ and ‘achieved (muḥaṣṣal)’, the thing according to Ibn Sīnā is that 
which the attribution (the statement) characterizes. Thus every existent is a 
thing but the reciprocal is not exactly the case, even though it is impossible 

 
43 Kitāb al-Ḥurūf, ed. M. Mahdi, Beirut, 1970, p. 128. 
44 Al-Qānūn al-Masʿūdī, Hyderabad, 1954, vol. I, p. 303. 
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for a thing to exist neither as a concrete subject nor in the mind.45 This is 
not the place for a full description of Ibn Sīnā’s doctrine. Suffice it to point 
out that this new ontology which is neither Platonic nor Aristotelian, 
originated at least in part from new gains in the mathematical sciences.  

If these gains led Ibn Sīnā to inflect ontology in a direction that can be 
called ‘formal’, they had a similar effect on his conception of the ontology 
of emanation, as we shall see later in relation to al-Ṭūsī’s commentary. 

The emanation from the One of the Intelligences and the celestial orbs 
as well as other worlds – that of nature and that of corporeal things – is one 
of the central doctrines in Ibn Sīnā’s metaphysics. This doctrine raises a 
question that is at once ontological and noetic: from a unique and simple 
being, how can there emanate a multiplicity, which is also a complexity, 
that in the end includes both the matter of things and the forms of bodies 
and human souls? This ontological and noetic duality throws up the 
question as an obstacle, like a difficulty that is simultaneously logical and 
metaphysical and must be unravelled. One can therefore understand, at 
least in part, why Ibn Sīnā in his various writings never tires of returning 
both to this doctrine and implicitly to this question. 

Studying the historical evolution of Ibn Sīnā’s thought about this 
problem in his different writings could show us how he was able to amend 
his initial formulation by taking such a difficulty into account. If we 
consider only al-Shifāʾ and al-Ishārāt, Ibn Sīnā presents the principles of 
this doctrine as well as the rules for the emanation of multiples from one 
simple unity. His explanation looks like a well articulated and organized 
exposition, but it does not count as a rigorous proof: indeed, Ibn Sīnā does 
not in fact give here the syntactic rules that are capable of embracing the 
semantics of emanation. Precisely here lies the difficulty of deriving a 
multiplicity from the One. Long ago, however, this derivation was already 
perceived as a problem and examined as such. Naṣīr al-Dīn al-Ṭūsī, the 
mathematician, philosopher, and commentator on Ibn Sīnā, not only gras-
ped the difficulty, but wanted to provide the missing syntactic rules. 

To understand his contribution, we must return first to Ibn Sīnā, not 
only to recall the elements of his doctrine, but also to grasp in his synthetic 
and systematic exposition, to the extent that we can, the formal principle 
whose presence made possible the introduction of the rules of combinato-
rial analysis. It was this principle that effectively allowed Ibn Sīnā to 
develop his exposition deductively. He had to ensure, on the one hand, the 
unity of Being, which is then predicable of everything univocally  and, on 
the other hand, an irreducible difference between the First Principle and its 

 
45 Al-Shifāʾ, al-Ilāhiyyāt (I), ed. G. Anawati and S. Zayed, Cairo, 1960, pp. 29 ff. 

and 195 ff. 
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creations. He then elaborated a general – in effect, a ‘formal’ – concept of 
Being. Considered as being, it is the object of no determination, not even of 
modalities; it is only being. It is not a genus, but a ‘state’ of all that is, and 
can be grasped only in its opposition to nonbeing, without it being the case, 
however, that nonbeing precedes it in time; this opposition is strictly of a 
rational order. On the other hand, the First Principle alone receives its 
existence itself.46 It is therefore the only necessary existence: only in this 
case does existence coincide with essence. All other beings receive their 
existence from the First Principle, by emanation. This ontology and the 
cosmogony that accompanies it provide the three points of view from 
which being is considered: as being, as emanation47 from the First 
Principle, and as the being of its quiddity. From the first two points of 
view, the emphasis lies in this being’s necessity, whereas the third reveals 
its contingency. Briefly sketched, these are the concepts on which Ibn Sīnā 
will establish the following postulates:  

1. There exists a First Principle, a Being that is necessary by its 
essence, one, indivisible by any means, and is neither a body nor in a body. 

2. The totality of being emanates from the First Principle. 
3. The emanation occurs neither ‘according to an intention (ʿalā sabīl 

qaṣd)’ nor to reach a goal, but by a necessity of the First Principle’s being, 
that is, by its auto-intellection. 

4. From the One emanates only the One. 
5. There is a hierarchy of emanation, extending from entities whose 

being is the most perfect (al-akmalu wujūdan) to those whose being is the 
least perfect (al-akhassu wujūdan). 

 

 
46 Ibn Sīnā distinguishes between existence and essence for all other beings; on this 

point, see D. Saliba, Sur la Métaphysique d’Avicenne, Pau, 1926; A.-M. Goichon, La 
Distinction entre existence et essence, Paris, 1957; G. Verbecke, Le statut de la 
métaphysique, Introduction to Simone Van Riet’s edition, Avicenna Latinus, Liber de 
Philosophia Prima, Louvain/Leiden, 1977. 

47 See L. Gardet, ‘En l’honneur du millénaire d’Avicenne’, Revue Thomiste, LIXe 
année, t. LI, no. 2, 1951, pp. 333–45; A. Hasnawi, ‘���� (épanchement, émanation)’, in 
A. Jacob (ed.), Encyclopédie philosophique universelle, vol. II, Paris, 1990, pp. 966–72; 
N. Heer, ‘Al-Rāzī and al-Ṭūsī on Ibn Sīnā’s Theory of Emanation’, in P. Morewedge 
(ed.), Neoplatonism and Islamic Philosophy, Albany, State University of New York 
Press, 1992, pp. 111–25. See also in P. Morewedge (ed.), Neoplatonism and Islamic 
Philosophy, State University of New York Press, Albany, 1992: Th.-A. Druart, ‘Al-
Fārābī, Emanation, and Metaphysics’, pp. 127–48; P. Morewedge, ‘The Neoplatonic 
Structure of Some Islamic Mystical Doctrines’, pp. 51–75; J. Owens, The Relevance of 
Avicennian Neoplanism, pp. 41–50; M. E. Marmura, ‘Quiddity and Universilaty in 
Avicenna’, pp. 77–87.  
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At first sight, one might suspect that several of these postulates 
contradict each other (2 and 4, for example) or lead to contradictory 
consequences. It is to avoid this initial impression that Ibn Sīnā introduces 
additional determinations during the course of his deduction. Thus, from 1, 
2, 4 and 5, it follows that the totality of being, in addition to the First 
Principle, is a whole ordered by the predecessor-successor relation, which 
is at once logical and axiological, taking into account both the priority of 
being and its excellence. Indeed, if one excludes the First Principle, every 
being can have only one predecessor (as well as the predecessor of its 
predecessor and so on). Moreover every being, including the First 
Principle, can have only one successor (respectively, the successor, its 
successor …). But the philosopher Ibn Sīnā and his commentator al-Ṭūsī 
knew that, taken literally, this order forbids the existence of multiple 
beings, that is, of their independent coexistence, without some of them 
being logically prior to others or more perfect than they, which makes this 
order manifestly false, as al-Ṭūsī states.48 It is therefore necessary to 
introduce additional qualifications as well as intermediate beings.  

Now 1 and 2 for their part forbid that the multiplicity proceed from 
the ‘impulses’ (nuzūʿāt) and ‘perspectives’ (jihāt) of the First Principle, for 
to assume impulses and modalities in it is to deny its unicity and simplicity. 
Finally, 3, 4, and 5 imply that the emanation, as act of the First Principle, is 
not in the image of a human act, since its Author knows neither intention 
nor goal. Everything therefore indicates that one must introduce interme-
diate beings (mutawassiṭa), which undoubtedly are hierarchically ordered, 
but which make possible an account of the multiplicity-complexity. 

Let us begin properly with the First Principle and designate it by the 
first letter of the alphabet, a, as does Ibn Sīnā in his treatise Nayrūziyya. 
The First Principle ‘intellects’ itself by essence. In its auto-intellection, it 
‘intellects’ the totality of being of which it is the proper principle,49 without 
there being in it any obstacle to the emanation of this totality, or any 
rejection of it. Only in this sense can one say of the First Principle that it is 
the ‘agent’ (fāʿil) of the totality of being. 

Having conceded this, however, one must still explain how this 
necessary emanation of the totality of being takes place without it being 
necessary to add anything at all that could contradict the Unicity of the 
First Principle. According to 1, 4, 5, a single being emanates from the First 
Principle, which necessarily belongs to the second tier of existence and 

 
48 Naṣīr al-Dīn al-Ṭūsī, al-Ishārāt wa-al-Tanbihāt, ed. S. Dunya, Cairo, 1971, 

p. 216. 
49 Al-Shifāʾ, al-Ilāhiyyāt (II), ed. M. Y. Musa, S. Dunya and S. Zayed, revised and 

introduced by I. Madkour, Cairo, 1960, p. 402, l. 16. 
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perfection. But since it emanates from a unique, pure, and simple being that 
is at once pure truth, pure power, pure goodness…, without any of these 
attributes existing in it independently in order to guarantee the unity of the 
First Principle, this derivative being can only be a pure Intellect. This 
implication respects 4, for, if this intellect were not pure, one would have to 
conclude that, from the One, there emanates more than one. This is the first 
separated Intellect, the first effect (maʿlūl) of the First Principle. Like Ibn 
Sīnā, we call it b.   

Everything is now in place to explain the multiplicity-complexity. By 
essence, this pure Intellect is an effect: it is therefore contingent. But, as an 
emanation from the First Principle, it is necessary, since it has been 
‘intellected’ by the latter. On this ontological duality is superimposed a 
noetic multiplicity: this pure Intellect knows itself and knows its own being 
as contingent being; that is, it knows that its essence is different from that 
of the First Principle, which is necessary; conversely, it knows the First 
Principle as necessary Being; finally, it knows the necessity of its own 
being as an emanation from the First Principle. I have here paraphrased 
what Ibn Sīnā writes himself in al-Shifāʾ.50 He forestalls the objections of 
an imaginary detractor by noting that this multiplicity-complexity is not a 
hereditary characteristic, so to speak: it is not from the First Principle that 
the pure Intellect receives it, and this for two reasons. First, the contingency 
of its being pertains to its own essence, and not to the First Principle, which 
gave it the necessity of its being. Conversely, its knowledge of itself, as 
well as the knowledge it owes to the First Principle, is a multiplicity, which 
is a result of the necessity of its being originating from the First Principle. 
Thanks to these conditions, Ibn Sīnā can reject the accusation that he has 
attributed any multiplicity to the First Principle. 

Next, Ibn Sīnā describes how, starting from this Pure Intellect, there 
emanate the other separated Intellects, the celestial Orbs, and the Souls that 
allow Intellects to act. Thus, from the pure Intellect b, there emanates, by 
its intellection of a, a second Intellect, namely c; and by its intellection of 
its essence, the Soul of the ninth celestial Orb; and by its intellection of its 
being as a contingent being, the body of this ninth Orb. Let us call the Soul 
of this Orb and its body d.  

Ibn Sīnā continues in this fashion with his description of the emanation 
of Intellects, celestial Orbs with Souls and their bodies. From this point on, 
from every Intellect, there emanate the matter of sublunary things, the 
forms of bodies and human souls. Even if Ibn Sīnā’s explanation has the 
advantage of not separating the question of the multiplicity originating 
from the one from the question of complexity (that is from the ontological 

 
50 Ibid., pp. 405–6. 
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content of the multiplicity), his account nevertheless does not allow for a 
rigorous knowledge of the latter, insofar as he gives no general rule. Ibn 
Sīnā does nothing more than lead the elements to the Agent Intellect.  

It is at this very point that al-Ṭūsī enters the picture. He will demons-
trate that, from the First Principle, there effectively emanates, according to 
Ibn Sīnā’s rules and by means of a small number of intermediaries, a 
multiplicity, such that every effect will have only one independently exist-
ing cause. We shall see that the price of this clear progress in the 
knowledge of multiplicity is the impoverishment of the ontological content: 
what is left of the multiplicity-complexity is in fact only the multiplicity. 

Indeed, in his commentary of al-Ishārāt, al-Ṭūsī introduces the 
language and the procedures of combinations in order to follow up the 
emanation to the third tier of beings. At this point, he stops applying these 
procedures and concludes: ‘if we go beyond these tiers [the first three], 
there may exist a denumerable multiplicity (lā yuḥṣā ʿadaduhā) in a single 
tier, and to infinity’.51 Al-Ṭūsī’s intention is therefore clear, and the proce-
dure he applies to the first three tiers leaves no room for doubt: one must 
provide the proof and the means that Ibn Sīnā did not have. At this stage, 
however, al-Ṭūsī is still far from his goal. Indeed it is one thing to proceed 
by combinations for a number of objects, it is something else again to 
introduce a new language with its syntax. Here the language is that of 
combinations. Now it is precisely to the introduction of this language that 
al-Ṭūsī devotes his efforts in a separate treatise,52 the title of which leaves 
no room for ambiguity: On the Demonstration of the Mode of Emanation of 
Things in an Infinite <Number> Beginning from the First Unique 
Principle. This time, we shall see al-Ṭūsī take a general approach by means 
of combinatorial analysis. Al-Ṭūsī’s text and the results it contained did not 
disappear with their author. They reappeared in a late treatise completely 
devoted to combinatorial analysis. Thus al-Ṭūsī’s solution not only set out 
a distinctive style of inquiry in philosophy, but also represented a most 
interesting contribution to the history of mathematics itself. 

Al-Ṭūsī’s idea is to tackle this problem with a combinatorial approach. 
But, for combinatorics to offer a possible solution, one must be sure that 
the time variable is neutralized. In the case of the doctrine of emanation, 

 
51 Ed. Dunya, vol. III, pp. 217–18. 
52 R. Rashed, ‘Combinatoire et métaphysique: Ibn Sīnā, al-Ṭūsī et al-Halabi’, in 

Roshdi Rashed and Joël Biard (eds), Les Doctrines de la science de l’antiquité à l’âge 
classique, Ancient and Classical Sciences and Philosophy, Leuven, Peeters, 1999, 
pp. 61–86. German translation: ‘Kombinatorik und Metaphysik: Ibn Sīnā, al-Ṭūsī und 
Halabi’, in Rüdiger Thiele (ed.), Mathesis, Festschrift siebzigsten Geburtstag von 
Matthias Schramm, Berlin, Diepholz, 2000, pp. 37–54. 
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this translates as follows: either to set becoming aside or, at the very least, 
to interpret it purely in logical terms. We have seen that Ibn Sīnā had 
already offered this condition. It has been correctly noted that emanation 
does not take place in time, and that anteriority and posteriority must be 
understood as essential, and not taken in a temporal sense.53 This 
interpretation, which in my view is fundamental to the Avicennan system, 
draws on its own specific conception of the necessary, the possible, and the 
impossible. In a word, note that in his al-Shifāʾ,54 Ibn Sīnā takes up this 
ancient problem by rejecting at the outset the ancient doctrines, which in 
his view are all circular: to define one of the three terms, they use one or 
the other of the two remaining ones. To break this circularity, Ibn Sīnā 
therefore seeks to restrict the definition of each term by bringing it back to 
the concept of existence. He then distinguishes what is considered in itself 
as existing necessarily, from what, also considered in itself, can exist and 
can also not exist. For him, necessity and contingency are inherent in the 
beings themselves. As to possible being, its existence as well as its non-
existence depend on a cause exterior to it. Contingency therefore does not 
appear to be a downgraded form of necessity, but rather a different mode of 
existence. It may even be that possible being, while remaining such in 
itself, may have a necessary existence on account of the action of another 
being. Without going here into all of the subtleties of Ibn Sīnā’s exposition, 
we note only that, on this specific definition of the necessary and the 
possible, Ibn Sīnā grounds the terms of the emanation in the nature of 
beings, immediately neutralising the time variable, as emphasized above. 
From these definitions, he deduces propositions, the majority of which he 
establishes by reductio ad absurdum. He shows that the necessary cannot 
not exist, that it cannot, by essence, have a cause, that its necessity 
encompasses all of its aspects, that it is one and cannot in any way allow 
multiplicity, that it is simple, without any composition. In each of these 
points, the necessary is opposed to the possible. It is therefore in the very 
definition of the necessary and the possible, and in the dialectic that 

 
53 Al-Shifāʾ, al-Ilāhiyyāt (II), ed. M. Y. Musa, S. Dunya and S. Zayed, revised and 

introduced by I. Madkour, p. 266–7. See L. Gardet, ‘En l’honneur du millénaire 
d’Avicenne’; H. A. Davidson, Proofs for Eternity Creation and the Existence of God in 
Medieval Islamic and Jewish Philosophy, New York/Oxford, 1987; Th.-A. Druart, ‘Al-
Farabi and Emanationism’, in John F. Wippell (ed.), Studies in Medieval Philosophy, 
Washington, The Catholic University of America Press, 1987, pp. 23–43; 
P. Morewedge, ‘The Logic of Emanationism and Ṣūfism in the Philosophy of Ibn Sīnā 
(Avicenna)’, Part II, Journal of the American Oriental Society, 92, 1972, pp. 1–18; 
A. Hasnawi, ‘���� (épanchement, émanation)’. 

54 See especially Book 3, Chapter 4 of Qiyās, vol. IV, ed. Zayed, 1964. 
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engages both of them, that the anteriority of the First Principle and its 
relations with the Intelligences are forever fixed. 

If therefore one can describe emanation without appealing to time, it is 
insofar as its proper terms are given in a logic of the necessary and the 
possible. The point at issue here is not whether or not this doctrine involves 
difficulties: it is rather that Ibn Sīnā himself had already guaranteed the 
conditions for introducing combinatorics into the problem. 

We have stated that from a, b emanates; the latter is therefore in the 
first tier of effects. From a and b together emanates c, the second intellect; 
from b alone emanates d – namely, the celestial Orb. One therefore has, in 
the second tier, two elements c and d, neither of which is the cause of the 
other. But so far, one only has four elements: the First Cause a and three 
effects, b, c, and d. Al-Ṭūsī calls these four elements the principles. Let us 
now combine these four elements two by two, then three by three, and 
finally four by four. One successively obtains six combinations – ab, ac, 
ad, bc, bd, cd –, four combinations – abc, abd, acd, bcd –, and one 
combination of four elements – abcd. Tallying the combinations of these 
four elements one by one yields a sum of 15 elements, 12 of which belong 
to the third tier of effects, without the ones being intermediate beings used 
to derive the others. This is what al-Ṭūsī presents in his commentary of the 
Ishārāt, as well as in his treatise mentioned above. As soon as one goes 
beyond the third tier, however, matters quickly become complicated, and 
al-Ṭūsī has to introduce into his treatise the following lemma: 

 
The number of combinations of n elements is equal to 
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To calculate this number, al-Ṭūsī uses the equation 

n

k

⎛

⎝
⎜

⎞

⎠
⎟ =

n

n − k

⎛

⎝
⎜

⎞

⎠
⎟ . 

 
Thus, for n = 12, he gets 4095 elements. Note that, to deduce these 

numbers, he shows here the expressions of the sum by combining the 
letters of the alphabet. 

Next, al-Ṭūsī goes back to the calculation of the number of elements of 
the fourth tier. He then considers the four principles with the 12 beings of 
the third tier; he gets 16 elements, from which he gets 65,520 effects. To 
obtain this number, al-Ṭūsī proceeds with the help of an expression 
equivalent to 
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the value of which is the binomial coefficient 
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With the exception of a, b, and ab, none of these elements is an 

intermediary for the others. Thus al-Ṭūsī’s response is general, and (*) 
gives a rule that allows one to know the multiplicity in each tier. 

Having established these rules and given the example of the fourth tier, 
with its 65,520 elements, al-Ṭūsī is in a position to state that he has 
answered the question ‘of the possibility of the emanation of the 
denumerable multiplicity starting from the First Principle on condition that 
only one emanates from the One, and without the effects being successive 
(in a chain), which was to be proved’. 

Al-Ṭūsī’s success in making Ibn Sīnā’s ontology speak the language of 
combinatorial analysis was the motor of two important evolutions: in both 
Ibn Sīnā’s doctrine and the combinatorics. This time, the question of 
multiplicity is clearly kept at a certain distance from that of the complexity 
of the being. Al-Ṭūsī worries very little about the ontological status of each 
of the thousands of beings that constitute the fourth tier, for example. But 
there is more. Metaphysical discourse now allows us to discuss a being 
without giving us the means of representing it exactly to ourselves. This 
‘formal’ (so-to-speak) evolution of ontology, which is conspicuous here, 
merely amplifies a tendency that was already present in Ibn Sīnā, and that 
we already emphasized earlier in his discussions of ‘the thing (al-shayʾ)’. 
This ‘formal’ movement is further accentuated by the possibility of 
designating beings by letters of the alphabet. Even the First Principle is no 
exception to the rule, since the letter a designates it. Here, too, al-Ṭūsī 
amplifies an Avicennan practice, but he inflects its meaning. In the epistle 
al-Nayrūziyya, Ibn Sīnā draws upon this symbolism, but with two variants: 
on the one hand, he assigns to the succession of the letters of the Arabic 
alphabet (following the order abjad hawaḍ) the value of an order of priority 
and of logical anteriority; on the other hand, he uses the numerical values 
of the letters (a = 1, b = 2, etc.). As to al-Ṭūsī, even though he implicitly 
keeps the order of priority by designating, as Ibn Sīnā does, the First 
Principle by a, the Intellect by b, he has abandoned this hierarchy in favor 
of the conventional value of the symbol. Their numerical value has simply 
disappeared. This was necessary for the letters to become the object of 
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combinatorics. As a mathematician and a philosopher, al-Ṭūsī has recast 
Ibn Sīnā’s doctrine of emanation in a formal direction, thus favoring a trend 
already present in Ibn Sīnā’s ontology. 

 
 

3. FROM ARS INVENIENDI TO ARS ANALYTICA 
 

For reasons internal to the evolution of their discipline, the 
mathematicians of the 9th century encountered the problem of the duality of 
order: is the order of exposition identical to the order of discovery? This 
question was very naturally first raised about the very model of mathema-
tical composition at that time and for many centuries to come, namely, 
Euclid’s Elements. To this problem, Thābit ibn Qurra devotes a treatise in 
which he maintains that the order of exposition of the Elements is nothing 
but the logical order of the demonstrations and differs from the order of 
discovery. To characterise the latter, Thābit develops a ‘psycho-logical’ 
doctrine of mathematical discovery. In a sense, we are already on the 
terrain of the philosophy of mathematics. 

This question of order will rather quickly be engulfed in a more general 
problematic, that of analysis and a profoundly transformed synthesis. 
Occasionally broached by Galen, Pappus, and Proclus, this topic in 
Antiquity never approached the range that characterized it in the 10th 
century; the development of mathematics and the conceptions of new 
chapters in it from the 9th century onward had broad repercussions on both 
the extent and the understanding of this topic. With the latter, a genuine 
philosophy of mathematics develops. Indeed one witnesses in succession 
the elaboration of a philosophical logic of mathematics, then a project of 
ars inveniendi and finally of an ars analytica. 

It all seems to have started with Ibrāhīm ibn Sinān (909–946), who 
wrote a whole book completely and uniquely devoted to analysis and 
synthesis entitled On the Method of Analysis and Synthesis in the Problems 
of Geometry.55 The importance of this event is obvious: henceforth, 
analysis and synthesis designate a domain in which the mathematician 
invests his energies, both as a geometer and as a logician-philosopher. 
Consider how Ibn Sinān discusses his enterprise and his intention: 

In this book, I have set out in exhaustive fashion a method designed for 
students that contains everything necessary to solve the problems of 
geometry. In it, I have presented in general terms the various classes of 
geometrical problems; I have then subdivided these classes and illustrated 
 
55 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe 

siècle, Leiden, E. J. Brill, 2000, Chap. I. 
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each one with an example; I have then led the student toward the road by 
which he can know into which of these classes he should place the problems 
put to him, by which he will know how to carry out the analysis of the 
problems – as well as the subdivisions and necessary conditions for doing so 
– and to carry out the synthesis of them – as well as the conditions necessary 
for this – and then how he will know if the problem belongs to those that are 
soluble only once or several times, and in general, all that it is necessary to 
know on the subject. 

I have pointed out into which kind of error geometers fall in analysis, on 
account of their practice – a habit that they have acquired: excessive 
abbreviation. I have also indicated the reason why, for geometers, there may 
appear to be, in propositions and problems, a difference between analysis 
and synthesis, and I have shown that their analysis differs from synthesis 
only on account of the abbreviations, and that, if they had completed their 
analysis as they ought, it would have been identical to synthesis; the doubt 
would then have been removed from the heart of those who suspect them of 
producing in synthesis things that they had not mentioned earlier in analysis 
– things, lines, surfaces, and the like, that one sees in their synthesis, without 
having mentioned them in analysis. I have shown this and illustrated it with 
examples. I have presented a method thanks to which analysis is such that it 
coincides with synthesis; I have issued a warning about the things that 
geometers tolerate in analysis, and I have shown what kind of error follows 
if one tolerates them.56  

Ibn Sinān’s intention is clear, and his project is well articulated: to 
classify geometrical problems according to different criteria in order to 
show how to proceed in each class, by analysis and synthesis, and to put on 
display the loci of errors in order to avoid them. Here is a broad outline of 
his classification. 

1. The problems whose assumptions are completely given 
1.1  The true problems 
1.2  The impossible problems 

2. The problems for which it is necessary to modify some hypotheses 
 2.1 The problems with discussion (diorism) 
 2.2 The indeterminate problems 

2.2.1 The indeterminate problems strictly speaking 
2.2.2 The indeterminate problems with discussion 

 2.3 The overabundant problems 
2.3.1 The indeterminate problems to which an addition is made 
2.3.2 The problems with discussion to which an addition is made 
2.3.3 The true problems to which an addition is made 
 

 
56 Ibid., pp. 96–8. 
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To this is also added the modal classification of propositions. 
This classification is based on several criteria: the number of solutions, 

the number of hypotheses, their compatibility, and their eventual 
independence. 

Al-Samawʾal, a little more than two centuries later, takes up this 
classification, always starting from the number of solutions and the number 
of hypotheses.57 He further refines the classification. He draws a distinction 
between identities and the problems that have an infinite number of 
solutions without being identities. He furthermore introduces the concept of 
undecidable problems, one for which one can demonstrate neither the 
existence nor the negation.58 Unfortunately, he does not give an example. 
The least one can say, however, is that al-Samawʾal was able to inflect the 
Aristotelian concept of the necessary, the possible, and the impossible 
toward those of computability and semantic undecidability.  

In his book, Ibn Sinān discusses other logical problems, such as the 
place of auxiliary constructions, the reversibility of analysis, and apagogic 
reasoning. Thus in Ibn Sinān’s book, analysis-and-synthesis conjointly 
presents itself both as a discipline and as a method. The former is in effect 
a philosophical and pragmatic logic, insofar as it makes possible the 
association of an ars inveniendi and an ars demonstrandi; the latter is a 
procedure based on a theory of demonstration that Ibn Sinān endeavoured 
to elaborate. 

A generation after Ibn Sinān, the mathematician al-Sijzī (last third of 
the 10th century) conceives of a different project, that of an ars inveniendi 
that corresponds to requirements that are at once logical and didactical 
requirements. Al-Sijzī begins by enumerating the methods aimed at 
facilitating mathematical discovery, at least seven of them. Among the 
latter, there is in fact a primary one, ‘analysis and synthesis’, and several 
specific methods that grant this primary one effective means of discovery. 
Among the latter, one finds the method of pointwise transformations and 
the method of ingenious procedures. All these specific methods have in 
common the idea of transforming and varying the figures as well as the 
propositions and solution procedures. When he summarizes his project, al-
Sijzī writes: 

 
57 S. Ahmad and R. Rashed, Al-Bāhir en Algèbre d’As-Samawʾal, Damas, Presses 

de l’Université de Damas, 1972. 
58 R. Rashed, Entre arithmétique et algèbre. Recherches sur l’histoire des mathé-

matiques arabes, Sciences et philosophie arabes – Études et reprises, Paris, Les Belles 
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Arithmetic and Algebra, Boston Studies in the Philosophy of Science 146, Dordrecht, 
Kluwer, 1994. 
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As the examination of the nature of propositions (al-askhāl) and of their 
properties in themselves is surely carried out in one of these two ways: either 
we imagine the necessity of their properties by making their species vary, an 
imagination that draws on sensation or what the senses have in common; or 
by positing these properties and also the lemmas that they require, 
successively, by geometrical necessity […].59 

For al-Sijzī, then, the ars inveniendi includes essentially only two 
paths. All specific methods are grouped around the first path, whereas the 
second is none other than ‘analysis and synthesis’. Together, the following 
three features – the distinction, the nature of the first path, and finally the 
intimate relation between the two – make al-Sijzī’s conception unique and 
reflect the novelty of his contribution.  

It should also be noted that the first of the two paths splits into two, 
according to the two meanings of the term shakl. This word, which the 
translators of Greek mathematical writings chose to render διάγραμμα, 
can indifferently designate, as the Greek word does, both the figure and the 
proposition. 

This double meaning is not too fraught with ambiguity as long as the 
figure graphically translates the proposition in a rather static manner, if I 
may say so; in other words as long as geometry essentially remains a study 
of figures. But everything becomes more complicated when one begins to 
transform the figures and to make variations on them, as is already the case 
in some branches of geometry at the time of al-Sijzī. The double reference 
then requires a clarification. Let us begin with the first meaning, that of 
‘figure’. 

In this treatise, al-Sijzī recommends that one proceed by varying the 
figure in three different situations: when one makes a pointwise transfor-
mation; when one varies one element of the figure when all the others 
remain constant; finally, when one chooses an auxiliary construction. Now 
these different procedures have several elements in common. First the goal: 
one always seeks to attain, thanks to the transformation and the variation, 
the invariable properties of the figure associated with the proposition, the 
ones that properly characterize it. It is precisely these invariable properties 
that are stated in the figure as a proposition. The second element also 
pertains to the goal: variation and transformation are means of discovery 
insofar as they lead to invariable properties. This is where the imagination 
intervenes, a power of the soul capable of drawing on the multiplicity 
offered by the senses by means of the variable properties of the figures, the 

 
59 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV: 

Méthodes géométriques, transformations ponctuelles et philosophie des mathématiques, 
London, 2002, Appendice I, p. 818. 
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invariable properties, the essences of things. The third element concerns a 
specific role of the figure, now as a representation: the role, often 
mentioned by al-Sijzī, of fixing the imagination, of helping it in its task 
when it draws on sensation. No less important, the fourth pertains to the 
figure-proposition duality: there is no biunivocal relation. A variety of 
figures can correspond to one and the same proposition; likewise, an entire 
family of propositions can correspond to a single figure. In fact, al-Sijzī 
decided to treat this last case at great length. These new relations between 
figure and proposition, which al-Sijzī was the first to point out, as far as I 
know, require that one conceive a new chapter of the ars inveniendi: the 
analysis of figures and of their connections to propositions. This is 
precisely what al-Sijzī seems to have inaugurated. 

A generation later, Ibn al-Haytham (d. after 1040) conceives another 
project: that of founding a scientific art, with its rules and vocabulary. Ibn 
al-Haytham begins by reminding the reader that mathematics is founded on 
demonstrations. By demonstration, he means ‘the syllogism that necessa-
rily indicates the truth of its proper conclusion’.60 This syllogism in turn is 
composed ‘of premises, the truth and validity of which the understanding 
recognizes without entertaining any doubts about them; and of an order and 
arrangement of these premises such that they compel the hearer to be 
convinced of their necessary consequences and to believe in the validity of 
what follows from their arrangement’.61 The Art of analysis (Ṣināʿat al-
taḥlīl) provides the method for obtaining these syllogisms, i.e. ‘to pursue 
the search for their premises, to contrive to find them, and to try to find 
their arrangement’.62 In this sense, the Art of analysis is an ars demons-
trandi. It is also an ars inveniendi, insofar as one is led, thanks to this art, 
‘to undertake the hunt for the unknowns of the mathematical sciences and 
how to carry on seeking the premises (literally ‘to hunt [taṣayyud] for the 
proofs’), which are the material of the demonstrations indicating the 
validity of what one discovers about the unknowns of these sciences, and 
the method for obtaining arrangement of these premises and the figure of 
the combination’.63  

For Ibn al-Haytham, it is indeed an Ars (τέχνη, ṣināʿat) analytica that 
one must conceive and construct. As far as I know, no one before him 

 
60 R. Rashed, ‘La philosophie mathématique d’Ibn al-Haytham. I: L’analyse et la 

synthèse’, Mélanges de l’Institut Dominicain d’Études Orientales du Caire, 20, 1991, 
pp. 31–231, p. 36; Les Mathématiques infinitésimales, vol. IV, pp. 162 ff. 
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62 Ibid. 
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considered analysis and synthesis as an art or, more precisely, as a double 
art of both demonstration and discovery. In the first, the analyst (al-
muḥallil) must know the principles (uṣūl) of mathematics. This knowledge 
must be undergirded by an ‘ingenuity’ and an ‘intuition shaped by the art’ 
(ḥads ṣināʿī). This intuition is indispensible for discovery and also proves 
necessary when synthesis is not strictly the inversion of analysis, but 
requires the discovery of supplemental properties and data. Knowledge of 
principles, ingenuity and intuition are so many means that the analyst must 
have in order to discover mathematical unknowns. The ‘laws’ and the 
‘principles’ of this analytical art still remain to be known. This required 
knowledge is the object of a discipline that pertains to mathematical 
foundations and that treats the ‘knowns’. It, too, has yet to be constructed. 
This last characteristic is peculiar to Ibn al-Haytham insofar as nobody 
before him, not even Ibn Sinān, thought of conceiving an analytical art 
founded on its own mathematical discipline. To the latter, Ibn al-Haytham 
devotes a second treatise, The Knowns,64 which he had promised in his 
treatise on Analysis and Synthesis.65 He himself presents this new discipline 
as the one that gives the analyst the ‘laws’ of this art and the ‘foundations’ 
that complete the discovery of properties and the grasp of premises; in 
other words, it touches the foundations of mathematics, the prior know-
ledge of which, as we stated, is indeed necessary to complete the art of 
analysis: these are the concepts called the ‘knowns’.66 Note that every time 
he treats a foundational problem, as he does in his On the Quadrature of 
the Circle,67 Ibn al-Haytham comes back to the ‘knowns’. 

According to Ibn al-Haytham, a concept is said to be ‘known’ when it 
remains invariable and admits no change, whether or not a knowing subject 
thinks this concept. The ‘knowns’ designate invariable properties, indepen-
dent of the knowledge that we have of them, and remain unchanged even 
though the other elements of the mathematical object vary. The goal of the 
analyst, according to Ibn al-Haytham, is precisely to find these invariable 
properties. Once these fixed elements have been attained, his task is 
complete, and one can then turn to synthesis. The Ars inveniendi is neither 

 
64 R. Rashed, ‘La philosophie mathématique d’Ibn al-Haytham. II: Les Connus’, 
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mechanical nor blind, but it is by dint of ingenuity that it leads to the 
‘knowns’. 

In order to constitute itself, the analytical art therefore requires a 
mathematical discipline that must itself be constructed. The latter contains 
the ‘laws’ and the ‘principles’ of the former. The analytical art cannot, 
according to this conception, be reduced to any logic, but its own logical 
part is immersed in this mathematical discipline. We can thus see the limits 
of this art’s extension. 

These briefly sketched contributions indicate here several situations in 
which mathematicians have treated the philosophy of mathematics. Earlier 
we have seen other situations in which philosopher-mathematicians and 
mathematician-philosophers contributed to the philosophy of mathematics. 
These contributions are obviously part of the history of philosophy, the 
history of the science, and the history of mathematical thought in classical 
Islam. To forget these contributions is at once to impoverish the history of 
philosophy and to truncate the history of mathematics. 
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Ibn ‘Iræq, Abº NaÒr: 92, 127, 301, 651
Ibn ‘ïsæ, ‘Alî: 28, 41
Ibn IsÌæq, Îunayn: 25, 31–36, 41, 42
334, 539

Ibn ‘IÒma, Sulaymæn: 117
Ibn Karnîb, Abº al-‘Alæ’: 583
Ibn Khaldºn: 152–154
Ibn Khallikæn: 25 n. 13, 710, 711, 711
n. 29

Ibn al-Khashshæb: 121
Ibn al-Khawwæm al-Baghdædî: 121, 355,

374, 374 n. 15, 397
Ibn Lºqæ, Qus†æ: 36–38, 41, 44, 45, 47–

49, 53, 118, 187 n. 35, 349, 350,
397

Ibn Ma‘dæn: 583
Ibn Malik al-Dimashqî: 161, 165, 341
Ibn ManÂºr: 158
Ibn Mæsawayh, YºÌannæ: 25, 34, 35,
42, 475

Ibn Mu‘ædh: 681
Ibn al-Mun‘im: 154, 155
Ibn Mºsæ, AÌmad: 51, 475, 481, 499,
559

Ibn Mºsæ, al-Îasan: 22, 35, 51, 52, 90,
93, 94, 98, 262, 475, 477, 480–484,
499, 555, 557–560, 565, 566, 571,
625

Ibn Mºsæ, MuÌammad: 25, 35, 51, 475,
499, 559, 600

Ibn Nawbakht, Abº Sahl: 26–28, 56
Ibn Quraysh, al-Îasan: 54
Ibn Qutayba: 31 n. 33
Ibn Rushd: 644 n. 20, 702
Ibn Sab‘în: 411 n. 4
Ibn Sahl, al-‘Alæ’: 37, 41, 45, 92, 93,

95–97, 191, 192, 195, 263, 485, 493,
506, 548, 555, 556, 558, 571–574,
583–585, 591, 592, 603–607, 685,
686, 690–692

Ibn al-SamÌ: 481, 559, 565–571, 599
Ibn al-Sarî (= Ibn al-∑alæÌ): 53, 54, 54
n. 80, 474, 599

Ibn Sarjºn, Halyæ: 54
Ibn Sayyid, ‘Abd al-RaÌmæn: 97
Ibn al-Shæ†ir: 644 n. 20
Ibn al-Shukr al-Maghribî: 644 n. 20
Ibn Sînæ: 164, 169, 334, 335, 343, 345,

688, 695–699, 708–715, 717–726

Ibn Sinæn, Ibræhîm: 93, 94, 98, 100, 188,
196–199, 305, 484, 485, 493, 500–
502, 506, 557, 583, 602, 603, 698,
699, 726–728, 731

Ibn ™aba†aba: 159
Ibn ™æriq, Ya‘qºb: 27, 54
Ibn Tibbon: 705 n. 21
Ibn Turk, ‘Abd al-Îæmid: 87, 113
Ibn Wahb, IsÌæq ibn Ibræhîm: 159
Ibn YaÌyæ, ‘ïsæ: 35
Ibn Yazîd, Khælid: 25, 26
Ibn Yºnus, Kamæl al-Dîn: 95, 145, 302,

356, 359, 391, 392, 419, 419 n. 24,
420, 424 n. 36, 427, 444

Ibn Yºsuf, AÌmad: 424, 424 n. 36, 425
Ibn Yºsuf, YºÌannæ: 117
Ibræhîm, M.: 152 n. 7, 158 n. 15
Ikhwæn al-∑afæ’: 710
Al-IÒfahænî: 142, 146, 152, 387–389
IsÌæq ibn Îunayn: 539
Isidore of Miletus: 602
Iskandar, A. Z.: 33 n. 40
Itard, J.: 69 n. 12, 180, 180 n. 21, 185
n. 29, 205 n. 63–64, 239, 239
n. 1, 365 n. 2, 451 n. 6, 460, 460
n. 12, 462 n. 18

Jacob, A.: 719 n. 47
Al-JæÌiÂ: 27 n. 21, 40
Al-Jahshayyai: 31 n. 33
Jaouiche, Kh.: 621 n. 1
Jevons, William Stanley: 11
Johannes de Tinemue: 530
John of Palermo: 411, 420, 421, 426–
431, 436, 440, 443

Jolivet, J.: 700 n. 5
Jordanus de Nemore: 424, 480
Al-Juzjænî: 345

Kant, Emmanuel: 16, 259, 259 n. 1
Kantorowicz, E.: 411 n. 1–2, 412, 412
n. 6

Al-Karæbîsî: 335
Al-Karajî: 86–88, 119–121, 124, 146,
147, 160, 170, 325, 329, 335, 337,
343, 345, 350–355, 367, 368, 371,
377, 387, 415, 419–421, 426, 428,
430, 435, 440–443, 445, 446 n. 2,
717

Al-Kæshî: 121, 161, 165, 370, 375, 377,
378, 379, 388, 397, 446 n. 2

Kempe, Alfred Bray: 211, 211 n. 81,
212, 247

Kennedy, E. S.: 160 n. 18, 600 n. 31
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517, 676, 677, 693

Kersey, John: 339
Al-Khalîl ibn AÌmad: 29, 34, 105, 106,
150–158, 169

Al-Khayyæm, ‘Umar: xvi, 74, 83, 89,
97, 100, 125–138, 144–146, 161,
171, 199–204, 240–245, 247, 248,
254, 256, 257, 301–303, 312, 316,
317, 320, 328, 374, 379, 380, 415,
419, 427, 428, 443, 626, 630, 631,
634

Al-Khæzin, Abº Ja‘far: 8, 88, 93, 97,
117, 126–128, 186, 196, 199, 301,
329, 340, 356–359, 363, 391, 392,
421–423, 429, 431, 432, 434, 438,
439, 441–443, 445, 452, 454, 458,
469, 527–533, 537, 538, 542, 603,
714

Al-Khilæ†î: 146, 346, 356
Al-Khu≈ayrî, M.: 710 n. 27
Al-Khujandî: 88, 329, 356, 358, 429,

445, 714
Al-Khwærizmî: xv, 22, 31, 46–49, 60,
83–87, 89, 97, 107–119, 301, 346,
350, 365–369, 372, 413–415, 425,
426, 429, 431, 454

Al-Kindî: 22, 28, 29, 31, 31 n. 37, 37–
45, 50, 56, 97, 159, 262, 345, 475,
485, 526, 556, 600, 681, 684–686,
695, 697–703, 706, 708, 709

King, D.: 391 n. 40
Knobloch, E.: 178 n. 15, 210 n. 78,

234 n. 115
Kolmogorov, Andrey: 10
Koyré, A.: 4, 268 n. 21
Kraemer, J. L.: 20 n. 2
Kronecker, Leopold: 58
Kuhn, T.: 4
Kummer, Ernst Eduard: 58
Kunitzsch, P.: 54 n. 80, 600 n. 31
Kºshyær ibn Labbæn: 369–374, 599,
600

Kutsch, W.: 52 n. 78, 712 n. 32

Labey, J. B.: 176 n. 8
Lagrange, Joseph Louis: 58, 176, 231,
453

Lamrabet, D.: 155 n. 11
Langermann, Y.T.: 643, 643 n. 15
Lanham, D.: 411 n. 3
Latham, M.L.: 206 n. 66, 275 n. 27
Al-Layth: 151, 155
Lebesgue, Henri: 10, 208 n. 73, 253
n.  31

Le Cozic: 224
Legendre, Adrien-Marie: 468
Leibniz, Gottfried Wilhelm: 4, 15, 100,
149, 149 n. 4, 164, 170, 170 n. 36,
172, 209, 210 n. 78, 225, 233, 233
n. 114, 234, 250, 255, 257, 279,
282, 289, 299

Lejeune, A.: 37 n. 47
Leonard of Pisa: see Fibonacci
Levine, H.: 281 n. 1
Lévy, T.: 400 n. 2
L’Hôpital, Marquis de: 172, 268, 268
n. 22, 282, 284

Libri, Guglielmo: 425, 425 n. 2
Lippert, J.: 711 n. 30
Llull, Raymond: 164
Lobatchevsky, Nikolai Ivanovich: 58,
540

Lorch, R. P.: 600 n. 31
Loria, G.: 249 n. 21, 263 n. 9, 423,
423 n. 34, 425

Lorimer, E. O.: 411 n. 1
Luckey, R.: 378 n. 22

MacLaurin, Colin: 172, 224, 225
Madkºr, I.: 335 n. 2, 720 n. 49, 723
n.  53

Al-Mæhænî: 89, 96, 115, 117, 118, 121,
126, 127, 327, 475, 485, 500

Al-Mahdî (Caliph): 24 n. 9
Mahdi, M.: 40 n. 57, 717 n. 43
Mahoney, M. S.: 303 n. 7, 304 n. 9
Maier, A.: 4
Maimonides: 697–699, 702–708
Al-Majrî†î, Maslama: 559, 565, 644
n.  20

Mælik ibn Anas: 107
Al-Ma’mºn: 24, 25, 28, 29, 31, 32
n. 38, 46, 54, 55, 107, 556

Al-ManÒºr: 26–28
Al-Mærdînî, Shams al-Dîn: 146 n. 40
Marmura, M. E.: 719 n. 47
Al-Marwarºdhî: 50, 55, 556, 600
Marx, K.: 9
Mæsarjawayh: 26
Mæshæ’allæh: 27
Al-Mas‘ºdî: 23 n. 7, 26 n. 18, 27, 28
n. 2 2

Al-Mawla, M. J.: 152 n. 7
Al-Mæwardî, Abº YaÌyæ: 583
MaÂhar, ‘A.: 713 n. 34
Menaechmus: 177, 178, 318
Menelaus: xv, 55, 60, 84, 89, 100, 476,
655, 668



INDEX OF NAMES 739

Mersenne, Père Marin: 182, 208, 214,
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n. 5, 249 n. 19, n. 20, 250, 250
n. 26, 289, 291–293, 296, 304,
305, 305 n. 14, 317, 402, 402 n. 3,
407 n. 7, 455 n. 3, 456, 456 n. 5,
460, 460 n. 14, 461 n. 16, 463, 463
n. 19, n. 21, 464, 464 n. 23, 469,
469 n. 28

Meyerhof, M.: 19 n. 1, 42 n. 63–64
Michel Scot: 413
Milhaud, G.: 217 n. 93, 223 n. 98,
244 n. 10, 292, 292 n. 22

Mîr ‘Alam, Y.: 159 n. 17
Miura, N.: 414 n. 13
MizraÌi, Elijah: 379
Mogenet, J.: 525, 525 n. 26
Molland, A. G.: 251 n. 29
Monnot, G.: 30 n. 29
Montaigne, Michel: 282
Montel, P.: 208 n. 73, 253 n. 31
Montmort, Pierre Rémond de: 339
Morelon, R.: 54 n. 80, 557 n. 2, 621
n. 2, 660 n. 3 4

Morewedge, P.: 719 n. 47, 723 n. 53
Morrow, G. R.: 176 n. 10, 177 n. 13,
182 n. 23, 184 n. 28, 185 n. 30,
623 n. 8

Mrayætî, M.: 159 n. 17
Al-Mubarrad: 155
Mugler, C.: 602 n. 4
Murdoch, J. E.: 22 n. 4
Mºsæ, M. Y.: 720 n. 49, 723 n. 53
Mydorge, Claude: xv

Al-Nadîm: 19, 19 n. 1, 24–28, 42
n. 62, 47, 47 n. 71, 113, 186 n. 32,
559, 699 n. 2

Al-Nasawî: 369, 374 n. 15
Al-Nayrîzî: 237 n. 117, 425, 623
Nazif, M.: 689 n. 6, 691 n. 10
Al-NaÂÂæm: 31 n. 32, 56
Needham, J.: 4, 5
Neugebauer, O.: 4, 390, 575, 575 n. 19
Newton, Isaac: 4, 14, 15, 142, 172,
173, 175 n. 7, 213 n. 84, 214, 217,
223, 224, 225, 233, 233 n. 113,
234, 240, 246, 246–247 n. 16, 250,
257, 259, 268, 268 n. 21, 269, 270,
284, 299, 386

Nicomachus of Gerasa: 28, 36, 52, 53,
333–336, 341, 342, 343, 345, 709,
712, 713

Nicomedes: 172, 199, 204, 208, 214
Niese, H.: 411 n. 2

Al-Nîsæbºrî, Abº Rashîd: 30 n. 31
Al-Nuwayrî: 26, 26 n. 16, 27 n. 19

Olscamp, P. J.: 206 n. 65, n. 67, 207
n. 68, n. 72, 208 n. 74, 209 n. 77,
211 n. 80, 212 n. 82, 213 n. 84,
214 n. 87, 215 n. 88–89, 218
n. 94, 223 n. 97, 244 n. 11, 246
n. 13–14, 251 n. 28, 252 n. 30,
253 n. 32, 266 n. 16, 267 n. 18,
270 n. 26, 322 n. 22

Owens, J.: 719 n. 47
Ozanam, Jacques: 232, 233

Paganini, N.: 410
Pappus: 50, 89, 90, 171, 177–180, 185,
186, 188, 191, 205–208, 217, 219,
221–223, 245–247, 267, 276, 279,
297–299, 303, 306, 315, 525, 526,
528, 529, 541, 555, 599, 726

Parent, Antoine: 224 n. 99
Pareto, Vilfredo: 11
Parmentier, M.: 234 n. 115
Pascal, Blaise: 88, 149, 149 n. 2, 161,

163, 170, 172, 199, 204, 232, 317
n.  18

Pasch (axiom): 624, 625, 628–630,
633, 634

Pavet de Courteille, M.: 23 n. 7
Pecham, John: 681
Peletier, Jacques: 282
Pellat, C.: 23 n. 7
Picutti, E.: 425, 430 n. 12, 431 n. 14
Pines, S.: 641–642 n. 13, 702 n. 13–
708 n. 26

Plato: 31 n. 34, 171, 176, 177
Plotinus: 695
Poncelet, Jean Victor (theorem): 212
Posidonius: 623
Probst, S.: 210 n. 78
Proclus: 171, 176, 177, 177 n. 13,
182–186, 282, 623, 623 n. 8, 632,
632 n. 15, 695, 726

Prufer, C.: 42 n. 63
Ptolemy: 19, 31, 36, 37, 40, 42, 44, 45,
49, 54, 55, 84, 93, 260, 365, 393,
526, 527, 532, 556, 575, 577, 578,
599, 623, 637–649, 659, 660 n. 34,
661, 663, 668, 677–683, 685, 686,
689–693

Pythagoras (theorem): 520
Pythion of Thasos: 261

Al-QalaÒædî: 145
Al-Qif†î: 559, 637, 710, 711 n. 30
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Al-Qºhî: 13, 89, 92, 93, 95, 127, 128,
171, 175, 189–193, 195, 201, 236,
301, 302, 305, 327, 379, 485, 493,
502–507, 555, 556, 558, 571, 572,
574, 583, 586–593, 599, 602–605,
607–615, 617–619, 698

Qurbænî, A.: 374 n. 15, 446 n. 2
Qus†æ ibn Lºqæ: see Ibn Lºqæ

Rabuel, Claude: 209 n. 76, 240, 240
n. 6, 275 n. 27

Al-Ræzî, Ibn Zakariyæ: 641 n. 13, 703
Ragep, F. J.: 644 n. 19
Rashed, M.: 27 n. 21, 182 n. 24
Rashed, R.: 20 n. 2, 22 n. 4, 23 n. 7,
29 n. 26–27, 37 n. 46, n. 48–49,
45 n. 68, 60 n. 2, 63 n. 6, 64 n. 7–
8, 65 n. 9–10, 69 n. 12, 73 n. 14,
85 n. 2, 94 n. 3–5, 95 n. 6–9, 96
n. 10–11, 100 n. 16–17, 106 n. 1,
107 n. 2, 110 n . 5, 114 n. 11, 118
n. 18, 120 n. 20, 126 n. 27, 134
n. 29, 135 n. 30–32, 142 n. 33–34,
144 n. 35, 145 n. 37, 147, 150
n. 6, 154 n. 9–10, 160 n. 19, n .
21 , 161 n. 22, 163 n. 24–25, 172
n. 1, 181 n. 22, 188 n. 38, 189 n.
39–40, 190 n. 41, 192 n. 45, 193
n. 46, 194 n. 48–49, 196 n. 51–52,
199 n. 54–56, 200 n. 57, 201
n. 58, 203 n. 60, 204 n. 61, 205
n. 63, 230 n. 106, 239 n. 1, 241
n. 7, 261 n. 2–3, 262 n. 4–7, 263
n. 8, 281 n. 1, 282 n. 3, 290 n. 16,
301 n. 1, 302 n. 3–4, 305 n. 11–
12, 319 n. 19, 325 n. 26, 336 n. 5,
337 n. 7, 338 n. 9, 340 n. 13–14,
345 n. 24, 347 n. 27, 350 n. 33,
355 n. 44, 359 n. 51, 365 n. 2–4,
367 n. 7, 374 n. 16, 377 n. 19–20,
379 n. 26, 380 n. 27–28, 387 n.
35–36, 391 n. 42, 397 n. 47, 399
n. 1, 400 n. 2, 403 n. 4, 404 n. 5,
407 n. 6, 413 n. 11, 414 n. 13, 416
n. 20, 421 n. 33, 426 n. 7, 428 n.
9–11, 430 n. 13, 439 n. 21, 445
n. 1, 453 n. 1, 459 n. 10, 465 n.
25, 474 n. 1, 475 n. 2, 500 n. 11,
506 n. 12, 557 n. 3, 559 n. 8–9,
602 n. 2–4, n. 5, 603 n. 7–8, 621
n. 2–4, 626 n. 11, 631 n. 14, 632 n.
15, 637 n. 1–2, 639 n. 10, 684 n. 1,
686 n. 2, 687 n. 3, 691 n. 10, 698

n. 1, 700 n. 5, 701 n. 12, 707 n.
25, 722 n. 52, 726 n. 55, 728
n. 57–58

Reyneau, Charles René: 268, 268
n. 23, 284

Riemann (integral): 490, 491
Ri≈æ, N.: 34 n. 41, 35 n. 44, 711
n.  30

Robert Grosseteste: 681
Roberval, Gilles Personne: 199, 232,
249, 249 n. 21, 250, 292, 306, 317
n. 18, 458 n. 9

Rome, A.: 526 n. 27
Rosenfeld, B.: 621 n. 1
Ross, G. R. T.: 283 n. 5
Rousseau, J.-J.: 12
Rudolff, Christoff: 379
Ruffini-Horner (method): 136, 142,
370, 371, 374, 381

Sabra, A. I.: 638 n. 6, 639 n. 7, 642
n. 14, 646 n. 23, 648 n. 28, 688
n.  5

Saccheri, Giovanni Girolamo: 634
Sachau, C. E.: 557 n. 5
Saffrey, H. D.: 23 n. 6
Al-∑æghænî, Abº Îæmid: 127, 379, 557,

591, 593–599
∑æ‘id al-Andalºsî: 565
Saidan, A. S.: 22 n. 5, 161 n. 23, 369
n. 9, 370 n. 11–12, 374 n. 15, 377
n. 18, 558 n. 6, 600 n. 30

Saint-Martin, Pierre Bruslat de: 469
Saliba, D.: 719 n. 46
Saliba, G.: 643 n. 18
Sally, J. D.: 61 n. 3
Salmæn: 25
Salmawayh: 35
Al-Samaw’al: 87, 88, 100, 119–121,
147, 160, 162, 170, 343, 345, 350,
354, 356, 367, 370, 374, 376–378,
387, 397, 428, 430, 728

Al-Sarakhsî, Abº al-‘Abbæs: 347
Sasaki, C.: 217 n. 93, 243 n. 9
Sassura, G.: 249 n. 21
Al-∑aydanænî: 113
Sayili, A.: 113 n. 10
Al-Sayyid, R.: 30 n. 31
Sbath, P.: 42 n. 64
Schmidt, W.: 525, 525 n. 25
Schoy, C.: 391 n. 40–41
Schrader, D.: 424 n. 36
Scott, J. F.: 224 n. 98, 275 n. 27
Sengupta, P. C.: 392 n. 43
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Serra, G.: 182 n. 24
Sezgin, F.: 21 n. 3
Al-Shæfi‘î: 107
Al-Shahrastænî: 30 n. 29
Al-Shahrazºrî: 121
Al-Shannî: 127, 128
Sharaf al-Dîn al-Mas‘ºdî: 135
Al-Shaybænî, MuÌammad ibn Îasan:
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Shehaby, N.: 638 n. 6, 646 n. 23, 648
n.  28

Al-Shîræzî, Qu†b al-Dîn: 644 n. 20
Sîbawayh: 156
Sigler, L. E.: 417 n. 22, 418 n. 23,
420 n. 27, 431 n. 14, 441 n. 23

Al-Sijzî: 88, 90, 93–96, 99, 171, 186,
190–195, 198, 230 n. 106, 307,
356, 359–363, 426, 429, 430, 432,
433, 445, 541, 542, 555, 559, 583,
600, 602–604, 614–620, 699, 707,
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Simplicius: 171, 182, 183, 186–188,
190, 237, 517, 518, 525, 623

Sind ibn ‘Alî: 113, 347
Smith, D. E.: 206 n. 66, 275 n. 27
Snel (law): 263, 686, 691, 692
Spinoza, Baruch: 706
Sporos: 171, 179, 180, 181
Steinschneider, M.: 55 n. 85, 715
Stephanus: 25
Al-Sulamî: 121–123, 428
Al-Sumaysæ†î, Abº al-Qæsim: 537
Suter, H.: 374 n. 15, 412 n. 5, 419

n.�25, 520 n.�20
Al-Suyº†î, ‘Abd al-RaÌmæn: 152, 152

n.�7, 158 n. 14
Sylla, E. D.: 22 n. 4

Al-Tabrîzî: 703, 706
Tajaddud, R.: 19 n. 1, 186 n. 32, 699
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178 n. 15, 180, 180 n. 20, 195
n. 50, 206 n. 65, n. 67, 250 n. 24,
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265, 266 n. 16, 269 n. 24, 276
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n. 19, 322 n. 22, 323 n. 24, 451
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374, 374 n. 15, 377, 416, 447 n. 4,
475, 480, 631, 644, 644 n. 19–20,
697–699, 703, 708, 718, 720, 722,
724–726

Al-™ºsî, Sharaf al-Dîn: xvi, 74, 89,
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